

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	Ethernet, I ² C, SPI, SSC, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	69
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a1512-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5-1.Signal Description List

Signal Name	Function	Туре	Active Level	Comments			
	Analog to Digital Converter - ADC						
AD0 - AD7	Analog input pins	Analog input					
ADVREF	ADVREF Analog positive reference voltage input			2.6 to 3.6V			
	Pulse Width Modulat	or - PWM					
PWM0 - PWM6	PWM Output Pins	Output					
	Universal Serial Bus Device - USB						
DDM	USB Device Port Data -	Analog					
DDP	USB Device Port Data +	Analog					
VBUS	USB VBUS Monitor and OTG Negociation	Analog Input					
USBID	ID Pin of the USB Bus	Input					
USB_VBOF	USB VBUS On/off: bus power control port	output					
	Audio Bitstream DAC	(ABDAC)					
DATA0-DATA1	D/A Data out	Outpu					
DATANO-DATAN1	D/A Data inverted out	Outpu					

6. Package and Pinout

The device pins are multiplexed with peripheral functions as described in "Peripheral Multiplexing on I/O lines" on page 31.

Figure 6-1. TQFP100 Pinout

Table 6-1.TQFP100 Package Pinout

1	PB20			
2	PB21			
3	PB22			
4	VDDIO			
5	GND			
6	PB23			
7	PB24			
8	PB25			
9	PB26			
10	PB27			
11	VDDOUT			
12	VDDIN			
13	GND			
14	PB28			
15	PB29			
16	PB30			
17	PB31			
18	RESET_N			
19	PA00			
20	PA01			
21	GND			
22	VDDCORE			

PA05		
PA06		
PA07		
PA08		
PA09		
PA10		
N/C		
PA11		
VDDCORE		
GND		
PA12		
PA13		
VDDCORE		
PA14		
PA15		
PA16		
PA17		
PA18		
PA19		
PA20		
VBUS		
VDDIO		

51	PA21	
52	PA22	
53	PA23	
54	PA24	
55	PA25	
56	PA26	
57	PA27	
58	PA28	
59	VDDANA	
60	ADVREF	
61	GNDANA	
62	VDDPLL	
63	PC00	
64	PC01	
65	PB00	
66	PB01	
67	VDDIO	
68	VDDIO	
69	GND	
70	PB02	
71	PB03	
72	PB04	

76	PB08		
77	PB09		
78	PB10		
79	VDDIO		
80	GND		
81	PB11		
82	PB12		
83	PA29		
84	PA30		
85	PC02		
86	PC03		
87	PB13		
88	PB14		
89	TMS		
90	ТСК		
91	TDO		
92	TDI		
93	PC04		
94	PC05		
95	PB15		
96	PB16		
97	VDDCORE		

7. Power Considerations

7.1 Power Supplies

The AT32UC3A has several types of power supply pins:

- VDDIO: Powers I/O lines. Voltage is 3.3V nominal.
- VDDANA: Powers the ADC Voltage is 3.3V nominal.
- VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.
- VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.
- VDDPLL: Powers the PLL. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO, VDDPLL. The ground pin for VDDANA is GNDANA.

Refer to "Power Consumption" on page 44 for power consumption on the various supply pins.

Table 10-1. Peripheral Address Mapping (Continued)

Address		Peripheral Name	Bus
0xFFFF1C00	USART2	Universal Synchronous Asynchronous Receiver Transmitter - USART2	PBA
0xFFFF2000	USART3	Universal Synchronous Asynchronous Receiver Transmitter - USART3	PBA
0xFFFF2400	SPI0	Serial Peripheral Interface - SPI0	PBA
0xFFFF2800	SPI1	Serial Peripheral Interface - SPI1	PBA
0xFFFF2C00	TWI	Two Wire Interface - TWI	PBA
0xFFFF3000	PWM	Pulse Width Modulation Controller - PWM	PBA
0xFFFF3400	SSC	Synchronous Serial Controller - SSC	PBA
0xFFFF3800	TC	Timer/Counter - TC	PBA
0xFFFF3C00	ADC	Analog To Digital Converter - ADC	PBA

10.2 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to being mapped on the Peripheral Bus. These registers can therefore be reached both by accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at CPU speed, one write or read operation can be performed per clock cycle to the local busmapped GPIO registers.

The following GPIO registers are mapped on the local bus:

 Table 10-2.
 Local bus mapped GPIO registers

Port	Register	Mode	Local Bus Address	Access
0	Output Driver Enable Register (ODER)	WRITE	0x4000_0040	Write-only
		SET	0x4000_0044	Write-only
		CLEAR	0x4000_0048	Write-only
		TOGGLE	0x4000_004C	Write-only
	Output Value Register (OVR)	WRITE	0x4000_0050	Write-only
		SET	0x4000_0054	Write-only
		CLEAR	0x4000_0058	Write-only
		TOGGLE	0x4000_005C	Write-only
	Pin Value Register (PVR)	-	0x4000_0060	Read-only
1	Output Driver Enable Register (ODER)	WRITE	0x4000_0140	Write-only
		SET	0x4000_0144	Write-only
		CLEAR	0x4000_0148	Write-only
		TOGGLE	0x4000_014C	Write-only
	Output Value Register (OVR)	WRITE	0x4000_0150	Write-only
		SET	0x4000_0154	Write-only
		CLEAR	0x4000_0158	Write-only
		TOGGLE	0x4000_015C	Write-only
	Pin Value Register (PVR)	-	0x4000_0160	Read-only
2	Output Driver Enable Register (ODER)	WRITE	0x4000_0240	Write-only
		SET	0x4000_0244	Write-only
		CLEAR	0x4000_0248	Write-only
		TOGGLE	0x4000_024C	Write-only
	Output Value Register (OVR)	WRITE	0x4000_0250	Write-only
		SET	0x4000_0254	Write-only
		CLEAR	0x4000_0258	Write-only
		TOGGLE	0x4000_025C	Write-only
	Pin Value Register (PVR)	-	0x4000_0260	Read-only

 Table 10-9.
 GPIO Controller Function Multiplexing

7	11	PB24	GPIO 56	TC - B0	USART1 - DSR	
8	13	PB25	GPIO 57	TC - A1	USART1 - DTR	
9	14	PB26	GPIO 58	TC - B1	USART1 - RI	
10	15	PB27	GPIO 59	TC - A2	PWM - PWM[4]	
14	19	PB28	GPIO 60	TC - B2	PWM - PWM[5]	
15	20	PB29	GPIO 61	USART2 - RXD	PM - GCLK[1]	EBI - NCS[2]
16	21	PB30	GPIO 62	USART2 - TXD	PM - GCLK[2]	EBI - SDCS
17	22	PB31	GPIO 63	USART2 - CLK	PM - GCLK[3]	EBI - NWAIT
63	85	PC00	GPIO 64			
64	86	PC01	GPIO 65			
85	124	PC02	GPIO 66			
86	125	PC03	GPIO 67			
93	132	PC04	GPIO 68			
94	133	PC05	GPIO 69			
	1	PX00	GPIO 100	EBI - DATA[10]	USART0 - RXD	
	2	PX01	GPIO 99	EBI - DATA[9]	USART0 - TXD	
	4	PX02	GPIO 98	EBI - DATA[8]	USART0 - CTS	
	10	PX03	GPIO 97	EBI - DATA[7]	USART0 - RTS	
	12	PX04	GPIO 96	EBI - DATA[6]	USART1 - RXD	
	24	PX05	GPIO 95	EBI - DATA[5]	USART1 - TXD	
	26	PX06	GPIO 94	EBI - DATA[4]	USART1 - CTS	
	31	PX07	GPIO 93	EBI - DATA[3]	USART1 - RTS	
	33	PX08	GPIO 92	EBI - DATA[2]	USART3 - RXD	
	35	PX09	GPIO 91	EBI - DATA[1]	USART3 - TXD	
	38	PX10	GPIO 90	EBI - DATA[0]	USART2 - RXD	
	40	PX11	GPIO 109	EBI - NWE1	USART2 - TXD	
	42	PX12	GPIO 108	EBI - NWE0	USART2 - CTS	
	44	PX13	GPIO 107	EBI - NRD	USART2 - RTS	
	46	PX14	GPIO 106	EBI - NCS[1]		TC - A0
	59	PX15	GPIO 89	EBI - ADDR[19]	USART3 - RTS	TC - B0
	61	PX16	GPIO 88	EBI - ADDR[18]	USART3 - CTS	TC - A1
	63	PX17	GPIO 87	EBI - ADDR[17]		TC - B1
	65	PX18	GPIO 86	EBI - ADDR[16]		TC - A2
	67	PX19	GPIO 85	EBI - ADDR[15]	EIM - SCAN[0]	TC - B2
	87	PX20	GPIO 84	EBI - ADDR[14]	EIM - SCAN[1]	TC - CLK0
	89	PX21	GPIO 83	EBI - ADDR[13]	EIM - SCAN[2]	TC - CLK1
	91	PX22	GPIO 82	EBI - ADDR[12]	EIM - SCAN[3]	TC - CLK2
	95	PX23	GPIO 81	EBI - ADDR[11]	EIM - SCAN[4]	
	97	PX24	GPIO 80	EBI - ADDR[10]	EIM - SCAN[5]	

- Optional Manchester Encoding
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
- NACK handling, error counter with repetition and iteration limit
- IrDA modulation and demodulation
 - Communication at up to 115.2 Kbps
- Test Modes
 - Remote Loopback, Local Loopback, Automatic Echo
- SPI Mode
 - Master or Slave
 - Serial Clock Programmable Phase and Polarity
 - SPI Serial Clock (SCK) Frequency up to Internal Clock Frequency PBA/4
- Supports Connection of Two Peripheral DMA Controller Channels (PDC)
 - Offers Buffer Transfer without Processor Intervention

10.11.8 Serial Synchronous Controller

- Provides serial synchronous communication links used in audio and telecom applications (with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)
- · Contains an independent receiver and transmitter and a common clock divider
- Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal
- 10.11.9 Timer Counter
- Three 16-bit Timer Counter Channels
- Wide range of functions including:
 - Frequency Measurement
 - Event Counting
 - Interval Measurement
 - Pulse Generation
 - Delay Timing
 - Pulse Width Modulation
 - Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs
 - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels

10.11.10 Pulse Width Modulation Controller

- 7 channels, one 20-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock
 - Independent Period and Duty Cycle, with Double Bufferization
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform

11. Boot Sequence

This chapter summarizes the boot sequence of the AT32UC3A. The behaviour after power-up is controlled by the Power Manager. For specific details, refer to Section 13. "Power Manager (PM)" on page 53.

11.1 Starting of clocks

After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the power has stabilized throughout the device. Once the power has stabilized, the device will use the internal RC Oscillator as clock source.

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have a divided frequency, all parts of the system recieves a clock with the same frequency as the internal RC Oscillator.

11.2 Fetching of initial instructions

After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset address, which is 0x8000_0000. This address points to the first address in the internal Flash.

The code read from the internal Flash is free to configure the system to use for example the PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the clocks to unused peripherals.

12. Electrical Characteristics

12.1 Absolute Maximum Ratings*

Operating Temperature40.C to +85.C
Storage Temperature60°C to +150°C
Voltage on Input Pin with respect to Ground except for PC00, PC01, PC02, PC03, PC04, PC050.3V to 5.5V
Voltage on Input Pin with respect to Ground for PC00, PC01, PC02, PC03, PC04, PC050.3V to 3.6V
Maximum Operating Voltage (VDDCORE, VDDPLL) 1.95V
Maximum Operating Voltage (VDDIO, VDDIN, VDDANA).3.6V
Total DC Output Current on all I/O Pin for TQFP100 package

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

12.10 JTAG Timings

12.10.1 JTAG Interface Signals

Table 12-29. JTAG Interface Timing specification

Symbol	Parameter	Conditions	Min	Max	Units
JTAG ₀	TCK Low Half-period	(1)	6		ns
JTAG ₁	TCK High Half-period	(1)	3		ns
JTAG ₂	TCK Period	(1)	9		ns
JTAG ₃	TDI, TMS Setup before TCK High	(1)	1		ns
JTAG ₄	TDI, TMS Hold after TCK High	(1)	0		ns
JTAG ₅	TDO Hold Time	(1)	4		ns
JTAG ₆	TCK Low to TDO Valid	(1)		6	ns
JTAG ₇	Device Inputs Setup Time	(1)			ns
JTAG ₈	Device Inputs Hold Time	(1)			ns
JTAG ₉	Device Outputs Hold Time	(1)			ns
JTAG ₁₀	TCK to Device Outputs Valid	(1)			ns

Note: 1. V_{VDDIO} from 3.0V to 3.6V, maximum external capacitor = 40pF

Table 12-35.Programming Time

Temperature Operating Range Part	Page Programming Time (ms)	Chip Erase Time (ms)
Industrial	4	4
Automotive	16	16

AT32UC3A

Figure 13-3. FFBGA-144 package drawing

Table 13-8.	Device and Package	Maximum	Weight
-------------	--------------------	---------	--------

1300	mg

Table 13-9. Package Characteristics

Moisture Sensitivity Level	MSL3

Table 13-10. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

14. Ordering Information

 Table 14-1.
 Ordering Information

Device	Ordering Code	Package	Conditioning	Temperature Operating Range
AT32UC3A0512	AT32UC3A0512-ALUT	144 LQFP	Tray	Industrial (-40·C to 85·C)
	AT32UC3A0512-ALUR	144 LQFP	Reel	Industrial (-40·C to 85·C)
	AT32UC3A0512-ALTR	144 LQFP	Reel	Automotive (-40·C to 85·C)
	AT32UC3A0512-ALTT	144 LQFP	Tray	Automotive (-40·C to 85·C)
	AT32UC3A0512-ALTES	144 LQFP	Tray	Automotive (-40·C to 85·C) samples
	AT32UC3A0512-CTUT	144 FFBGA	Tray	Industrial (-40·C to 85·C)
	AT32UC3A0512-CTUR	144 FFBGA	Reel	Industrial (-40·C to 85·C)
AT32UC3A0256	AT32UC3A0256-ALUT	144 LQFP	Tray	Industrial (-40·C to 85·C)
	AT32UC3A0256-ALUR	144 LQFP	Reel	Industrial (-40·C to 85·C)
	AT32UC3A0256-CTUT	144 FFBGA	Tray	Industrial (-40·C to 85·C)
	AT32UC3A0256-CTUR	144 FFBGA	Reel	Industrial (-40·C to 85·C)
AT32UC3A0128	AT32UC3A0128-ALUT	144 LQFP	Tray	Industrial (-40·C to 85·C)
	AT32UC3A0128-ALUR	144 LQFP	Reel	Industrial (-40·C to 85·C)
	AT32UC3A0128-CTUT	144 FFBGA	Tray	Industrial (-40·C to 85·C)
	AT32UC3A0128-CTUR	144 FFBGA	Reel	Industrial (-40·C to 85·C)
AT32UC3A1512	AT32UC3A1512-AUT	100 TQFP	Tray	Industrial (-40·C to 85·C)
	AT32UC3A1512-AUR	100 TQFP	Reel	Industrial (-40·C to 85·C)
AT32UC3A1256	AT32UC3A1256-AUT	100 TQFP	Tray	Industrial (-40·C to 85·C)
	AT32UC3A1256-AUR	100 TQFP	Reel	Industrial (-40·C to 85·C)
AT32UC3A1128	AT32UC3A1128-AUT	100 TQFP	Tray	Industrial (-40·C to 85·C)
	AT32UC3A1128-AUR	100 TQFP	Reel	Industrial (-40·C to 85·C)

14.1 Automotive Quality Grade

The AT32UC3A have been developed and manufactured according to the most stringent requirements of the international standard ISO-TS-16949. This data sheet will contain limit values extracted from the results of extensive characterization (Temperature and Voltage). The quality and reliability of the AT32UC3A is verified during regular product qualification as per AEC-Q100 grade 3.

As indicated in the ordering information paragraph, the product is available in only one temperature grade T: $-40^{\circ}C / + 85^{\circ}C$.

15.3.7	GPIO	Workaround/fix The same PID should not be assigned to more than one channel.
		 Some GPIO VIH (input high voltage) are 3.6V max instead of 5V tolerant Only 11 GPIOs remain 5V tolerant (VIHmax=5V):PB01, PB02, PB03, PB10, PB19, PB20, PB21, PB22, PB23, PB27, PB28. Workaround/fix None.
15.3.8	USART	
		 ISO7816 info register US_NER cannot be read The NER register always returns zero. Fix/Workaround None.
15.3.9	тwi	
		1. The TWI RXRDY flag in SR register is not reset when a software reset is performed. Fix/Workaround
15.3.10	SDRAMC	Aller a Soliwale Resel, the register 1 with that be read.
		1. Code execution from external SDRAM does not work Code execution from SDRAM does not work.
15 2 11	Brocossor an	Fix/Workaround Do not run code from SDRAM.
15.5.11		
		 LDM instruction with PC in the register list and without ++ increments Rp For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. Fix/Workaround None.
		 RETE instruction does not clear SREG[L] from interrupts. The RETE instruction clears SREG[L] as expected from exceptions. Fix/Workaround
		When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.
		 Exceptions when system stack is protected by MPU RETS behaves incorrectly when MPU is enabled and MPU is configured so that
		system stack is not readable in unprivileged mode. Fix/Woraround Warkeround 1: Make system stack readable in unprivileged mode
		or
		Workaround 2: Return from supervisor mode using rete instead of rets. This requires :
		1. Changing the mode bits from 001b to 110b before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr

Updating the mode bits to the desired value must be done using a single m instruction so it is done atomically. Even if this step is described in general as not safe in the UC technical reference guide, it is safe in this very

4. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and NCPHA=0

When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK. **Fix/workaround**

When multiple CS are in use, if one of the baudrate equals 1, the other must also equal 1 if CPOL=1 and CPHA=0.

5. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or during the first transfer.

Fix/Workaround

1. Set slave mode, set required CPOL/CPHA.

- 2. Enable SPI.
- 3. Set the polarity CPOL of the line in the opposite value of the required one.
- 4. Set the polarity CPOL to the required one.
- 5. Read the RXHOLDING register.

Transfers can now befin and RXREADY will now behave as expected.

6. SPI Disable does not work in Slave mode Fix/workaround

Read the last received data then perform a Software reset.

15.4.4 Power Manager

1. Wrong reset causes when BOD is activated

Setting the BOD enable fuse will cause the Reset Cause Register to list BOD reset as the reset source even though the part was reset by another source.

Fix/Workaround

Do not set the BOD enable fuse, but activate the BOD as soon as your program starts.

2. If the BOD level is higher than VDDCORE, the part is constantly under reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

15.4.5 FLASHC

1. On AT32UC3A0512 and AT32UC3A1512, corrupted read in flash after FLASHC WP, EP, EA, WUP, EUP commands may happen

- After a FLASHC Write Page (WP) or Erase Page (EP) command applied to a page in a given half of the flash (first or last 256 kB of flash), reading (data read or code fetch) the other half of the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.

After a FLASHC Erase All (EA) command, reading (data read or code fetch) the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.
After a FLASHC Write User Page (WUP) or Erase User Page (EUP) command, reading

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system stack is not readable in unprivileged mode.

Fix/Woraround

Workaround 1: Make system stack readable in unprivileged mode, or

Workaround 2: Return from supervisor mode using rete instead of rets. This requires :

1. Changing the mode bits from 001b to 110b before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr instruction so it is done atomically. Even if this step is described in general as not safe in the UC technical reference guide, it is safe in this very specific case.

2. Execute the RETE instruction.

12. CPU cannot operate on a divided slow clock (internal RC oscillator) Fix/Workaround

Do not run the CPU on a divided slow clock.

13. LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. **Fix/Workaround**

None.

14. RETE instruction does not clear SREG[L] from interrupts.

The RETE instruction clears SREG[L] as expected from exceptions. **Fix/Workaround**

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

15. Exceptions when system stack is protected by MPU

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system stack is not readable in unprivileged mode.

Fix/Woraround

Workaround 1: Make system stack readable in unprivileged mode, or

Workaround 2: Return from supervisor mode using rete instead of rets. This requires :

1. Changing the mode bits from 001b to 110b before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr instruction so it is done atomically. Even if this step is described in general as not safe in the UC technical reference guide, it is safe in this very specific case.

2. Execute the RETE instruction.

15.5.6 SDRAMC

1. Code execution from external SDRAM does not work

Code execution from SDRAM does not work.

Fix/Workaround

Do not run code from SDRAM.

2. SDRAM SDCKE rise at the same time as SDCK while exiting self-refresh mode SDCKE rise at the same time as SDCK while exiting self-refresh mode.

Fix/Workaround

None.

15.5.7 USART

1. USART Manchester Encoder Not Working Manchester encoding/decoding is not working.

Fix/Workaround

Do not use manchester encoding.

2. USART RXBREAK problem when no timeguard

In asynchronous mode the RXBREAK flag is not correctly handled when the timeguard is 0 and the break character is located just after the stop bit.

Fix/Workaround

If the NBSTOP is 1, timeguard should be different from 0.

3. USART Handshaking: 2 characters sent / CTS rises when TX

If CTS switches from 0 to 1 during the TX of a character, if the Holding register is not empty, the TXHOLDING is also transmitted.

Fix/Workaround

None.

4. USART PDC and TIMEGUARD not supported in MANCHESTER

Manchester encoding/decoding is not working.

Fix/Workaround

Do not use manchester encoding.

5. USART SPI mode is non functional on this revision. Fix/Workaround

Do not use the USART SPI mode.

6. DCD is active High instead of Low.

In modem mode the DCD signal is assumed to be active high by the USART, butshould have been active low. **Fix/Workaround**

Add an external inverter to the DCD line.

 ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None.

15.5.8 Power Manager

1. Voltage regulator input and output is connected to VDDIO and VDDCORE inside the device

The voltage regulator input and output is connected to VDDIO and VDDCORE respectively inside the device.

Fix/Workaround

Do not supply VDDCORE externally, as this supply will work in paralell with the regulator.

2. Wrong reset causes when BOD is activated

Setting the BOD enable fuse will cause the Reset Cause Register to list BOD reset as the reset source even though the part was reset by another source.

Fix/Workaround

Do not set the BOD enable fuse, but activate the BOD as soon as your program starts.

3. PLL0/1 Lock control does not work

Lock Control does not work for PLL0 and PLL1.

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

15.5.11 ABDAC

 Audio Bitstream DAC is not functional. Fix/Workaround
 Do not use the ABDAC on revE.

15.5.12 FLASHC

- The address of Flash General Purpose Fuse Register Low (FGPFRLO) is 0xFFFE140C on revE instead of 0xFFFE1410. Fix/Workaround None.
- The command Quick Page Read User Page(QPRUP) is not functional. Fix/Workaround None.
- 3. PAGEN Semantic Field for Program GP Fuse Byte is WriteData[7:0], ByteAddress[1:0] on revision E instead of WriteData[7:0], ByteAddress[2:0]. Fix/Workaround

None.

4. On AT32UC3A0512 and AT32UC3A1512, corrupted read in flash after FLASHC WP, EP, EA, WUP, EUP commands may happen

- After a FLASHC Write Page (WP) or Erase Page (EP) command applied to a page in a given half of the flash (first or last 256 kB of flash), reading (data read or code fetch) the other half of the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.

After a FLASHC Erase All (EA) command, reading (data read or code fetch) the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.
After a FLASHC Write User Page (WUP) or Erase User Page (EUP) command, reading (data read or code fetch) the second half (last 256 kB) of the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.

Fix/Workaround

Flashc WP, EP, EA, WUP, EUP commands: these commands must be issued from RAM or through the EBI. After these commands, read twice one flash page initialized to 00h in each half part of the flash.

15.5.13 RTC

1. Writes to control (CTRL), top (TOP) and value (VAL) in the RTC are discarded if the RTC peripheral bus clock (PBA) is divided by a factor of four or more relative to the HSB clock.

Fix/Workaround

Do not write to the RTC registers using the peripheral bus clock (PBA) divided by a factor of four or more relative to the HSB clock.

	10.11Peripheral overview	
11	Boot Sequence	39
	11.1Starting of clocks	
	11.2Fetching of initial instructions	
12	Electrical Characteristics	40
	12.1Absolute Maximum Ratings*	40
	12.2DC Characteristics	41
	12.3Regulator characteristics	42
	12.4Analog characteristics	42
	12.5Power Consumption	44
	12.6Clock Characteristics	
	12.7Crystal Oscillator Characteristis	47
	12.8ADC Characteristics	49
	12.9EBI Timings	51
	12.10JTAG Timings	57
	12.11SPI Characteristics	58
	12.12MACB Characteristics	60
	12.13Flash Characteristics	62
13	Mechanical Characteristics	64
13	Mechanical Characteristics	64
13	Mechanical Characteristics	64 64 65
13	Mechanical Characteristics	64
13 14	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information	
13 14	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade	
13 14 15	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade Errata	
13 14 15	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile 0rdering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M.	
13 14 15	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile 0rdering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M 15.2Rev. J	
13 14 15	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M. 15.2Rev. J 15.3Rev. I	
13 14 15	Mechanical Characteristics	
13 14 15	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile 13.3Soldering Profile 0rdering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M. 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E Datasheet Revision History	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M. 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E Datasheet Revision History 16.1Rev. K – 01/12	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile 0rdering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E Datasheet Revision History 16.1Rev. K – 01/12 16.1Rev. H – 03/09	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M. 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E Datasheet Revision History 16.1Rev. K – 01/12 16.2Rev. G – 01/09	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M. 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E Datasheet Revision History 16.1Rev. K – 01/12 16.2Rev. G – 01/09 16.3Rev. F – 08/08	