

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	52
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l4a6rgt6

Figure 14. STM32L4A6Vx WLCSP100 pinout⁽¹⁾

			J							
	1	2	3	4	5	6	7	8	9	10
Α	VDDUSB	PA15	PD1	VDD	PG10	VDDIO2	PB6	PB9	vss	VDD
В	vss	PA14	PD0	PD4	PG9	PG12	PB5	PB8	PE2	PE3
С	PA12	PA13	PC11	PC12	PD7	PB3	PB4	PE4	PC13	VBAT
D	PA11	PA10	PA9	PC10	PD6	PG11	PB7	PE5	vss	PC14- OSC32_IN
E	PC8	PC9	PA8	PD2	PD5	рнз-воото	PE6	NRST	VDD	PC15- OSC32_OUT
F	VDD	PC6	PC7	PD15	PB2	PA4	PC3	PC1	PC0	PH0-OSC_IN
G	PD10	PD9	PD14	PE13	PE12	PA5	VREF+	VREF-	PA0	PH1- OSC_OUT
н	PB15	PB14	PD8	PE15	PE10	PC4	PA2	PA1	VSSA/VREF-	PC2
J	PB12	PB13	PB11	PE14	PE9	PB0	PA7	VDD	PA3	VDDA
к	VDD	vss	PB10	PE11	PE8	PE7	PB1	PC5	PA6	vss

1. The above figure shows the package top view.

Figure 15. STM32L4A6Vx, external SMPS device, WLCSP100 pinout⁽¹⁾

				., 02110			,			P C C.
	1	2	3	4	5	6	7	8	9	10
A	VDDUSB	PA15	PD1	VDD	PG10	VDDIO2	PB6	PB9	VDD12	VDD
В	vss	PA14	PD0	PD5	PD6	PG12	PB7	PB8	vss	PE3
С	PA12	PA13	PC10	PC12	PD4	PD7	PB5	PE2	PC13	VBAT
D	PA11	PA10	PA9	PC11	PD2	PG9	РН3-ВООТ0	PE6	PC15- OSC32_OUT	PC14- OSC32_IN
E	PC8	PC9	PA8	PC7	PG11	PB4	PE4	PE5	VDD	vss
F	VDD	PD15	PD14	PC6	PB3	PC3	PC1	NRST	PH1- OSC_OUT	PH0-OSC_IN
G	PD10	PD9	PD8	PE14	PE13	PA7	PA1	PA0	PC2	PC0
н	PB14	PB13	PB15	PE15	PE10	PB0	PA4	PA2	VSSA/VREF-	VREF+
J	PB12	VDD	PB11	PE12	PE9	PB2	PA5	VDD	PA3	VDDA
к	VDD12	vss	PB10	PE11	PE8	PE7	PB1	PC4	PA6	vss

1. The above figure shows the package top view.

577

DS11584 Rev 7

Table 16. Alternate function AF0 to AF7⁽¹⁾ (continued)

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
P	ort	SYS_AF	TIM1/2/5/8/ LPTIM1	TIM1/2/3/4/5	SPI2/USART2/ CAN2/TIM8/ QUADSPI	I2C1/2/3/4/ DCMI	SPI1/2/DCMI/ QUADSPI	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	USART1/2/3
	PC0	-	LPTIM1_IN1	I2C4_SCL	-	I2C3_SCL	-	DFSDM1_ DATIN4	-
	PC1	TRACED0	LPTIM1_OUT	I2C4_SDA	SPI2_MOSI	I2C3_SDA	-	DFSDM1_CKIN4	-
	PC2	-	LPTIM1_IN2	-	-	-	SPI2_MISO	DFSDM1_ CKOUT	-
	PC3	-	LPTIM1_ETR	-	-	-	SPI2_MOSI	-	-
	PC4	-	-	-	-	-	-	-	USART3_TX
	PC5	-	-	-	-	-	-	-	USART3_RX
	PC6	-	-	TIM3_CH1	TIM8_CH1	-	-	DFSDM1_CKIN3	-
	PC7	-	-	TIM3_CH2	TIM8_CH2	-	-	DFSDM1_ DATIN3	-
Port C	PC8	-	-	TIM3_CH3	TIM8_CH3	-	-	-	-
	PC9	-	TIM8_BKIN2	TIM3_CH4	TIM8_CH4	DCMI_D3	-	I2C3_SDA	-
	PC10	TRACED1	-	-	-	-	-	SPI3_SCK	USART3_TX
	PC11	-	-	-	-	-	QUADSPI_BK 2_NCS	SPI3_MISO	USART3_RX
	PC12	TRACED3	-	-	-	-	-	SPI3_MOSI	USART3_CK
	PC13	-	-	-	-	-	-	-	-
	PC14	-	-	-	-	-	-	-	-
	PC15	-	-	-	-	-	-	-	-

Table 17. Alternate function AF8 to AF15⁽¹⁾ (continued)

		AF8	AF9	AF10	AF11	AF12	AF13	AF14	AF15
P	ort	UART4/5/ LPUART1/ CAN2	CAN1/TSC	CAN2/ OTG_FS/DCMI/ QUADSPI	LCD	SDMMC/ COMP1/2/FM C/SWPMI1	SAI1/2	TIM2/15/16/17/ LPTIM2	EVENOUT
	PB0	-	-	QUADSPI_BK1_IO1	LCD_SEG5	COMP1_OUT	SAI1_EXTCLK	-	EVENTOUT
	PB1	LPUART1_RT S_DE	-	QUADSPI_BK1_IO0	LCD_SEG6	-	-	LPTIM2_IN1	EVENTOUT
	PB2	-	-	-	LCD_VLCD	-	-	-	EVENTOUT
	PB3	-	-	OTG_FS_CRS_SYNC	LCD_SEG7	-	SAI1_SCK_B	-	EVENTOUT
	PB4	UART5_RTS_ DE	TSC_G2_IO1	DCMI_D12	LCD_SEG8	-	SAI1_MCLK_B	TIM17_BKIN	EVENTOUT
	PB5	UART5_CTS	TSC_G2_IO2	DCMI_D10	LCD_SEG9	COMP2_OUT	SAI1_SD_B	TIM16_BKIN	EVENTOUT
	PB6	CAN2_TX TSC_G2_IO3		DCMI_D5	-	TIM8_BKIN2_ COMP2	SAI1_FS_B	TIM16_CH1N	EVENTOUT
Port B	PB7	UART4_CTS	TSC_G2_IO4	DCMI_VSYNC	LCD_SEG21	FMC_NL	TIM8_BKIN_C OMP1	TIM17_CH1N	EVENTOUT
	PB8	-	CAN1_RX	DCMI_D6	LCD_SEG16	SDMMC1_D4	SAI1_MCLK_A	TIM16_CH1	EVENTOUT
	PB9	-	CAN1_TX	DCMI_D7	LCD_COM3	SDMMC1_D5	SAI1_FS_A	TIM17_CH1	EVENTOUT
	PB10	LPUART1_RX	TSC_SYNC	QUADSPI_CLK	LCD_SEG10	COMP1_OUT	SAI1_SCK_A	-	EVENTOUT
	PB11	LPUART1_TX	-	QUADSPI_BK1_NCS	LCD_SEG11	COMP2_OUT	-	-	EVENTOUT
	PB12	LPUART1_RT S_DE	TSC_G1_IO1	CAN2_RX	LCD_SEG12	SWPMI1_IO	SAI2_FS_A	TIM15_BKIN	EVENTOUT
	PB13	LPUART1_CT S	TSC_G1_IO2	CAN2_TX	LCD_SEG13	SWPMI1_TX	SAI2_SCK_A	TIM15_CH1N	EVENTOUT
	PB14	-	TSC_G1_IO3	-	LCD_SEG14	SWPMI1_RX	SAI2_MCLK_A	TIM15_CH1	EVENTOUT
	PB15	-	TSC_G1_IO4	-	LCD_SEG15	SWPMI1_SUS PEND	SAI2_SD_A	TIM15_CH2	EVENTOUT

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 23* are derived from tests performed under the ambient temperature condition summarized in *Table 22*.

Table 23. Operating conditions at power-up / power-down⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
t _{VDD}	V _{DD} rise time rate		0	∞	ue/\/
	V _{DD} fall time rate	-	10	∞	μs/V
	V _{DDA} rise time rate		0	∞	μοΔ/
t _{VDDA}	V _{DDA} fall time rate	-	10	∞	μs/V
+	V _{DDUSB} rise time rate		0	∞	μs/V
^t VDDUSB	V _{DDUSB} fall time rate	-	10	∞	μ5/ ν
t _{VDDIO2}	V _{DDIO2} rise time rate		0	∞	ue/\/
	V _{DDIO2} fall time rate	-	10	∞	µs/V

^{1.} At Power up, the V_{DD12} voltage should not be forced externally

The requirements for power-up/down sequence specified in *Section 3.10.1: Power supply schemes* must be respected.

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 24* are derived from tests performed under the ambient temperature conditions summarized in *Table 22: General operating conditions*.

Table 24. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions ⁽¹⁾	Min	Тур	Max	Unit
t _{RSTTEMPO} ⁽²⁾	Reset temporization after BOR0 is detected	V _{DD} rising	-	250	400	μs
V _{BOR0} (2)	Brown-out reset threshold 0	Rising edge	1.62	1.66	1.7	V
VBOR0`	Brown-out reset timeshold o	Falling edge	1.6	1.64	1.69	V
V	Brown-out reset threshold 1	Rising edge	2.06	2.1	2.14	V
V _{BOR1}	Brown-out reset timeshold i	Falling edge	1.96	2	2.04	V
	Brown-out reset threshold 2	Rising edge	2.26	2.31	2.35	V
V _{BOR2}	Brown-out reset timeshold 2	Falling edge	2.16	2.20	2.24	V
V	Brown-out reset threshold 3	Rising edge	2.56	2.61	2.66	V
V _{BOR3}	Brown-out reset timeshold 3	Falling edge	2.47	2.52	2.57	V
V	Drown out road throshold 4	Rising edge	2.85	2.90	2.95	V
V _{BOR4}	Brown-out reset threshold 4	Falling edge	2.76	2.81	2.86	V
V	Programmable voltage	Rising edge	2.1	2.15	2.19	V
V _{PVD0}	detector threshold 0	Falling edge	2	2.05	2.1	

120/273 DS11584 Rev 7

Table 44. Current consumption in Stop 2 mode (continued)

		Conditions				TYP		(,		MAX ⁽¹⁾			
Symbol	Parameter	-	V _{DD}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
			1.8 V	2.97	7.46	26.2	61.4	139	6.1	17.2	64.8	155.4	354	
		RTC clocked by LSI,	2.4 V	3.09	7.61	26.5	62.3	140	6.2	17.5	65.7	157.6	360	
		LCD disabled	3 V	3.15	7.81	27	63.5	144	6.5	17.9	67.2	160.6	367	
			3.6 V	3.4	8.05	27.7	65.2	147	7.1	18.7	69.0	164.9	376	
			1.8 V	2.98	7.31	25.5	60	135	5.5	16.8	65.1	155.8	355	
	Supply current in Stop 2 mode, RTC enabled	RTC clocked by LSI, LCD enabled ⁽³⁾	2.4 V	3.10	7.46	25.8	60.7	137	5.8	17.1	66.3	158.2	360	
			3 V	3.23	7.63	26.4	62.1	141	6.2	17.5	67.6	161.4	367	
I _{DD_ALL} (Stop 2			3.6 V	3.47	7.95	27.1	63.6	144	6.58	18.3	69.5	165.5	376	
with RTC)			1.8 V	2.93	7.52	26.2	61.4	139	-	-	-	-	-	μA
		RTC clocked by LSE bypassed at	2.4 V	3.1	7.68	26.6	62.1	140	-	-	-	-	-	
		32768Hz,LCD disabled	3 V	3.3	7.81	26.9	63.4	143	-	-	-	-	-	
			3.6 V	3.48	8.07	27.6	65.0	146	-	-	-	-	-	
		DTC algaland by LCE	1.8 V	2.86	7.48	26.2	61.4	-	-	-	-	-	-	
		RTC clocked by LSE quartz ⁽³⁾	2.4 V	3.01	7.56	26.5	62.2	-	-	-	-	-	-	
		in low drive mode,	3 V	3.18	7.65	26.8	63.5	-	-	-	-	-	-	
		LCD disabled	3.6 V	3.31	7.94	27.5	65.1	-	ı	-	ı	-	-	

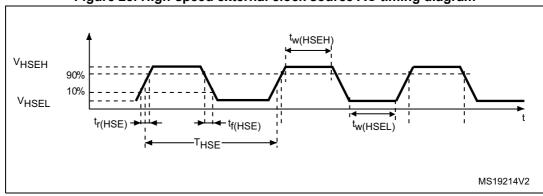
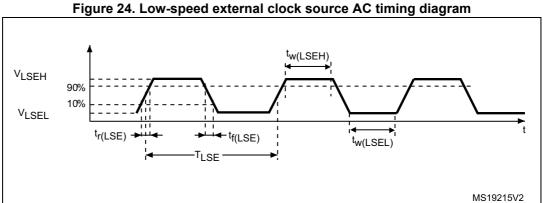


Figure 23. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source


In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 24.

	iano co. zon opera externa acor ereas enaracioneste											
Symbol	Parameter	Conditions	Min	Тур	Max	Unit						
f _{LSE_ext}	User external clock source frequency	-	-	32.768	1000	kHz						
V _{LSEH}	OSC32_IN input pin high level voltage	-	0.7 V _{DDIOx}	-	V_{DDIOx}	V						
V_{LSEL}	OSC32_IN input pin low level voltage	-	V_{SS}	ı	0.3 V _{DDIOx}	٧						
t _{w(LSEL)}	OSC32_IN high or low time	-	250	-	-	ns						

Table 55. Low-speed external user clock characteristics⁽¹⁾

^{1.} Guaranteed by design.

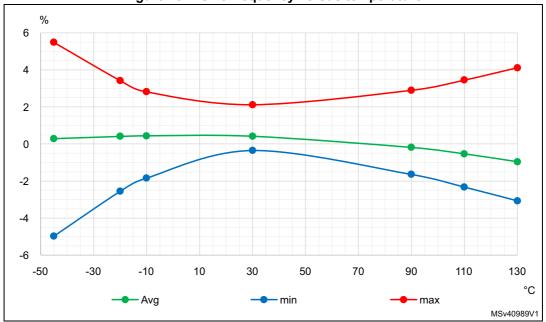


Table 60. HSI48	3 oscillator	characteristics ⁽¹⁾	(continued)
-----------------	--------------	--------------------------------	-------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _T jitter	Next transition jitter Accumulated jitter on 28 cycles ⁽⁴⁾	-	-	+/-0.15 ⁽²⁾	-	ns
P _T jitter	Paired transition jitter Accumulated jitter on 56 cycles ⁽⁴⁾	-	-	+/-0.25 ⁽²⁾	-	ns

- 1. V_{DD} = 3 V, TA = -40 to 125°C unless otherwise specified.
- 2. Guaranteed by design.
- 3. Guaranteed by characterization results.
- 4. Jitter measurement are performed without clock source activated in parallel.

Figure 29. HSI48 frequency versus temperature

Low-speed internal (LSI) RC oscillator

Table 61. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	LSI Frequency	V _{DD} = 3.0 V, T _A = 30 °C	31.04	-	32.96	kHz
f _{LSI}	LSI Frequency	V_{DD} = 1.62 to 3.6 V, T_A = -40 to 125 °C	29.5	-	34	KΠZ
t _{SU} (LSI) ⁽²⁾	LSI oscillator start- up time	-	-	80	130	μs
t _{STAB} (LSI) ⁽²⁾	LSI oscillator stabilization time	5% of final frequency	-	125	180	μs
I _{DD} (LSI) ⁽²⁾	LSI oscillator power consumption	-	-	110	180	nA

- 1. Guaranteed by characterization results.
- 2. Guaranteed by design.

6.3.18 Analog-to-Digital converter characteristics

Unless otherwise specified, the parameters given in *Table 76* are preliminary values derived from tests performed under ambient temperature, f_{PCLK} frequency and V_{DDA} supply voltage conditions summarized in *Table 22: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Table 76. ADC characteristics^{(1) (2)}

Symbol	Parameter	Conditions	Min Ty		Max	Unit
V _{DDA}	Analog supply voltage	-	1.62	1.62 - 3.0		V
V	Positive reference voltage	V _{DDA} ≥ 2 V	2	-	V_{DDA}	V
V _{REF+}	Positive reference voltage	V _{DDA} < 2 V		V_{DDA}		V
V _{REF-}	Negative reference voltage	-		V _{SSA}		V
£	ADC aloak from one	Range 1	0.14	-	80	MUT
f _{ADC}	ADC clock frequency	Range 2	0.14	-	26	- MHz
		Resolution = 12 bits	-	-	5.33	
	Sampling rate for FAST	Resolution = 10 bits	-	-	6.15	
	channels	Resolution = 8 bits	-	-	7.27	
		Resolution = 6 bits	-	-	8.88	Mana
f _s		Resolution = 12 bits	-	-	4.21	- Msps
	Sampling rate for SLOW channels	Resolution = 10 bits	-	-	4.71	
		Resolution = 8 bits	-	-	5.33	
		Resolution = 6 bits	-	-	6.15	
f _{TRIG}	External trigger frequency	f _{ADC} = 80 MHz Resolution = 12 bits	-	-	5.33	MHz
		Resolution = 12 bits	-	-	15	1/f _{ADC}
V _{AIN} ⁽³⁾	Conversion voltage range(2)	-	0	-	V _{REF+}	V
R _{AIN}	External input impedance	-	-	-	50	kΩ
C _{ADC}	Internal sample and hold capacitor	-	-	5	-	pF
t _{STAB}	Power-up time	-		1		conversion cycle
4	Calibration time	f _{ADC} = 80 MHz		1.45		μs
t _{CAL}	Calibration time	-		116		1/f _{ADC}
	Trigger conversion	CKMODE = 00	1.5	2	2.5	
	Trigger conversion latency Regular and	CKMODE = 01	-	-	2.0	1 /f
t _{LATR}	injected channels without conversion abort	CKMODE = 10	-	-	2.25	- 1/f _{ADC}
	COLINGISION ADOLL	CKMODE = 11	-	-	2.125	

Table 78. ADC accuracy - limited test conditions 1⁽¹⁾⁽²⁾⁽³⁾

Sym- bol	Parameter	Conditions ⁽⁴⁾				Тур	Max	Unit
			Single	Fast channel (max speed)	-	4	5	
Total			Slow channel (max speed)	-	4	5		
ET	unadjusted error		Differential	Fast channel (max speed)	-	3.5	4.5	
			Differential	Slow channel (max speed)	-	3.5	4.5	
			Single	Fast channel (max speed)	-	1	2.5	
EO	Offset		ended	Slow channel (max speed)	-	1	2.5	
	error		Differential	Fast channel (max speed)	-	1.5	2.5	
			Dillerential	Slow channel (max speed)	-	1.5	2.5	
			Single	Fast channel (max speed)	-	2.5	4.5	
EG	Gain orror		ended	Slow channel (max speed)	-	2.5	4.5	LCD
EG	Gain enoi	Differential linearity error ADC clock frequency ≤ 80 MHz, Sampling rate ≤ 5.33 Msps, V _{DDA} = VREF+ = 3 V, TA = 25 °C	Differential	Fast channel (max speed)	-	2.5	3.5	
			Dillerential	Slow channel (max speed)	-	2.5	3.5	
			Single ended	Fast channel (max speed)	-	1	1.5	
ED	Differential			Slow channel (max speed)	-	1	1.5	
	1		Differential	Fast channel (max speed)	-	1	1.2	
				Slow channel (max speed)	-	1	1.2	
			Single ended	Fast channel (max speed)	-	1.5	2.5	
EL	Integral			Slow channel (max speed)	-	1.5	2.5	
EL	_		Differential	Fast channel (max speed)	-	1	2	
				Slow channel (max speed)	-	1	2	
			Single	Fast channel (max speed)	10.4	10.5	-	
ENOB	Effective number of		ended	Slow channel (max speed)	10.4	10.5	-	bits
LINOB	bits		Differential	Fast channel (max speed)	10.8	10.9	-	טונס
			Dillerential	Slow channel (max speed)	10.8	10.9	-	
	Cianal to		Single	Fast channel (max speed)	64.4	65	-	
SINAD	Signal-to- noise and		ended	Slow channel (max speed)	64.4	65	-	
SINAD	distortion		Differential	Fast channel (max speed)	66.8	67.4	-	1
ratio		Dillerential	Slow channel (max speed)	66.8	67.4	-	ЧD	
			Single	Fast channel (max speed)	65	66	-	dB
SNR	Signal-to-		ended	Slow channel (max speed)	65	66	-	1
SINK	noise ratio		D:#	Fast channel (max speed)	67	68	-	
			Differential	Slow channel (max speed)	67	68	-	

Table 80. ADC accuracy - limited test conditions $3^{(1)(2)(3)}$ (continued)

Sym- bol	Parameter	Conditions ⁽⁴⁾			Min	Тур	Max	Unit
		ADC clock frequency ≤	Single	Fast channel (max speed)	-	-69	-67	
Total	80 MHz, Il Sampling rate ≤ 5.33 Msps, L	ended	Slow channel (max speed)	-	-71	-67		
THD	harmonic distortion	$1.65 \text{ V} \le \text{V}_{\text{DDA}} = \text{V}_{\text{REF+}} \le$		Fast channel (max speed)	-	-72	-71	dB
distortion		Differential	Slow channel (max speed)	-	-72	-71		

- 1. Guaranteed by design.
- 2. ADC DC accuracy values are measured after internal calibration.
- ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
 significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
 Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
- 4. The I/O analog switch voltage booster is enable when V_{DDA} < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when V_{DDA} < 2.4 V). It is disable when $V_{DDA} \ge 2.4$ V. No oversampling.

188/273 DS11584 Rev 7

Table 85. COMP characteristics⁽¹⁾ (continued)

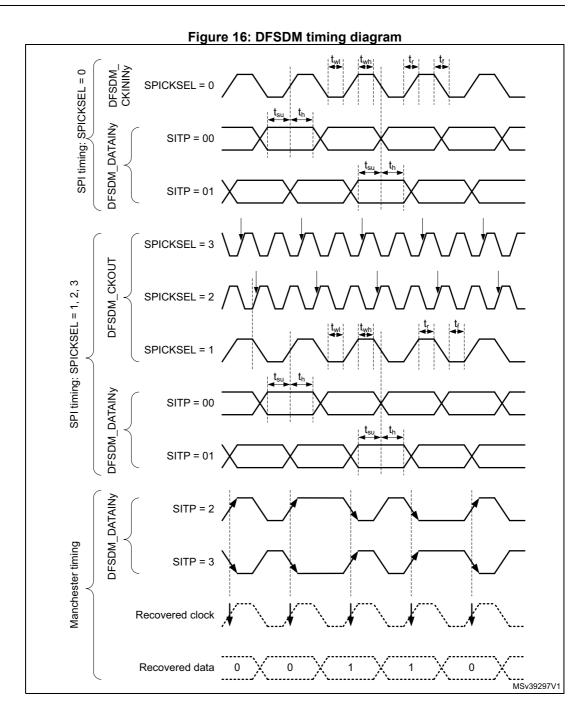
Symbol	Parameter	Co	Conditions			Max	Unit
I _{DDA} (COMP)		Ultra-low- power mode	Static	-	400	600	
	Comparator consumption from V _{DDA}		With 50 kHz ±100 mV overdrive square signal	-	1200	1	nA
		Medium mode	Static	-	5	7	
			With 50 kHz ±100 mV overdrive square signal	-	6	-	μA
			Static	-	70	100	μΑ
		High-speed mode	With 50 kHz ±100 mV overdrive square signal	ı	75	ı	
l _{bias}	Comparator input bias current		-	-	_(4)	nA	

- 1. Guaranteed by design, unless otherwise specified.
- 2. Refer to Table 25: Embedded internal voltage reference.
- 3. Guaranteed by characterization results.
- 4. Mostly I/O leakage when used in analog mode. Refer to I_{lkg} parameter in Table 70: I/O static characteristics.

6.3.22 Operational amplifiers characteristics

Table 86. OPAMP characteristics⁽¹⁾

Symbol	Parameter	Conditions		Тур	Max	Unit	
V_{DDA}	Analog supply voltage	-		-	3.6	V	
CMIR	Common mode input range	-		-	V _{DDA}	V	
\/I	Input offset	25 °C, No Load on output.	-	-	±1.5	m\/	
VI _{OFFSET}	voltage	All voltage/Temp.	-	-	±3	mV	
A\/ .	Input offset voltage drift	Normal mode	-	±5	-	μV/°C	
ΔVI _{OFFSET}		Low-power mode	-	±10	-	μν/ Ο	
TRIMOFFSETP TRIMLPOFFSETP	Offset trim step at low common input voltage (0.1 x V _{DDA})	-	1	0.8	1.1	mV	
TRIMOFFSETN TRIMLPOFFSETN	Offset trim step at high common input voltage (0.9 x V _{DDA})	-	-	1	1.35	111.0	


6.3.25 LCD controller characteristics

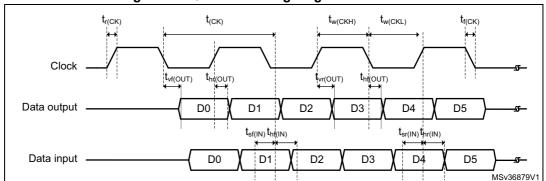
The devices embed a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the VLCD pin to decouple this converter.

Table 90. LCD controller characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{LCD}	LCD external voltage			-	3.6	
V _{LCD0}	LCD internal reference volta	LCD internal reference voltage 0			-	
V _{LCD1}	LCD internal reference volta	-	2.76	-		
V _{LCD2}	LCD internal reference volta	-	2.89	-		
V _{LCD3}	LCD internal reference volta	LCD internal reference voltage 3				V
V _{LCD4}	LCD internal reference volta	ge 4	-	3.19	-	
V _{LCD5}	LCD internal reference volta	-		3.32	-	
V _{LCD6}	LCD internal reference volta	ge 6	-	3.46	-	
V _{LCD7}	LCD internal reference volta	ge 7	-	3.62	-	
	V _{LCD} external capacitance	Buffer OFF (BUFEN=0 is LCD_CR register)	0.2	-	2	
C _{ext}		Buffer ON (BUFEN=1 is LCD_CR register)	1	-	2	μF
(2)	Supply current from V _{DD} at V _{DD} = 2.2 V	Buffer OFF (BUFEN=0 is LCD_CR register)	-	3	-	
I _{LCD} ⁽²⁾	Supply current from V _{DD} at V _{DD} = 3.0 V	Buffer OFF (BUFEN=0 is LCD_CR register)	-	1.5	-	μΑ
		Buffer OFF (BUFFEN = 0, PON = 0)	-	0.5	-	
	Supply current from V _{LCD} (V _{LCD} = 3 V)	Buffer ON (BUFFEN = 1, 1/2 Bias)	-	0.6	-	
I _{VLCD}		Buffer ON (BUFFEN = 1, 1/3 Bias)	-	0.8	-	- μA -
		Buffer ON (BUFFEN = 1, 1/4 Bias)	-	1	-	
R _{HN}	Total High Resistor value for	-	5.5	-	МΩ	
R _{LN}	Total Low Resistor value for	High drive resistive network	-	240	-	kΩ

6.3.27 Timer characteristics

The parameters given in the following tables are guaranteed by design.


Refer to *Section 6.3.14: I/O port characteristics* for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

208/273 DS11584 Rev 7

 $t_{(\mathsf{CK})}$ $t_{\text{w}(\text{CKH})}$ $t_{\text{w}(\text{CKL})}$ $t_{\text{f(CK)}}$ Clock t_{v(OUT)} $\overset{t_{h(OUT)}}{\longleftrightarrow}$ Data output D0 D1 D2 $t_{\text{s}(\text{IN})}$ $t_{h(IN)} \\$ Data input D0 D1 D2 MSv36878V1

Figure 39. Quad SPI timing diagram - SDR mode

SAI characteristics

Unless otherwise specified, the parameters given in *Table 99* for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 22: General operating conditions*, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5 x V_{DD}

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS).

Table 99. SAI characteristics⁽¹⁾

Symbol	Parameter	Conditions		Max	Unit	
f _{MCLK}	SAI Main clock output	-	-	50	MHz	
		Master transmitter 2.7 V ≤ V _{DD} ≤ 3.6 V Voltage Range 1	-	21.5		
		Master transmitter 1.71 V ≤ V _{DD} ≤ 3.6 V Voltage Range 1				
		Master receiver Voltage Range 1	-	25	1	
f _{CK}	SAI clock frequency ⁽²⁾	Slave transmitter 2.7 V \leq V _{DD} \leq 3.6 V Voltage Range 1	- 20		MHz	
		Slave transmitter 1.71 V ≤ V _{DD} ≤ 3.6 V Voltage Range 1	-	- 13.5		
		Slave receiver Voltage Range 1	-	25		
		Voltage Range 2	-	13		
		1.08 V ≤ V _{DD} ≤ 1.32 V	-	7		
+	FS valid time	Master mode 2.7 V ≤ V _{DD} ≤ 3.6 V	-	22	ns	
t _{v(FS)}	rs valid time	Master mode 1.71 V \leq V _{DD} \leq 3.6 V	-	40	115	
t _{h(FS)}	FS hold time	Master mode	10	-	ns	
t _{su(FS)}	FS setup time	Slave mode	1	-	ns	
t _{h(FS)}	FS hold time	Slave mode	2	-	ns	
t _{su(SD_A_MR)}	Data input setup time	Master receiver	1	-	ns	
t _{su(SD_B_SR)}	Data input setup tillie	Slave receiver	1	-	113	
t _{h(SD_A_MR)}	Data input hold time	Master receiver	5	-	ns	
t _{h(SD_B_SR)}	Data input noid time	Slave receiver	2	-	110	

DS11584 Rev 7 217/273

Package information STM32L4A6xG

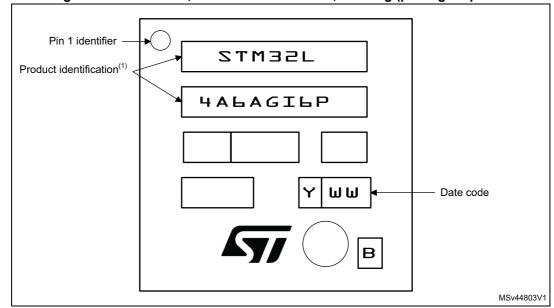


Figure 64. UFBGA169, external SMPS device, marking (package top view

1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

Package information STM32L4A6xG

Table 125. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	21.800	22.000	22.200	0.8583	0.8661	0.8740
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953
D3	-	17.500	-	-	0.6890	-
E	21.800	22.000	22.200	0.8583	0.8661	0.8740
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953
E3	-	17.500	-	-	0.6890	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.080	-	-	0.0031

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

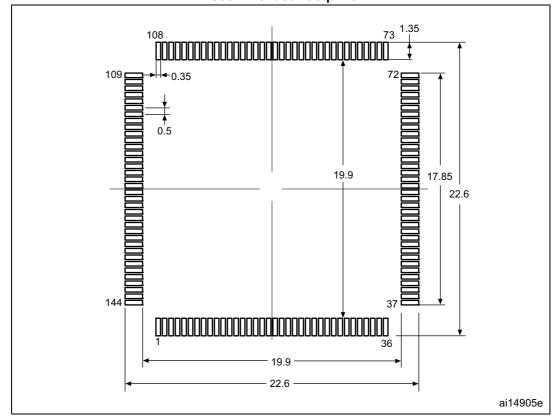


Figure 66. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

STM32L4A6xG Package information

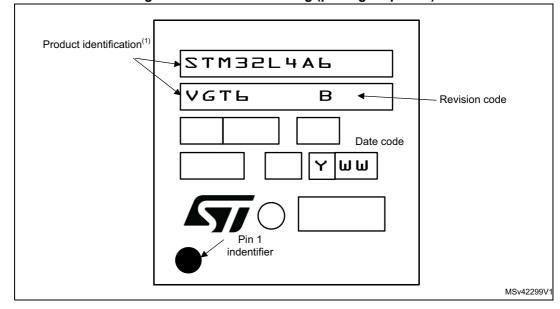


Figure 75. LQFP100 marking (package top view)

Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

DS11584 Rev 7 259/273

Package information STM32L4A6xG

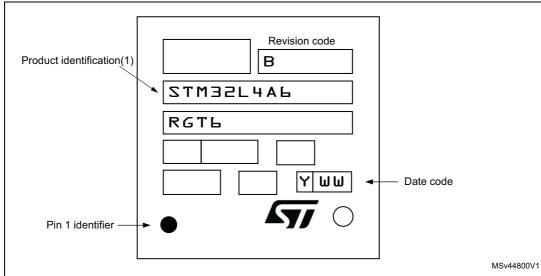


Figure 82. LQFP64 marking (package top view)

Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST's Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.

