E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, MMC/SD, QSPI, SAI, SPI, SWPMI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, LCD, PWM, WDT
Number of I/O	83
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	320K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l4a6vgt6p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. V_{DDX} refers to any power supply among V_{DDA} , V_{DDUSB} , V_{DDIO2} , V_{LCD} .

3.10.2 Power supply supervisor

The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes except Shutdown and ensuring proper operation after power-on and during power down. The device remains in reset mode when the monitored supply voltage V_{DD} is below a specified threshold, without the need for an external reset circuit.

The lowest BOR level is 1.71V at power on, and other higher thresholds can be selected through option bytes. The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the VPVD threshold and/or when V_{DD} is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

In addition, the device embeds a Peripheral Voltage Monitor which compares the independent supply voltages V_{DDA} , V_{DDUSB} , V_{DDIO2} with a fixed threshold in order to ensure that the peripheral is in its functional supply range.

interrupt is generated if enabled. LSE failure can also be detected and generated an interrupt.

- Clock-out capability:
 - MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application. Low frequency clocks (LSI, LSE) are available down to Stop 1 low power state.
 - LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes down to Standby mode. LSE can also be output on LSCO in Shutdown mode. LSCO is not available in VBAT mode.

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 80 MHz.

This digital interface supports the following features:

- Up to two DAC output channels
- 8-bit or 12-bit output mode
- Buffer offset calibration (factory and user trimming)
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- External triggers for conversion
- Sample and hold low-power mode, with internal or external capacitor

The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.19 Voltage reference buffer (VREFBUF)

The STM32L4A6xG devices embed an voltage reference buffer which can be used as voltage reference for ADCs, DAC and also as voltage reference for external components through the VREF+ pin.

The internal voltage reference buffer supports two voltages:

- 2.048 V
- 2.5 V

An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off.

The VREF+ pin is double-bonded with VDDA on some packages. In these packages the internal voltage reference buffer is not available.

Figure 6. Voltage reference buffer

hardware. DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM or from internal ADCs).

DFSDM transceivers support several serial interface formats (to support various $\Sigma\Delta$ modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution.

The DFSDM peripheral supports:

- 8 multiplexed input digital serial channels:
 - configurable SPI interface to connect various SD modulator(s)
 - configurable Manchester coded 1 wire interface support
 - PDM (Pulse Density Modulation) microphone input support
 - maximum input clock frequency up to 20 MHz (10 MHz for Manchester coding)
 - clock output for SD modulator(s): 0..20 MHz
- alternative inputs from 8 internal digital parallel channels (up to 16 bit input resolution):
 - internal sources: ADCs data or device memory data streams (DMA)
- 4 digital filter modules with adjustable digital signal processing:
 - Sinc^x filter: filter order/type (1..5), oversampling ratio (up to 1..1024)
 - integrator: oversampling ratio (1..256)
- up to 24-bit output data resolution, signed output data format
- automatic data offset correction (offset stored in register by user)
- continuous or single conversion
- start-of-conversion triggered by:
 - software trigger
 - internal timers
 - external events
 - start-of-conversion synchronously with first digital filter module (DFSDM1_FLT0)
- analog watchdog feature:
 - low value and high value data threshold registers
 - dedicated configurable Sincx digital filter (order = 1..3, oversampling ratio = 1..32)
 - input from final output data or from selected input digital serial channels
 - continuous monitoring independently from standard conversion
- short circuit detector to detect saturated analog input values (bottom and top range):
 - up to 8-bit counter to detect 1..256 consecutive 0's or 1's on serial data stream
 - monitoring continuously each input serial channel
- break signal generation on analog watchdog event or on short circuit detector event
- extremes detector:
 - storage of minimum and maximum values of final conversion data
 - refreshed by software
- DMA capability to read the final conversion data
- interrupts: end of conversion, overrun, analog watchdog, short circuit, input serial channel clock absence
- "regular" or "injected" conversions:
 - "regular" conversions can be requested at any time or even in continuous mode

The synchronization for this oscillator can also be taken from the USB data stream itself (SOF signalization) which allows crystal less operation.

The major features are:

- Combined Rx and Tx FIFO size of 1.25 KB with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 1 bidirectional control endpoint + 5 IN endpoints + 5 OUT endpoints
- 12 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- USB 2.0 LPM (Link Power Management) support
- Battery Charging Specification Revision 1.2 support
- Internal FS OTG PHY support

For OTG/Host modes, a power switch is needed in case bus-powered devices are connected.

3.40 Clock recovery system (CRS)

The STM32L4A6xG devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action.

3.41 Flexible static memory controller (FSMC)

The Flexible static memory controller (FSMC) includes two memory controllers:

- The NOR/PSRAM memory controller
- The NAND/memory controller

This memory controller is also named Flexible memory controller (FMC).

The main features of the FMC controller are the following:

- Interface with static-memory mapped devices including:
 - Static random access memory (SRAM)
 - NOR Flash memory/OneNAND Flash memory
 - PSRAM (4 memory banks)
 - NAND Flash memory with ECC hardware to check up to 8 Kbyte of data
- 8-,16- bit data bus width
- Independent Chip Select control for each memory bank
- Independent configuration for each memory bank
- Write FIFO
- The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2.

78/273

DS11584 Rev 7

Ľ I	

	Table 15. STM32L4A6xG pin definitions (continued)														
				Pin N	lumbei	r								Pin functi	ons
LQFP64	WLCSP100	WLCSP100_SMPS	LQFP100	UFBGA132	UFBGA132_SMPS	LQFP144	LQFP144_SMPS	UFBGA169	UFBGA169_SMPS	Pin name (function after reset)	Pin type	Pin type I/O structure		Alternate functions	Additional functions
30	J3	J3	48	L11	-	70	-	H8	H8	PB11	I/O	FT_fl	-	TIM2_CH4, I2C4_SDA, I2C2_SDA, DFSDM1_CKIN7, USART3_RX, LPUART1_TX, QUADSPI_BK1_NCS, LCD_SEG11, COMP2_OUT, EVENTOUT	-
-	-	K1	-	-	L11	-	70	-	M10	VDD12	s	-	-	-	-
-	-	-	-	-	-	-	-	К9	K9	PH4	I/O	FT_f	-	I2C2_SCL, EVENTOUT	-
-	-	-	-	-	-	-	-	L9	L9	PH5	I/O	FT_f	-	I2C2_SDA, DCMI_PIXCLK, EVENTOUT	-
-	-	-	-	-	-	-	-	N10	N10	PH8	I/O	FT_f	-	I2C3_SDA, DCMI_HSYNC, EVENTOUT	-
-	-	-	-	-	-	-	-	M9	M9	PH10	I/O	FT	-	TIM5_CH1, DCMI_D1, EVENTOUT	-
-	-	-	-	-	-	-	-	M10	-	PH11	I/O	FT	-	TIM5_CH2, DCMI_D2, EVENTOUT	-
-	-	-	-	-	-	-	-	М3	М3	VSS	s	-	-	-	-
-	-	-	-	-	-	-	-	N3	N3	VDD	s	-	-	-	-
-	-	-	-	-	-	-	-	M11	M11	VSS	S	-	-	-	-
31	K2	K2	49	F12	F12	71	71	L13	L13	VSS	S	-	-	-	-
32	K1	J2	50	G12	G12	72	72	L12	L12	VDD	S	-	-	-	-

Pinouts and pin description

STM32L4A6xG

84/273

DS11584 Rev 7

|--|

	Table 15. STM32L4A6xG pin definitions (continued)														
				Pin N	lumbei	r								Pin functi	ons
LQFP64	WLCSP100	WLCSP100_SMPS	LQFP100	UFBGA132	UFBGA132_SMPS	LQFP144	LQFP144_SMPS	UFBGA169	UFBGA169_SMPS	Pin name (function after reset)	Pin type	Pin type I/O structure		Alternate functions	Additional functions
-	-	-	-	-	-	-	-	A13	A13	PH14	I/O	FT	-	TIM8_CH2N, DCMI_D4, EVENTOUT	-
-	-	-	-	-	-	-	-	B12	B12	PH15	I/O	FT	-	TIM8_CH3N, DCMI_D11, EVENTOUT	-
-	-	-	-	-	-	-	-	A12	A12	PIO	I/O	FT	-	TIM5_CH4, SPI2_NSS, DCMI_D13, EVENTOUT	-
-	-	-	-	-	-	-	-	C11	C11	PI8	I/O	FT	-	DCMI_D12, EVENTOUT	-
-	-	-	-	-	-	-	-	B11	B11	PI1	I/O	FT	-	SPI2_SCK, DCMI_D8, EVENTOUT	-
-	-	-	-	-	-	-	-	B10	B10	PI2	I/O	FT	-	TIM8_CH4, SPI2_MISO, DCMI_D9, EVENTOUT	-
-	-	-	-	-	-	-	-	C10	C10	PI3	I/O	FT	-	TIM8_ETR, SPI2_MOSI, DCMI_D10, EVENTOUT	-
-	-	-	-	-	-	-	-	D10	D10	PI4	I/O	FT	-	TIM8_BKIN, DCMI_D5, EVENTOUT	-
-	-	-	-	-	-	-	-	E10	E10	PI5	I/O	FT	-	TIM8_CH1, DCMI_VSYNC, EVENTOUT	-
-	-	-	-	-	-	-	-	C9	C9	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, EVENTOUT	-
-	-	-	-	-	-	-	-	B9	В9	PI6	I/O	FT	-	TIM8_CH2, DCMI_D6, EVENTOUT	-
49	B2	B2	76	A10	A10	109	109	A10	A10	PA14 (JTCK/SWCLK)	I/O	FT	(4)	JTCK/SWCLK, LPTIM1_OUT, I2C1_SMBA, I2C4_SMBA, OTG_FS_SOF, SWPMI1_RX, SAI1_FS_B, EVENTOUT	-

Pinouts and pin description

STM32L4A6xG

Τ
_
0
č
ᆕ
S
^
2
2
Q
-
≚.
3
_
Q
Φ
S
Ô
-
=
¥
-
0

			Tab	le 16. Alternate	function AF0 t	o AF7 ⁽¹⁾ (conti	nued)			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	
Po	ort	SYS_AF	TIM1/2/5/8/ LPTIM1	TIM1/2/3/4/5	SPI2/USART2/ CAN2/TIM8/ QUADSPI	I2C1/2/3/4/ DCMI	SPI1/2/DCMI/ QUADSPI	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	USART1/2/3	
	PD0	-	-	-	-	-	SPI2_NSS	DFSDM1_ DATIN7	_	
	PD1	-	-	-	-	-	SPI2_SCK	DFSDM1_CKIN7	-	
	PD2	TRACED2	-	TIM3_ETR	-	-	-	-	USART3_RTS_ DE	
	PD3	-	-	-	SPI2_SCK	DCMI_D5	SPI2_MISO	DFSDM1_ DATIN0	USART2_CTS	
	PD4	-	-	-	-	-	SPI2_MOSI	DFSDM1_CKIN0	USART2_RTS_ DE	
	PD5	-	-	-	-	-	-	-	USART2_TX	
Port D	PD6	-	-	-	-	DCMI_D10	QUADSPI_ BK2_IO1	DFSDM1_ DATIN1	USART2_RX	
	PD7	-	-	-	-	-	-	DFSDM1_CKIN1	USART2_CK	
	PD8	-	-	-	-	-	-	-	USART3_TX	
	PD9	-	-	-	-	-	-	-	USART3_RX	
	PD10	-	-	-	-	-	-	-	USART3_CK	
	PD11	-	-	-	-	I2C4_SMBA	-	-	USART3_CTS	
	PD12	-			-	I2C4_SCL	-	-	USART3_RTS_ DE	
	PD13	-	-	TIM4_CH2	-	I2C4_SDA	-	-	-	
	PD14	-	-	TIM4_CH3	-	-	-	-	-	
	PD15	-	-	TIM4_CH4	-	-	-	-	-	

DS11584 Rev 7

94/273

5

96				Tab	le 16. Alternate	e function AF0 t	o AF7 ⁽¹⁾ (conti	nued)		
1273			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port		SYS_AF	TIM1/2/5/8/ LPTIM1	TIM1/2/3/4/5	SPI2/USART2/ CAN2/TIM8/ QUADSPI	I2C1/2/3/4/ DCMI	SPI1/2/DCMI/ QUADSPI	SPI3/I2C3/ DFSDM/ COMP1/ QUADSPI	USART1/2/3
		PF0	-	-	-	-	I2C2_SDA	-	-	-
		PF1	-	-	-	-	I2C2_SCL	-	-	-
		PF2	-	-	-	-	I2C2_SMBA	-	-	-
		PF3	-	-	-	-	-	-	-	-
		PF4	-	-	-	-	-	-	-	-
		PF5	-	-	-	-	-	-	-	-
DS		PF6	-	TIM5_ETR	TIM5_CH1	-	-	-	-	-
1158		PF7	-	-	TIM5_CH2	-	-	-	-	-
14 Re	Port F	PF8	-	-	TIM5_CH3	-	-	-	-	-
7 75		PF9	-	-	TIM5_CH4	-	-	-	-	-
		PF10	-	-	-	QUADSPI_CLK	-	-	-	-
		PF11	-	-	-	-	-	-	-	-
		PF12	-	-	-	-	-	-	-	-
		PF13	-	-	-	-	I2C4_SMBA	-	DFSDM1_ DATIN6	-
		PF14	-	-	-	-	I2C4_SCL	-	DFSDM1_CKIN6	-
		PF15	-	-	-	-	I2C4_SDA	-	-	-

Pinouts and pin description

STM32L4A6xG

5

Symbol	Parameter	С	onditions	Min	Мах	Unit		
V _{BAT}	Backup operating voltage		-	1.55	3.6			
V		USB used		3.0	3.6			
VDDUSB	USB supply voltage	USB not used		0	3.6			
		TT_xx I/O		-0.3	V _{DDIOx} +0.3	V		
V _{IN}		BOOT0		0	9	v		
	I/O input voltage	All I/O except	BOOT0 and TT_xx	-0.3	$\begin{array}{c} {\rm Min}({\rm Min}({\rm V_{DD}},{\rm V_{DDA}},$			
-		LQFP144	-	-	625			
P _D		LQFP100	-	-	476			
	Power dissipation at $T_A = 85 \text{ °C}$ for suffix $6^{(4)}$	LQFP64	-	-	444	m\\/		
		UFBGA169		-	385	mvv		
		UFBGA132	-	-	364			
		WLCSP100	-	-	559			
		LQFP144	-	-	156			
		LQFP100	-	-	119			
Б	Power dissipation at	LQFP64	-	-	111	m\//		
ΓD	$T_A = 125 \ ^{\circ}C$ for suffix $3^{(4)}$	UFBGA169		-	96	IIIVV		
		UFBGA132	-	-	91			
		WLCSP100	-	-	140			
	Ambient temperature for the	Maximum pov	ver dissipation	-40	85			
Т	suffix 6 version	Low-power dis	ssipation ⁽⁵⁾	-40	105	°C		
	Ambient temperature for the	Maximum pov	ver dissipation	-40	125			
	suffix 3 version	Low-power dis	ssipation ⁽⁵⁾	-40	130			
т	Junction temperature range	Suffix 6 version	on	-40	105	°C		
IJ		Suffix 3 version	on	-40	130			

Table 22.	General	operating	conditions	(continued))
			••••••	(,

1. When RESET is released functionality is guaranteed down to $V_{BOR0}\mbox{ Min.}$

2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between Min(V_{DD} , V_{DDA} , V_{DDIO2} , V_{DDUSB} , V_{LCD})+3.6 V and 5.5V.

3. For operation with voltage higher than Min (V_{DD} , V_{DDA} , V_{DDIO2} , V_{DDUSB} , V_{LCD}) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.

4. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} (see Section 7.7: Thermal characteristics).

5. In low-power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.7: *Thermal characteristics*).

Table 40. Typical current consumption in Run, with different codesrunning from
SRAM1 and power supplied by external SMPS (V _{DD12} = 1.05 V)

Symbol		Co	ТҮР		ΤΥΡ			
	Parameter	-	Voltage scaling	Code	25 °C	Unit	25 °C	Unit
		f _{HCLK} = f _{HSE} up to 48 MHz included, bypass mode PLL ON above 48 MHz all	P	Reduced code ⁽²⁾	1.07		41	µA/MHz
	Supply current in		f _{HCLK} = 26 MI	Coremark	1.07		41	
IDD_ALL (Run)				Dhrystone 2.1	1.04	mA	40	
(Run)	Run mode			Fibonacci	0.97		37	
		peripherals disable		While(1)	0.93		36	

All values are obtained by calculation based on measurements done without SMPS and using following parameters: SMPS input = 3.3 V, SMPS efficiency = 85%, V_{DD12} = 1.05 V

2. Reduced code used for characterization results provided in Table 26, Table 28, Table 30.

		Tabl	e 49. Cu	rrent co	onsum	ption in	VBAT ı	node						
Symbol	_	Conditions		ТҮР				MAX ⁽¹⁾					l l mit	
	Parameter	-	V _{BAT}	25 °C	55 °C	85 °C	105 °C	125 °C	25 °C	55 °C	85 °C	105 °C	125 °C	Unit
			1.8 V	2	18	110	329	908	-	-	-	-	-	
		RTC disabled 2.4 V 3 V 3.6 V	2.4 V	2	20	125	371	1016	-	-	-	-	-	
	Backup domain supply current		3 V	3	25	154	546	1965	-	-	-	-	-	
I _{VDD_VBAT} (V _{BAT})			3.6 V	10	57	324	963	2688	-	-	-	-	-	
		RTC enabled and clocked by LSE bypassed at 32768 Hz	1.8 V	198	216	312	535	-	-	-	-	-	-	
			2.4 V	280	300	411	664	-	-	-	-	-	-	
			3 V	375	402	544	943	-	-	-	-	-	-	
			3.6 V	488	529	791	1459	-	-	-	-	-	-	
		RTC enabled and 2. clocked by LSE guartz ⁽²⁾ 3	1.8 V	320	347	448	856	1432	-	-	-	-	-	
			2.4 V	405	436	550	921	1567	-	-	-	-	-	
			3 V	512	545	686	1128	2529	-	-	-	-	-	
			3.6 V	648	705	976	1588	3293	-	-	-	-	-	1

1. Guaranteed by characterization results, unless otherwise specified.

2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 56*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min	Тур	Max	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	48	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	5.5	
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.44	-	
		V _{DD} = 3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.45	-	
I _{DD(HSE)}	HSE current consumption	V _{DD} = 3 V, Rm = 30 Ω, CL = 5 pF@48 MHz	-	0.68	-	mA
		V _{DD} = 3 V, Rm = 30 Ω, CL = 10 pF@48 MHz	0.94	-		
		V _{DD} = 3 V, Rm = 30 Ω, CL = 20 pF@48 MHz	-	1.77	-	
G _m	Maximum critical crystal transconductance	Startup	-	-	1.5	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized	-	2	-	ms

|--|

1. Guaranteed by design.

2. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

3. This consumption level occurs during the first 2/3 of the $t_{SU(\text{HSE})}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 25*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

6.3.8 Internal clock source characteristics

The parameters given in *Table 58* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI16) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{HSI16}	HSI16 Frequency	V _{DD} =3.0 V, T _A =30 °C	15.88	-	16.08	MHz	
TRIM	HSI16 user trimming step	Trimming code is not a multiple of 64	0.2	0.3	0.4	%	
IRIM		Trimming code is a multiple of 64	-4	-6	-8		
DuCy(HSI16) ⁽²⁾	Duty Cycle	-	45	-	55	%	
$\Delta_{Temp}(HSI16)$	HSI16 oscillator frequency	T _A = 0 to 85 °C	-1	-	1	%	
	drift over temperature	T _A = -40 to 125 °C	-2	-	1.5	%	
Δ_{VDD} (HSI16)	HSI16 oscillator frequency drift over V _{DD}	V _{DD} =1.62 V to 3.6 V	-0.1	-	0.05	%	
t _{su} (HSI16) ⁽²⁾	HSI16 oscillator start-up time	-	-	0.8	1.2	μs	
t _{stab} (HSI16) ⁽²⁾	HSI16 oscillator stabilization time	-	-	3	5	μs	
I _{DD} (HSI16) ⁽²⁾	HSI16 oscillator power consumption	-	-	155	190	μA	

Table 58. HSI16 oscillator characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. Guaranteed by design.

Symbol	Parameter	Conditions	Тур	Max	Unit
t _{ME}	Mass erase time (one or two banks)	-	22.13	24.59	ms
	Average consumption	Write mode	3.4	-	
I _{DD}	from V _{DD}	Erase mode	3.4	-	m۸
		Write mode	7 (for 2 µs)	-	ШA
	waximum current (peak)	Erase mode	7 (for 41 µs)	-	

 Table 63. Flash memory characteristics⁽¹⁾ (continued)

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycles	
		1 kcycle ⁽²⁾ at T _A = 85 °C	30		
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	15		
		1 kcycle ⁽²⁾ at T _A = 125 °C	7	Vooro	
		10 kcycles ⁽²⁾ at T _A = 55 °C	30	rears	
		10 kcycles ⁽²⁾ at T _A = 85 °C	15		
		10 kcycles ⁽²⁾ at T _A = 105 °C	10		

Table 64. Flash memory endurance and data retention

1. Guaranteed by characterization results.

2. Cycling performed over the whole temperature range.

Table 108. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings⁽¹⁾⁽²⁾

Symbol	Parameter	Min	Мах	Unit
t _{w(NE)}	FMC_NE low time	8T _{HCLK} -1	8T _{HCLK} +1	
t _{w(NWE)}	FMC_NWE low time	6T _{HCLK} -1.5	6T _{HCLK} +0.5	20
t _{su(NWAIT_NE)}	FMC_NWAIT valid before FMC_NEx high	6T _{HCLK} -1	-	115
t _{h(NE_NWAIT)}	FMC_NEx hold time after FMC_NWAIT invalid	4T _{HCLK} +2	-	

1. CL = 30 pF.

2. Guaranteed by characterization results.

Figure 48. Asynchronous multiplexed PSRAM/NOR read waveforms

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	FMC_CLK period	2T _{HCLK} - 0.5	-	
t _{d(CLKL-NExL)}	FMC_CLK low to FMC_NEx low (x=02)	-	2	
t _{d(CLKH-NExH)}	FMC_CLK high to FMC_NEx high (x= 02)	T _{HCLK} + 0.5	-	
t _{d(CLKL-NADVL)}	FMC_CLK low to FMC_NADV low	-	1	
t _{d(CLKL-NADVH)}	FMC_CLK low to FMC_NADV high	0	-	
t _{d(CLKL-AV)}	FMC_CLK low to FMC_Ax valid (x=1625)	-	4.5	
t _{d(CLKH-AIV)}	FMC_CLK high to FMC_Ax invalid (x=1625)	T _{HCLK}	-	
t _{d(CLKL-NWEL)}	FMC_CLK low to FMC_NWE low	-	1.5	20
t _{d(CLKH-NWEH)}	FMC_CLK high to FMC_NWE high	T _{HCLK} + 0.5	-	115
t _{d(CLKL-ADV)}	FMC_CLK low to FMC_AD[15:0] valid	-	3	
t _{d(CLKL-ADIV)}	FMC_CLK low to FMC_AD[15:0] invalid	0	-	
t _{d(CLKL-DATA)}	FMC_A/D[15:0] valid data after FMC_CLK low	-	3.5	
t _{d(CLKL-NBLL)}	FMC_CLK low to FMC_NBL low	-	2	
t _{d(CLKH-NBLH)}	FMC_CLK high to FMC_NBL high	T _{HCLK} + 0.5	-	
t _{su(NWAIT-CLKH)}	FMC_NWAIT valid before FMC_CLK high	2	-	
t _{h(CLKH-NWAIT)}	FMC_NWAIT valid after FMC_CLK high	3.5	-	

Table 114. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

1. CL = 30 pF.

2. Guaranteed by characterization results.

7.4 LQFP100 package information

Figure 73. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 128. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data

Symbol	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.000	-	-	0.4724	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

DS11584 Rev 7