E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	86
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 25x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	104-LFBGA
Supplier Device Package	104-MAPBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk40dx256vml7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min	Max	Unit	Notes
Symbol		IVIII.	IVIAX.	Unit	NOLES
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3\text{mA}$	V _{DD} – 0.5		V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	$V_{DD} - 0.5$	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$	$V_{DD} - 0.5$		V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	_	0.5	v	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3\text{mA}$	_	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V_{DD} \leq 3.6 V, I_{OL} = 2mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	-	1	μΑ	1
I _{IN}	Input leakage current (per pin) at 25°C	_	0.025	μΑ	1
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	-	1	μΑ	
R _{PU}	Internal pullup resistors	20	50	kΩ	2
R _{PD}	Internal pulldown resistors	20	50	kΩ	3

5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

1. Measured at VDD=3.6V

2. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 72 MHz
- Bus clock = 36 MHz
- Flash clock = 24 MHz

- 2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.
- 3. Determined according to JEDEC Standard JESD51-6, *Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air)* with the board horizontal. For the LQFP, the board meets the JESD51-7 specification.
- 4. Determined according to JEDEC Standard JESD51-8, *Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board*. Board temperature is measured on the top surface of the board near the package.
- 5. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug trace timing specifications

 Table 11. Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit	
T _{cyc}	Clock period	Frequency	Frequency dependent		
T _{wl}	Low pulse width	2	—	ns	
T _{wh}	High pulse width	2	_	ns	
Tr	Clock and data rise time		3	ns	
T _f	Clock and data fall time		3	ns	
T _s	Data setup	3	_	ns	
T _h	Data hold	2	_	ns	

Figure 4. TRACE_CLKOUT specifications

Figure 8. Test Access Port timing

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

6.3.2.1 Oscillator DC electrical specifications Table 14. Oscillator DC electrical specifications

Symbol	Description		Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	_	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	-	500	—	nA	
	• 4 MHz	-	200	—	μA	
	• 8 MHz (RANGE=01)	-	300	—	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	-	1.5	_	mA	
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	-	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	-	500	—	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	-	3	—	mA	
	• 32 MHz	_	4	—	mA	
C _x	EXTAL load capacitance	—	—	—		2, 3
Cy	XTAL load capacitance	—				2, 3

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	3	—	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	—	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)		750	—	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	-
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

Table 15. Oscillator frequency specifications (continued)

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

3. Proper PC board layout procedures must be followed to achieve specifications.

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

32kHz Oscillator Electrical Characteristics 6.3.3

This section describes the module electrical characteristics.

32kHz oscillator DC electrical specifications 6.3.3.1 Та

able 16.	32kHz	oscillator	DC	electrical	specifications
----------	-------	------------	----	------------	----------------

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	_	3.6	V
R _F	Internal feedback resistor	_	100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	_	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation	—	0.6	—	V

1. The EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to any other devices.

- Writes_subsystem minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)
- EEPROM allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with Program Partition command
- EEESPLIT FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- $n_{nvmcycd}$ data flash cycling endurance

Figure 10. EEPROM backup writes to FlexRAM

6.6.1.2 16-bit ADC electrical characteristics Table 24. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC	ADLPC=1, ADHSC=0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	asynchronous clock source	ADLPC=1, ADHSC=1	3.0	4.0	7.3	MHz	f _{ADACK}
† _{ADACK}		ADLPC=0, ADHSC=0	2.4	5.2	6.1	MHz	
		ADLPC=0, ADHSC=1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapte	r for sample t	times			1
TUE	Total unadjusted	12 bit modes	_	±4	±6.8	LSB ⁴	5
	error	• <12 bit modes	_	±1.4	±2.1		
DNL	Differential non- linearity	12 bit modes		±0.7	-1.1 to +1.9	LSB ⁴	5
		• <12 bit modes	_	±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12 bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12 bit modes 	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12 bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		• <12 bit modes	_	-1.4	-1.8		V _{DDA}
	Quantization	16 bit modes		-1 to 0			5
	error	 <13 bit modes 	_	-1 to 0	+0.5	LOD	
ENOB	Effective number	16 bit differential mode					6
		• Avg=32	12.8	14.5	_	bits	
		• Avg=4	11.9	13.8	_	bits	
		16 bit single-ended mode					
		• Avg=32	10.0	12.0		bite	
		• Avg=4	11.4	13.1		bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16 bit differential mode					7
	distortion	• Avg=32	_	-94		dB	
		16 bit single-ended mode	_	-85		dB	
		• Avg=32					

Table continues on the next page ...

K40 Sub-Family Data Sheet, Rev. 2, 4/2012.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
E _{IL}	Input leakage error	All modes		$I_{In} \times R_{AS}$	-	mV	l _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
V _{PP,DIFF}	Maximum differential input signal swing		$\left(\frac{\min(V)}{V}\right)$	$V_{x}V_{\text{DDA}}-V_{x}$ Gain	<u>-0.2)×4</u>)	V	6
			where v ₂	$x = V_{\text{REFPG}}$	A × 0.583		
SNR	Signal-to-noise ratio	• Gain=1 • Gain=64	80 52	90 66	_	dB dB	16-bit differential mode, Average=32
THD	Total harmonic	Gain=1	85	100		dB	16-bit
	distortion	• Gain=64	49	95		dB	differential mode, Average=32, f _{in} =100Hz
SFDR	Spurious free	Gain=1	85	105	_	dB	16-bit
	dynamic range	• Gain=64	53	88	_	dB	differential mode, Average=32, f _{in} =100Hz
ENOB	Effective number	Gain=1, Average=4	11.6	13.4	—	bits	16-bit
	of bits	Gain=64, Average=4	7.2	9.6	_	bits	differential mode,f _{in} =100H
		• Gain=1, Average=32	12.8	14.5		bits	Z
		Gain=2, Average=32	11.0	14.3	—	bits	
		• Gain=4, Average=32	7.9	13.8	_	bits	
		• Gain=8, Average=32	7.3	13.1		bits	
		• Gain=16, Average=32	6.8	12.5		bits	
		Gain=32, Average=32	6.8	11.5	_	bits	
		• Gain=64, Average=32	7.5	10.6		bits	
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 26. 16-bit ADC with PGA characteristics (continued)

1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK}=6MHz unless otherwise stated.

- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements Table 28. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
T _A	Temperature	-40	105	°C	
CL	Output load capacitance		100	pF	2
١L	Output load current		1	mA	

1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC

6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_CO:LPEN = 0), DAC set to 0x800, Temp range from -40C to 105C

Figure 17. Typical INL error vs. digital code

Figure 18. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	-40	105	°C	
CL	Output load capacitance	100		nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	
V _{out}	Voltage reference output — factory trim	1.1584		1.2376	V	
V _{out}	Voltage reference output — user trim	1.193		1.197	V	
V _{step}	Voltage reference trim step		0.5		mV	
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	_	80	mV	
l _{bg}	Bandgap only current	—		80	μA	1
I _{lp}	Low-power buffer current	—		360	uA	1
I _{hp}	High-power buffer current	—	—	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time			20	μs	
V _{vdrift}	Voltage drift (Vmax - Vmin across the full voltage range)		2	_	mV	1

Table 31. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 32. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 33. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

Symbol	Description	Min	Max	Unit	Notes
VREFH	Voltage reference output with factory trim	1.173	1.225	V	
VREFL	Voltage reference output	0.38	0.42	V	
IBIASP_AFE_4µA	P-bias current output	3.5µ	4.5µ	A	

Num	Description	Min.	Max.	Unit	Notes
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

 Table 37.
 Master mode DSPI timing (limited voltage range) (continued)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 19. DSPI classic SPI timing — master mode

Table 38. Slave mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	14	ns

Peripheral operating requirements and behaviors

Figure 24. I2S/SAI timing — slave modes

6.8.9.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 43.I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	53	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 25. I2S/SAI timing — master modes

Table 44. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	7.6	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	67	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	6.5	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Peripheral operating requirements and behaviors

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 45. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71	_	3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	_	8	15	MHz	2, 3
f _{ELEmax}	Electrode oscillator frequency	_	1	1.8	MHz	2, 4
C _{REF}	Internal reference capacitor	—	1	_	pF	
V _{DELTA}	Oscillator delta voltage	_	500		mV	2, 5
I _{REF}	Reference oscillator current source base current		2	3	μA	2, 6
	• $32 \mu\text{A}$ setting (REFCHRG = 15)	_	36	50		
I _{ELE}	Electrode oscillator current source base current • 2 uA setting (EXTCHBG = 0)		2	3	μA	2, 7
	• 32 µA setting (EXTCHRG = 15)	_	36	50		
Pres5	Electrode capacitance measurement precision	—	8.3333	38400	fF/count	8
Pres20	Electrode capacitance measurement precision		8.3333	38400	fF/count	9
Pres100	Electrode capacitance measurement precision	—	8.3333	38400	fF/count	10
MaxSens	Maximum sensitivity	0.003	12.5		fF/count	11
Res	Resolution	_	_	16	bits	

Table continues on the next page ...

Table 45. T	SI electrical	specifications ((continued)
-------------	---------------	------------------	-------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
T _{Con20}	Response time @ 20 pF	8	15	25	μs	12
I _{TSI_RUN}	Current added in run mode	—	55	—	μA	
I _{TSI_LP}	Low power mode current adder	_	1.3	2.5	μA	13

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

- 2. Fixed external capacitance of 20 pF.
- 3. REFCHRG = 2, EXTCHRG=0.
- 4. REFCHRG = 0, EXTCHRG = 10.
- 5. $V_{DD} = 3.0 V.$
- 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following configuration: lext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, I_{ref} = 16 μA (REFCHRG = 7), C_{ref} = 1.0 pF. The minimum sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity but is described as a minimum because it's the smallest number). The minimum sensitivity parameter is based on the following configuration: I_{ext} = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, I_{ref} = 32 μA (REFCHRG = 15).
- 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7.
- 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

6.9.2 LCD electrical characteristics

Table 46. LCD electricals

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency	28	30	58	Hz	
C _{LCD}	LCD charge pump capacitance — nominal value	—	100		nF	1
C _{BYLCD}	LCD bypass capacitance — nominal value	_	100		nF	1
C _{Glass}	LCD glass capacitance	_	2000	8000	pF	2
V _{IREG}	V _{IREG}					3
	HREFSEL=0, RVTRIM=1111	—	1.11	_	V	
	 HREFSEL=0, RVTRIM=1000 	—	1.01	—	V	
	HREFSEL=0, RVTRIM=0000	—	0.91	_	V	
		_	1.84	_	v	
	HREFSEL=1, RVTRIM=1111	_	1.69	_	v	
	HREFSEL=1, RVTRIM=1000	_	1.54	_	v	
	HREFSEL=1, RVTRIM=0000					
Δ _{RTRIM}	V _{IREG} TRIM resolution	—	—	3.0	% V _{IREG}	

Table continues on the next page...

Pinout

104 MAD	100	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
BGA	LQFP											
E5	40	VDD	VDD	VDD								
G3	41	VSS	VSS	VSS								
K8	42	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0			I2S0_TXD0	FTM1_QD_ PHA	
L8	43	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1			I2S0_TX_FS	FTM1_QD_ PHB	
K9	44	PTA14	DISABLED		PTA14	SPI0_PCS0	UART0_TX			I2S0_RX_ BCLK	I2S0_TXD1	
L9	45	PTA15	DISABLED		PTA15	SPI0_SCK	UART0_RX			I2S0_RXD0		
J10	46	PTA16	DISABLED		PTA16	SPI0_SOUT	UART0_CTS_ b/ UART0_COL_ b			12S0_RX_FS	12S0_RXD1	
H10	47	PTA17	ADC1_SE17	ADC1_SE17	PTA17	SPI0_SIN	UARTO_RTS_ b			I2S0_MCLK		
L10	48	VDD	VDD	VDD								
K10	49	VSS	VSS	VSS								
L11	50	PTA18	EXTAL0	EXTAL0	PTA18		FTM0_FLT2	FTM_CLKIN0				
K11	51	PTA19	XTALO	XTALO	PTA19		FTM1_FLT0	FTM_CLKIN1		LPTMR0_ ALT1		
J11	52	RESET_b	RESET_b	RESET_b								
G11	53	PTB0/ LLWU_P5	LCD_P0/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0	LCD_P0/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0	PTB0/ LLWU_P5	12C0_SCL	FTM1_CH0			FTM1_QD_ PHA	LCD_P0	
G10	54	PTB1	LCD_P1/ ADC0_SE9/ ADC1_SE9/ TSI0_CH6	LCD_P1/ ADC0_SE9/ ADC1_SE9/ TSI0_CH6	PTB1	I2C0_SDA	FTM1_CH1			FTM1_QD_ PHB	LCD_P1	
G9	55	PTB2	LCD_P2/ ADC0_SE12/ TSI0_CH7	LCD_P2/ ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	UARTO_RTS_ b			FTM0_FLT3	LCD_P2	
G8	56	PTB3	LCD_P3/ ADC0_SE13/ TSI0_CH8	LCD_P3/ ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	UART0_CTS_ b/ UART0_COL_ b			FTM0_FLT0	LCD_P3	
E11	57	PTB7	LCD_P7/ ADC1_SE13	LCD_P7/ ADC1_SE13	PTB7						LCD_P7	
D11	58	PTB8	LCD_P8	LCD_P8	PTB8		UART3_RTS_ b				LCD_P8	
E10	59	PTB9	LCD_P9	LCD_P9	PTB9	SPI1_PCS1	UART3_CTS_ b				LCD_P9	
D10	60	PTB10	LCD_P10/ ADC1_SE14	LCD_P10/ ADC1_SE14	PTB10	SPI1_PCS0	UART3_RX			FTM0_FLT1	LCD_P10	
C10	61	PTB11	LCD_P11/ ADC1_SE15	LCD_P11/ ADC1_SE15	PTB11	SPI1_SCK	UART3_TX			FTM0_FLT2	LCD_P11	
B10	62	PTB16	LCD_P12/ TSI0_CH9	LCD_P12/ TSI0_CH9	PTB16	SPI1_SOUT	UARTO_RX			EWM_IN	LCD_P12	

	1	2	3	4	5	6	7	8	9	10	11	
A	PTD7	PTD5	PTD4/ LLWU_P14	PTC19	PTC14	PTC13	PTC8	PTC4/ LLWU_P8	VLL1	VLL2	VLL3	A
в	NC	PTD6/ LLWU_P15	PTD3	PTC18	NC	PTC12	PTC7	PTC3/ LLWU_P7	PTC0	PTB16	VCAP2	в
с	NC	NC	PTD2/ LLWU_P13	PTC17	PTC11/ LLWU_P11	PTC10	PTC6/ LLWU_P10	PTC2	PTB19	PTB11	VCAP1	с
D	NC	NC	PTD1	PTD0/ LLWU_P12	PTC16	PTC9	PTC5/ LLWU_P9	PTC1/ LLWU_P6	PTB18	PTB10	PTB8	D
E	NC	PTE2/ LLWU_P1	PTE1/ LLWU_P0	PTE0	VDD	VDD	VDD	PTB23	PTB17	PTB9	PTB7	E
F	USB0_DP	USB0_DM	PTE6	PTE3	VDDA	VSSA	VSS	PTB22	PTB21	PTB20	NC	F
G	VOUT33	VREGIN	VSS	PTE5	VREFH	VREFL	VSS	PTB3	PTB2	PTB1	PTB0/ LLWU_P5	G
н	ADC0_DP1	ADC0_DM1	NC	NC	PTE24	PTE26	PTE4/ LLWU_P2	PTA1	PTA3	PTA17	NC	н
J	ADC1_DP1	ADC1_DM1	NC	NC	PTE25	PTA0	PTA2	PTA4/ LLWU_P3	NC	PTA16	RESET_b	J
к	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	NC	NC	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	VBAT	PTA5	PTA12	PTA14	VSS	PTA19	к
L	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	XTAL32	EXTAL32	VSS	RTC WAKEUP_B	PTA13/ LLWU_P4	PTA15	VDD	PTA18	L
	1	2	3	4	5	6	7	8	9	10	11	

Figure 28. K40 104 MAPBGA Pinout Diagram

9 Revision History

The following table provides a revision history for this document.

Table 47. Revision History

Rev. No.	Date	Substantial Changes
1	3/2012	Initial public release

Table continues on the next page...

K40 Sub-Family Data Sheet, Rev. 2, 4/2012.

Rev. No.	Date	Substantial Changes
2	4/2012	 Replaced TBDs throughout. Updated "Power consumption operating behaviors" table. Updated "ADC electrical specifications" section. Updated "VREF full-range operating behaviors" table. Updated "I2S/SAI Switching Specifications" section. Updated "TSI electrical specifications" table.

 Table 47. Revision History (continued)