E·XFL

NXP USA Inc. - SPC5601DF1MLL4 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 16
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5601df1mll4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 12-bit analog-to-digital converter
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Crossbar switch (XBAR)	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Enhanced direct memory access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels.
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Error correction status module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC)	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Non-maskable interrupt (NMI)	Handles external events that must produce an immediate response, such as power down detection
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU

Table 2. MPC5602D series block summary

Package pinouts and signal descriptions

Port nin	Function	Pin number			
i on più	i unction	64 LQFP	100 LQFP		
VDD_HV	Digital supply voltage	7, 28, 34, 56	15, 37, 52, 70, 84		
VSS_HV	Digital ground	6, 8, 26, 33, 55	14, 16, 35, 51, 69, 83		
VDD_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{SS_LV} pin. ¹	11, 23, 57	19, 32, 85		
VSS_LV	1.2V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V_{DD_LV} pin. ¹	10, 24, 58	18, 33, 86		
VDD_BV	Internal regulator supply voltage	12	20		

Table 3. Voltage supply pin descriptions

¹ A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device datasheet for details).

3.4 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^1$

 $M = Medium^{1 \ 2}$

 $F = Fast^{12}$

 $I = Input only with analog feature^{1}$

J = Input/Output ('S' pad) with analog feature

X = Oscillator

3.5 System pins

The system pins are listed in Table 4.

Table 4. System pin descriptions

Port nin	Function	I/O	Pad type	RESET	Pin number	
i ort pin	T unction	direction	Section 64 LQFP		100 LQFP	
RESET	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	М	Input, weak pull-up only after PHASE2	9	17
EXTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. ¹	I/O	Х	Tristate	27	36
XTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode. ¹	I	х	Tristate	25	34

¹ Refer to the relevant section of the device datasheet.

^{1.} See the I/O pad electrical characteristics in the device datasheet for details.

^{2.} All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see the PCR[SRC] description in the device reference manual).

							T ttion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE [:] configura	64 LQFP	100 LQFP
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 E0UC[1] WKPU[10] ³	SIUL DSPI_0 DSPI_0 eMIOS_0 WKPU	I/O I/O I/O I	Μ	Tristate	18	27
				Port	В				
PB[0]	PCR[16]	AF0 AF1	GPIO[16] CAN0TX	SIUL FlexCAN_0	I/O O	М	Tristate	14	23
		AF3	LIN2TX	LINFlex_2	0				
PB[1]	PCR[17]	AF0 AF1 AF2 AF3 — —	GPIO[17] — LIN0RX WKPU[4] ³ CAN0RX	SIUL — LINFlex_0 WKPU FlexCAN_0	I/O — I I	S	Tristate	15	24
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LIN0TX — —	SIUL LINFlex_0 —	I/O O —	М	Tristate	64	100
PB[3]	PCR[19]	AF0 AF1 AF2 AF3 —	GPIO[19] — — WKPU[11] ³ LIN0RX	SIUL — — WKPU LINFlex_0	I/O — — — — — — —	S	Tristate	1	1
PB[4]	PCR[20]	AF0 AF1 AF2 AF3 —	GPIO[20] — — — ADC1_P[0]	SIUL — — — ADC	 	Ι	Tristate	32	50
PB[5]	PCR[21]	AF0 AF1 AF2 AF3 —	GPIO[21] — — — ADC1_P[1]	SIUL — — — ADC		Ι	Tristate	35	53
PB[6]	PCR[22]	AF0 AF1 AF2 AF3 —	GPIO[22] — — — ADC1_P[2]	SIUL — — — ADC	 	Ι	Tristate	36	54

Table 5. Fund	ctional port	pin descript	ions (continued)
---------------	--------------	--------------	------------------

.

Package pinouts and signal descriptions

							r tion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	Pad typew s S S64 LQFPSTristate17STristate63STristate2	100 LQFP	
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — — LIN1RX WKPU[12] ³	SIUL — — LINFlex_1 WKPU	I/O — — — — —	S	Tristate	17	26
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX E0UC[3] —	SIUL LINFlex_2 eMIOS_0 —	I/O O I/O —	S	Tristate	63	99
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 — —	GPIO[41] — E0UC[7] — LIN2RX WKPU[13] ³	SIUL — eMIOS_0 — LINFlex_2 WKPU	I/O — I/O — I	S	Tristate	2	2
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] MA[1]	SIUL — — ADC	I/O — — O	М	Tristate	13	22
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 —	GPIO[43] — — MA[2] WKPU[5] ³	SIUL — ADC WKPU	I/O — — — 0 I	S	Tristate	_	21
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — EIRQ[19]	SIUL eMIOS_0 — SIUL	I/O I/O — I	Μ	Tristate	_	97
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate	_	98
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] EIRQ[8]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	_	3
PC[15]	PCR[47]	AF0 AF1 AF2 AF3 —	GPIO[47] E0UC[15] — EIRQ[20]	SIUL eMIOS_0 — SIUL	I/O I/O — I	Μ	Tristate	_	4

 Table 5. Functional port pin descriptions (continued)

Package pinouts and signal descriptions

							T Ition	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE ⁻ configura	64 LQFP	100 LQFP
PE[9]	PCR[73]	AF0	GPIO[73]	SIUL	I/O	S	Tristate	—	10
		AF2 AF3 —	E0UC[23] WKPU[7] ³	eMIOS_0 WKPU	I/O — I				
PE[10]	PCR[74]	AF0	GPIO[74]	SIUL	I/O	S	Tristate	—	11
		AF1 AF2 AF3	 CS3_1 	DSPI_1	0				
		—	EIRQ[10]	SIUL	I				
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] E0UC[24] CS4_1 — WKPU[14] ³	SIUL eMIOS_0 DSPI_1 — WKPU	I/O I/O O I	S	Tristate	_	13
PE[12]	PCR[76]	AF0	GPIO[76]	SIUL	I/O	S	Tristate		76
		AF1 AF2 AF3 — —		ADC SIUL	 				
-		L		Port	н			L	L
PH[9] ⁶	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O — I —	S	Input, weak pull-up	60	88
PH[10] ⁶	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] — TMS —	SIUL — JTAGC —	I/O — I —	S	Input, weak pull-up	53	81

Table 5. Functional	port pin	descriptions	(continued)
,			· · · · · · · · · · · · · · · · · · ·

¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

³ All WKPU pins also support external interrupt capability. See "wakeup unit" chapter of the device reference manual for further details.

⁴ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

⁵ "Not applicable" because these functions are available only while the device is booting. Refer to "BAM" chapter of the device reference manual for details. ⁶ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1 2001.

4 Electrical characteristics

4.1 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This can be done by the internal pull-up or pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

4.2 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 6 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 6. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4.3 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

Figure 4. Input DC electrical characteristics definition

Table 14.	I/O inpu	t DC electric	cal characteristics
-----------	----------	---------------	---------------------

Symbol		C	Parameter	Condit	Conditions ¹			Value			
Symb		C	raianietei	Condit	Conditions		Тур	Max			
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} +0.4	V			
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	—		-0.4	_	0.35V _{DD}	V		
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_		0.1V _{DD}	_	—	V		
I _{LKG}	СС	D	Digital input leakage	No injection	$T_A = -40 \ ^\circ C$	—	2	200	nA		
		D		on adjacent	T _A = 25 °C	—	2	200			
		D			T _A = 85 °C	_	5	300			
		D			T _A = 105 °C	—	12	500			
		Ρ			T _A = 125 °C	_	70	1000			
W_{FI}^2	SR	Ρ	Digital input filtered pulse	_	-	—	_	40	ns		
W _{NFI} ⁽²⁾	SR	Ρ	Digital input not filtered pulse	_	-	1000		—	ns		

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

4.7.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

• Table 15 provides weak pull figures. Both pull-up and pull-down resistances are supported.

		100 LQFF	P/64 LQFP	
Pad	Weigl	ht 5 V	Weigh	t 3.3 V
	SRC ² = 0	SRC = 1	SRC = 0	SRC = 1
PC[0]	6%	9%	7%	8%
PE[2]	7%	10%	8%	9%
PE[3]	7%	10%	9%	9%
PC[5]	8%	11%	9%	10%
PC[4]	8%	11%	9%	10%
PE[4]	8%	12%	10%	10%
PE[5]	8%	12%	10%	11%
PE[6]	9%	12%	10%	11%
PE[7]	9%	12%	10%	11%
PC[12]	9%	13%	11%	11%
PC[13]	9%	9%	11%	11%
PC[8]	9%	9%	11%	11%
PB[2]	9%	13%	11%	12%

Table 21. I/O weight¹ (continued)

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% \text{ / } 5.0 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified}$ ² SRC: "Slew Rate Control" bit in SIU_PCR

RESET electrical characteristics 4.8

The device implements a dedicated bidirectional RESET pin.

Figure 5. Start-up reset requirements

4.9.2 Low voltage detector electrical characteristics

The device implements a power-on reset (POR) module to ensure correct power-up initialization, as well as five low voltage detectors (LVDs) to monitor the V_{DD} and the V_{DD} LV voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)
- LVDHV3B monitors V_{DD_BV} to ensure device reset below minimum functional supply (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD27_VREG in device reference manual)
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)
- LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD1 in device reference manual)
- LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag F_LVD12_PD0 in device reference manual)

Figure 8. Low voltage detector vs reset

Symbol		C	Parameter	Conditions ¹		Value		Unit
Cymbol		Ŭ	i alancici	Conditions	Min	Тур	Мах	
V _{PORUP}	SR	Ρ	Supply for functional POR module	T _A = 25 °C,	1.0		5.5	V
V _{PORH}	СС	Ρ	Power-on reset threshold	after trimming	1.5		2.6	V
V _{LVDHV3H}	СС	Т	LVDHV3 low voltage detector high threshold				2.95	V
V _{LVDHV3L}	СС	Ρ	LVDHV3 low voltage detector low threshold		2.6		2.9	V
V _{LVDHV3BH}	СС	Ρ	LVDHV3B low voltage detector high threshold				2.95	V
V _{LVDHV3BL}	СС	Ρ	LVDHV3B low voltage detector low threshold		2.6		2.9	V
V _{LVDHV5H}	СС	Т	LVDHV5 low voltage detector high threshold				4.5	V
V _{LVDHV5L}	СС	Ρ	LVDHV5 low voltage detector low threshold		3.8		4.4	V
V _{LVDLVCORL}	СС	Ρ	LVDLVCOR low voltage detector low threshold		1.08		1.16	V
V _{LVDLVBKPL}	СС	Ρ	LVDLVBKP low voltage detector low threshold]	1.08	—	1.16	V

Table 24. Low voltage detector electrical characteristics

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

4.10 Power consumption

Table 25 provides DC electrical characteristics for significant application modes. These values are indicative values; actual consumption depends on the application.

Table 25.	Power	consumption	on VDD_	_BV and	VDD_I	HV
-----------	-------	-------------	---------	---------	-------	----

									r
Symbol		C	Parameter	Conditions ¹			Value		Unit
Gymbol		Ŭ	i didineter	Conditions		Min	Тур	Max	onne
I _{DDMAX} ²	СС	D	RUN mode maximum average current	_			90	130 ³	mA
I _{DDRUN} 4	СС	Т	RUN mode typical	f _{CPU} = 8 MHz		_	7	—	mA
		Т	average current	f _{CPU} = 16 MHz		_	18	_	
		Т		f _{CPU} = 32 MHz			29		
		Ρ		f _{CPU} = 48 MHz			40	100	
IDDHALT	СС	С	HALT mode current ⁶	Slow internal RC oscillator	T _A = 25 °C		8	15	mA
		Ρ		(128 kHz) running	T _A = 125 °C		14	25	
I _{DDSTOP}	СС	Ρ	STOP mode current ⁷	Slow internal RC oscillator	T _A = 25 °C		180	700 ⁸	μΑ
		D		(128 kHz) running	T _A = 55 °C		500		
		D			T _A = 85 °C		1	6 ⁽⁸⁾	mA
		D			T _A = 105 °C		2	9 ⁽⁸⁾	
		Ρ			T _A = 125 °C	_	4.5	12 ⁽⁸⁾	
		1							

Symbol	Symbol	C	Paramotor	Conditions ¹			Value		Unit
Symbol		U	raidinetei	Conditions		Min	Тур	Max	Onit
I _{DDSTDBY}	СС	Ρ	STANDBY mode current ⁹	Slow internal RC oscillator	T _A = 25 °C	_	30	100	μA
		D		(128 KHZ) running	T _A = 55 °C	_	75	_	
		D			T _A = 85 °C	_	180	700	
		D			T _A = 105 °C	_	315	1000	
		Ρ			T _A = 125 °C	—	560	1700	

Table 25. Power consumption on VDD_BV and VDD_HV (continued) (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.

- ³ Higher current may be sinked by device during power-up and standby exit. Please refer to in-rush average current on Table 23.
- ⁴ RUN current measured with typical application with accesses on both flash memory and SRAM.
- ⁵ Only for the "P" classification: Code fetched from SRAM: serial IPs CAN and LIN in loop-back mode, DSPI as Master, PLL as system clock (3 × Multiplier) peripherals on (eMIOS/CTU/ADC) and running at maximum frequency, periodic SW/WDG timer reset enabled.
- ⁶ Data flash power down. Code flash in low power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock. FlexCAN: 0 ON (clocked but no reception or transmission). LINFlex: instances: 0, 1, 2 ON (clocked but no reception or transmission), instance: 3 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication). RTC/API ON.PIT ON. STM ON. ADC ON but no conversion except 2 analog watchdogs.
- ⁷ Only for the "P" classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPVreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- ⁸ When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- ⁹ Only for the "P" classification: ULPVreg on, HP/LPVreg off, 16 KB SRAM on, device configured for minimum consumption, all possible modules switched off.

4.11 Flash memory electrical characteristics

The data flash operation depends strongly on the code flash operation. If code flash is switched-off, the data flash is disabled.

4.11.1 Program/Erase characteristics

Table 26 shows the program and erase characteristics.

Symbo		C	Paramotor	Conditions		Value		Unit
Symbo	,	C	Farameter	Conditions	Min	Тур	Мах	Onic
P/E	СС	С	Number of program/erase	16 KB blocks	100,000	—	—	cycles
			operating temperature range	32 KB blocks	10,000	100,000	—	cycles
			(T _J)	128 KB blocks	1,000	100,000	—	cycles
Retention	СС	С	Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20	_	_	years
				Blocks with 1,001–10,000 P/E cycles	10	_	_	
				Blocks with 10,001–100,000 P/E cycles	5	_	_	

Table 28. Flash module life

¹ Ambient temperature averaged over application duration. It is recommended not to exceed the product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 29. Flash memory read access timing

Symbo	bl	С	Parameter	Conditions ¹	Max	Unit
f_{CFREAD}	СС	Ρ	Maximum working frequency for reading code flash memory at given	2 wait states	48	MHz
		С	number of walt states in worst conditions	0 wait states	20	
f _{DFREAD}	СС	Ρ	Maximum working frequency for reading data flash memory at given number of wait states in worst conditions	6 wait states	48	MHz

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

4.11.2 Flash power supply DC characteristics

Table 30 shows the power supply DC characteristics on external supply.

NOTE

Power supply for data flash is actually provided by code flash; this means that data flash cannot work if code flash is not powered.

Table 30. Flash power supply DC electrical characteristics

Symbol C Parameter Condit		Conditions ¹			Value				
Gynis		Ŭ	i di dificici	Conditions		Min	Тур	Max	om
I _{CFREAD}	СС	D	Sum of the current consumption on	Flash module read	Code flash			33	mA
IDFREAD	СС	D	v_{DDHV} and v_{DDBV} on read access	$T_{CPU} = 48 \text{ MHz}$	Data flash	—	—	4	mΑ
ICFMOD	СС	D	Sum of the current consumption on	Program/Erase on-going	Code flash			33	mA
IDFMOD	СС	D	v _{DDHV} and v _{DDBV} on matrix modification (program/erase)	$f_{CPU} = 48 \text{ MHz}$	Data flash	_	—	6	mA

4.14 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

Symbo		c	Parameter	Conditions ¹		Value		Unit
Symbo		C	Falancie	Conditions	Min	Тур	Мах	Unit
f _{PLLIN}	SR	—	FMPLL reference clock ²	_	4	_	48	MHz
Δ_{PLLIN}	SR		FMPLL reference clock duty cycle ⁽²⁾	_	40	_	60	%
f _{PLLOUT}	СС	D	FMPLL output clock frequency	—	16	_	48	MHz
f _{VCO} ³	СС	Ρ	VCO frequency without frequency modulation	_	256	_	512	MHz
			VCO frequency with frequency modulation	_	245	_	533	
f _{CPU}	SR	—	System clock frequency	—	_	_	48	MHz
f _{FREE}	СС	Ρ	Free-running frequency	—	20	_	150	MHz
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)	_	40	100	μs
Δt_{LTJIT}	СС	_	FMPLL long term jitter	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} at 48 MHz, 4,000 cycles	_	_	10	ns
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	—	_	4	mA

Table 37. FMPLL electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered $\pm 4\%$.

4.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz fast internal RC oscillator (FIRC). This is used as the default clock at the power-up of the device.

Symbol		<u>د</u>	Parameter (Conditions ¹		Unit		
Symbol		C	Faiametei	Conditions	Min	Тур	Max	Unit
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C, trimmed		16	_	MHz
	SR		frequency	—	12		20	
I _{FIRCRUN} 2,	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed	_	_	200	μA
I _{FIRCPWD}	СС	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 25 °C		_	10	μA

Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics

Symbol		C	Parameter		anditions ¹			Unit	
Symbol		C	Falameter		hallons	Min	Тур	Max	onn
I _{FIRCSTOP}	СС	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off	—	500	_	μΑ
			frequency and system clock current in stop mode		sysclk = 2 MHz	—	600		
			'		sysclk = 4 MHz	—	700	_	
					sysclk = 8 MHz		900		
					sysclk = 16 MHz		1250		
t _{FIRCSU}	СС	С	Fast internal RC oscillator start-up time	V _{DD} = 5.0 V	± 10%	_	1.1	2.0	μs
∆ _{FIRCPRE}	СС	С	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C		-1	_	1	%
$\Delta_{FIRCTRIM}$	СС	С	Fast internal RC oscillator trimming step	T _A = 25 °C		_	1.6		%
	СС	С	Fast internal RC oscillator variation in temperature and supply with respect to f_{FIRC} at $T_A = 55$ °C in high-frequency configuration		_	-5		5	%

 Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.16 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz slow internal RC oscillator (SIRC). This can be used as the reference clock for the RTC module.

Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics

Symbol		C	Parameter	Conditions ¹			Unit	
Cymbol		Ŭ		Conditions	Min	Тур	Max	
f _{SIRC}	СС	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed	_	128	—	kHz
	SR		frequency	_	100	_	150	
I _{SIRC} ^{2,}	СС	С	Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed		—	5	μA
t _{SIRCSU}	СС	Ρ	Slow internal RC oscillator start-up time	$T_A = 25 \text{ °C}, V_{DD} = 5.0 \text{ V} \pm 10\%$		8	12	μs
$\Delta_{SIRCPRE}$	СС	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2	—	2	%
	СС	С	Slow internal RC oscillator trimming step	_		2.7	—	

4.17 ADC electrical characteristics

4.17.1 Introduction

The device provides a 12-bit Successive Approximation Register (SAR) analog-to-digital converter.

Figure 11. ADC characteristics and error definitions

Package characteristics

5.1.2 64 LQFP

Figure 29. 64 LQFP mechanical drawing (part 1 of 3)

Document revision history

7 Document revision history

Table 45 summarizes revisions to this document.

Table 45. Revision history

Revision	Date	Description of Changes
1	30 Sep 2009	Initial release
2	18 Feb 2010	Updated the following tables: - Absolute maximum ratings - Low voltage power domain electrical characteristics; - On-chip peripherals current consumption - DSPI characteristics; - JTAG characteristics; - ADC conversion characteristics; Inserted a note on "Flash power supply DC characteristics" section.
3	10 Aug 2010	 "Features" section: Updated information concerning eMIOS, ADC, LINFlex, Nexus and low power capabilities "MPC5602D device comparison" table: updated the "Execution speed" row "MPC5602D series block diagram" figure: updated max number of Crossbar Switches updated Legend "MPC5602D series block summary" table: added contents concernig the eDMA block "100 LQFP pin configuration (top view)" figure: removed alternate functions updated supply pins "64 LQFP pin configuration (top view)" figure: removed alternate functions Added "Pin muxing" section "NVUSRO register" section: Deleted "NVUSRO[WATCHDOG_EN] field description" section "Recommended operating conditions (3.3 V)" table: TV_{DD}: deleted min value In footnote No. 3, changed capacitance value between V_{DD_BV} and V_{SS_LV} "Recommended operating conditions (5.0 V)" table: deleted TV_{DD} min value "LQFP thermal characteristics" table: changed R_{bUC} values "I/O input DC electrical characteristics" table: W_{FI}: updated max value W_{NFI}: updated max value "Voltage regulator electrical characteristics" "Low voltage power domain electrical characteristics" "Low voltage power domain electrical characteristics" "Low voltage power domain electrical characteristics" "Fast external crystal oscillator (16 MHz) electrical characteristics" "Fast internal RC oscillator (16 MHz) electrical characteristics" "ADC conversion characteristics" "ADC conversion characteristics" "On-chip peripherals current consumption" "DSPI characteristics" section: removed "DSPI PCS strobe (PCSS) timing" figure
3 (continued)	10 Aug 2010	"Ordering information" section: removed "Orderable part number summary" table

Table 45. Revision history	(continued)
----------------------------	-------------

Revision	Date	Description of Changes
5	_	Rev. 5 not published.
6	29 Jan 2013	 Removed all instances of table footnote "All values need to be confirmed during device validation" Section 4.1, "Introduction, removed Caution note. In Table 42, On-chip peripherals current consumption, replaced "TBD" with "8.21 mA" in I_{DD_HV(FLASH)} cell. Updated Section 4.17.2, "Input impedance and ADC accuracy In Table 24, changed V_{LVDHV3L}, V_{LVDHV3BL} from 2.7 V to 2.6 V. Revised the Table 28 (Flash module life) Updated Table 43, DSPI characteristics, to add specifications 7 and 8, t_{PCSC} and t_{PASC}. Inserted Figure 24, DSPI PCS strobe (PCSS) timing.

Appendix A Abbreviations

Table A-1 lists abbreviations used in this document.

Abbreviation	Meaning
APU	Auxilliary processing unit
CMOS	Complementary metal-oxide-semiconductor
CPHA	Clock phase
CPOL	Clock polarity
CS	Peripheral chip select
DAOC	Double action output compare
ECC	Error code correction
EVTO	Event out
GPIO	General purpose input/output
IPM	Input period measurement
IPWM	Input pulse width measurement
MB	Message buffer
MC	Modulus counter
MCB	Modulus counter buffered (up / down)
МСКО	Message clock out
MDO	Message data out
MSEO	Message start/end out
MTFE	Modified timing format enable
NVUSRO	Non-volatile user options register
OPWFMB	Output pulse width and frequency modulation buffered
OPWMB	Output pulse width modulation buffered

Table A-1. Abbreviations

Abbreviations

Abbreviation	Meaning
OPWMCB	Center aligned output pulse width modulation buffered with dead time
OPWMT	Output pulse width modulation trigger
PWM	Pulse width modulation
SAIC	Single action input capture
SAOC	Single action output compare
SCK	Serial communications clock
SOUT	Serial data out
TBD	To be defined
ТСК	Test clock input
TDI	Test data input
TDO	Test data output
TMS	Test mode select

Table A-1. Abbreviations (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5602D Rev. 6 01/2013 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org © Freescale Semiconductor, Inc. 2009–2013. All rights reserved.

