

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	45
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=spc5602df1mlh3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Package pinouts and signal descriptions

Figure 2 shows the MPC5602D in the 100 LQFP package.

Figure 2. 100 LQFP pin configuration (top view)

NOTE

SRAM data retention is guaranteed with $V_{DD \ LV}$ not below 1.08 V.

4.6 Thermal characteristics

4.6.1 Package thermal characteristics

Table 13. LQF	P thermal	characteristics ¹
---------------	-----------	------------------------------

Sym	bol	С	Parameter	Conditions ²		Value	Unit
R_{\thetaJA}	СС	D	Thermal resistance, junction-to-ambient natural	Single-layer board —1s	LQFP64	72.1	°C/W
			convection		LQFP100	65.2	
				Four-layer board — 2s2p	LQFP64	57.3	
					LQFP100	51.8	
R_{\thetaJB}	СС	D	Thermal resistance, junction-to-board ⁴	Four-layer board — 2s2p	LQFP64	44.1	°C/W
					LQFP100	41.3	
R_{\thetaJC}	СС	D	Thermal resistance, junction-to-case ⁵	Single-layer board — 1s	LQFP64	26.5	°C/W
					LQFP100	23.9	
				Four-layer board — 2s2p	LQFP64	26.2	
					LQFP100	23.7	
Ψ_{JB}	СС	D	Junction-to-board thermal characterization	Single-layer board — 1s	LQFP64	41	°C/W
			parameter, natural convection		LQFP100	41.6	
				Four-layer board — 2s2p	LQFP64	43	
					LQFP100	43.4	
Ψ_{JC}	СС	D	Junction-to-case thermal characterization	Single-layer board — 1s	LQFP64	11.5	°C/W
			parameter, natural convection		LQFP100	10.4	
				Four-layer board — 2s2p	LQFP64	11.1	
					LQFP100	10.2	

¹ Thermal characteristics are targets based on simulation that are subject to change per device characterization.

 2 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C

³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-7. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R_{thJA}.

⁴ Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R_{thJB}.

⁵ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R_{thJC}.

4.6.2 Power considerations

The average chip-junction temperature, T_J, in degrees Celsius, may be calculated using Equation 1:

Figure 4. Input DC electrical characteristics definition

Table 14.	I/O inpu	t DC electric	cal characteristics
-----------	----------	---------------	---------------------

Symb		C	Parameter	Condit	ions ¹			Unit	
Symb		C	raianietei	Condit		Min	Тур	Max	Onne
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_		0.65V _{DD}	_	V _{DD} +0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	—		-0.4	_	0.35V _{DD}	V
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_		0.1V _{DD}	_	—	V
I _{LKG}	СС	D	Digital input leakage	No injection	$T_A = -40 \ ^\circ C$	—	2	200	nA
		D		on adjacent	T _A = 25 °C	—	2	200	
		D			T _A = 85 °C	_	5	300	
		D			T _A = 105 °C	—	12	500	
		Ρ			T _A = 125 °C	_	70	1000	
W_{FI}^2	SR	Ρ	Digital input filtered pulse	_		—	_	40	ns
W _{NFI} ⁽²⁾	SR	Ρ	Digital input not filtered pulse	_	-	1000		—	ns

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

4.7.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

• Table 15 provides weak pull figures. Both pull-up and pull-down resistances are supported.

MPC5602D Microcontroller Data Sheet, Rev. 6

Svm	bol	<u>ر</u>	Parameter		Conditions ¹	V	alue		Unit
J	1001	C	Farameter		Conditions	Min	Тур	Max	onn
V _{OH}	СС	С	Output high level MEDIUM configuration	Push Pull	I _{OH} = -3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}			V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	0.8V _{DD}	_	—	
		С			I _{OH} = −1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} – 0.8		_	
		С			I _{OH} = −100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	-	—	
V _{OL}	СС	С	Output low level MEDIUM configuration	Push Pull	I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	0.2V _{DD}	V
		Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_		0.1V _{DD}	
		С			I _{OL} = 1 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ⁽²⁾	_		0.1V _{DD}	
		С	1		$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	_		0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—		0.1V _{DD}	

Table 17. MEDIUM configuration output buffer electrical characteristics

RESET are configured in input or in high impedance state.

4.7.4 Output pin transition times

SVI	mbol	c	Parameter		Conditions ¹	Value			Unit
Syı		C	Falameter		Conditions	Min	Тур	Max	•
t _{tr}	CC	D	Output transition time output pin ²	C _L = 25 pF	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$		_	50	ns
		Т	SLOW configuration	C _L = 50 pF			—	100	
		D		C _L = 100 pF			_	125	
		D		C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		—	50	
		Т		C _L = 50 pF				100	
		D		C _L = 100 pF			—	125	
t _{tr}	CC	D	Output transition time output	C _L = 25 pF	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$	_	—	10	ns
		Т	pin ^{ve} MEDIUM configuration	C _L = 50 pF	SIUL.PCRx.SRC = 1			20	
		D	0	C _L = 100 pF			—	40	
		D		C _L = 25 pF	$V_{DD} = 3.3 \text{ V} \pm 10\%$, PAD3V5V = 1	_	—	12	
		Т		C _L = 50 pF	1SIUL.PCKX.SKC = 1			25	
		D		C _L = 100 pF		—		40	

Table 18. Output pin transition times

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

 2 C $_L$ includes device and package capacitances (C $_{PKG}$ < 5 pF).

4.7.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in Table 19.

Table 20 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I_{AVGSEG} maximum value.

Package	Supply segment						
T denage	1	2	3	4			
100 LQFP	pin 16 – pin 35	pin 37 – pin 69	pin 70 – pin 83	pin 84 – pin 15			
64 LQFP	pin 8 – pin 26	pin 28 – pin 55	pin 56 – pin 7	—			

 Table 19. I/O supply segment

	100 LQFP/64 LQFP							
Pad	Weig	ht 5 V	Weigh	t 3.3 V				
	SRC ² = 0	SRC = 1	SRC = 0	SRC = 1				
PD[5]	1%	1%	1%	1%				
PD[6]	1%	1%	1%	1%				
PD[7]	1%	1%	1%	1%				
PD[8]	1%	1%	1%	1%				
PB[4]	1%	1%	1%	1%				
PB[5]	1%	1%	1%	1%				
PB[6]	1%	1%	1%	1%				
PB[7]	1%	1%	1%	1%				
PD[9]	1%	1%	1%	1%				
PD[10]	1%	1%	1%	1%				
PD[11]	1%	1%	1%	1%				
PB[11]	9%	9%	11%	11%				
PD[12]	8%	8%	10%	10%				
PB[12]	8%	8%	10%	10%				
PD[13]	8%	8%	9%	9%				
PB[13]	8%	8%	9%	9%				
PD[14]	7%	7%	9%	9%				
PB[14]	7%	7%	8%	8%				
PD[15]	7%	7%	8%	8%				
PB[15]	6%	6%	7%	7%				
PA[3]	6%	6%	7%	7%				
PA[7]	4%	4%	5%	5%				
PA[8]	4%	4%	5%	5%				
PA[9]	4%	4%	5%	5%				
PA[10]	5%	5%	6%	6%				
PA[11]	5%	5%	6%	6%				
PE[12]	5%	5%	6%	6%				
PC[3]	5%	5%	6%	6%				
PC[2]	5%	7%	6%	6%				
PA[5]	5%	6%	5%	6%				
PA[6]	4%	4%	5%	5%				
PC[1]	5%	17%	4%	12%				

Table 21. I/O weight¹ (continued)

Figure 6. Noise filtering on reset signal

Symb	Symbol		Parameter	Conditions ¹	Value			
Synib	01	C	raianetei	Conditions	Min	Тур	Мах	Onit
V _{IH}	SR	Ρ	Input High Level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} + 0.4	V
V _{IL}	SR	Ρ	Input low Level CMOS (Schmitt Trigger)	_	-0.4	_	0.35V _{DD}	V
V _{HYS}	CC	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	_	—	V
V _{OL}	СС	Ρ	Output low level	Push Pull, $I_{OL} = 2 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0 (recommended)	—	_	0.1V _{DD}	V
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 5.0 V ± 10%, PAD3V5V = 1 ²	—	_	0.1V _{DD}	
				Push Pull, $I_{OL} = 1 \text{ mA}$, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)		_	0.5	

Table 22. Reset electrical characteristics

٠

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)
- Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

4.12.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.

Symbol C Parameter		c	Parameter	Conditions			Value			
		Farameter				Тур	Max	•		
	SR		Scan range	—			_	1000	MHz	
f _{CPU}	SR		Operating frequency	_		—	48	—	MHz	
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	—	V	
S _{EMI}	СС	Т	Peak level	V _{DD} = 5 V, T _A = 25 °C, 100 LQFP package	No PLL frequency modulation	_	_	18	dBµ V	
				$f_{OSC} = 8 \text{ MHz/}f_{CPU} = 48 \text{ MHz}$	± 2% PLL frequency modulation	_	_	14	dBµ V	

Table 32. EMI radiated emission measurement^{1 2}

¹ EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

4.12.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

4.12.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

Symbol		C	Parameter		anditions ¹			Unit	
Symbol		C	Falameter		manons	Min	Тур	Max	Onic
I _{FIRCSTOP}	СС	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off		500		μA
		current in stop mode			sysclk = 2 MHz		600		
			·		sysclk = 4 MHz		700	_	
					sysclk = 8 MHz		900		
					sysclk = 16 MHz		1250		
t _{FIRCSU}	СС	С	Fast internal RC oscillator start-up time	V _{DD} = 5.0 V ± 10%		_	1.1	2.0	μs
[∆] fircpre	СС	С	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C		-1		1	%
$\Delta_{FIRCTRIM}$	СС	С	Fast internal RC oscillator trimming step	T _A = 25 °C		—	1.6		%
	СС	С	Fast internal RC oscillator variation in temperature and supply with respect to f_{FIRC} at $T_A = 55$ °C in high-frequency configuration		_	-5		5	%

 Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.16 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz slow internal RC oscillator (SIRC). This can be used as the reference clock for the RTC module.

Table 39. Slow internal RC oscillator (128 kHz) electrical characteristics

Symbol		C	Parameter	Conditions ¹		Unit		
		Ŭ		Conditions	Min	Тур	Max	
f _{SIRC}	СС	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed	_	128	—	kHz
	SR		frequency	_	100	_	150	
I _{SIRC} ^{2,}	СС	С	Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed		—	5	μA
t _{SIRCSU}	СС	Ρ	Slow internal RC oscillator start-up time	$T_A = 25 \text{ °C}, V_{DD} = 5.0 \text{ V} \pm 10\%$		8	12	μs
$\Delta_{SIRCPRE}$	СС	С	Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2	—	2	%
	СС	С	Slow internal RC oscillator trimming step	_		2.7	—	

Table 39. Slow internal RC oscillator	(128 kHz)	electrical	characteristics	(continued)
---------------------------------------	-----------	------------	-----------------	-------------

Symbol C		C	Parameter	Conditions ¹		Value		Unit
		U	i urumeter	Conditions	Min	Тур	Max	onne
	СС	Ρ	Slow internal RC oscillator variation in temperature and supply with respect to f_{SIRC} at $T_A = 55$ °C in high frequency configuration	High frequency configuration	-10	_	10	%

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified. ² This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

Figure 13. Input equivalent circuit (extended channels)

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit in Figure 13): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

Figure 14. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (\mathbf{R}_{SW} + \mathbf{R}_{AD}) \bullet \frac{\mathbf{C}_P \bullet \mathbf{C}_S}{\mathbf{C}_P + \mathbf{C}_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_s is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_L sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

Egn. 5

Eqn. 6

Eqn. 7

Eqn. 8

Eqn. 9

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the $R_F C_F$ filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant $R_F C_F$ of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

Figure 15. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

Eqn. 11

$$\frac{V_{A2}}{V_A} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \bullet C_S$$

Symbol		~	Devenuetor	Cand	4:1		Value		L I
Symbo	וכ	C	Parameter	Conai	Conditions		Тур	Max	
t _c	CC	Ρ	Conversion time ⁶ V _{DD} = 3.3 V	f _{ADC} = 20 MHz, INPCMP = 0		2.4	—	—	μs
				f _{ADC} = 13.33 M INPCMP = 0	Hz,	—	—	3.6	
		Ρ	Conversion time ⁽⁶⁾ V _{DD} = 5.0 V	f _{ADC} = 32 MHz, INPCMP = 0		1.5	—	_	μs
				f _{ADC} = 13.33 M INPCMP = 0	Hz,	—	—	3.6	
C _S	СС	D	ADC input sampling capacitance	-	_		5		pF
C _{P1}	СС	D	ADC input pin capacitance 1	-	_		3		pF
C _{P2}	СС	D	ADC input pin capacitance 2	_	_		1		pF
C _{P3}	СС	D	ADC input pin capacitance 3	_	_		1.5		pF
R _{SW1}	СС	D	Internal resistance of analog source	_	_		—	1	kΩ
R _{SW2}	СС	D	Internal resistance of analog source	_	_	_	—	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_	-	—	_	0.3	kΩ
I _{INJ}	SR	—	Input current Injection	Current injection on	V _{DD} = 3.3 V ± 10%	-5	-	5	mA
				one ADC input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	—	5	
INLP	СС	Т	Absolute Integral non-linearity-precise channels	No overload		_	1	3	LSB
INLX	СС	Т	Absolute Integral non-linearity-extended channels	No overload	No overload		1.5	5	LSB
DNL	СС	Т	Absolute Differential non-linearity	No overload		_	0.5	1	LSB
E _O	СС	Т	Absolute Offset error	_	_	_	2		LSB
E _G	СС	Т	Absolute Gain error	_	_	_	2		LSB
TUEP ⁷	СС	Ρ	Total unadjusted error	Without current	injection	-6		6	LSB
		Т	input only pins	With current inj	ection	-8		8	

Table 41. Abo conversion characteristics (continueu)
--

Symbol		С	Parameter		Conditions	Typical value ²	Unit
I _{DD_BV(SPI)}	CC	Т	SPI (DSPI) supply	Ballast static	Ballast static consumption (only clocked)		μΑ
			current on V _{DD_BV}	Ballast dynar communicatio • Baudrate: • Transmiss • Frame: 16	nic consumption (continuous on): 2 Mbit/s ion every 8 μs bits	16 × f _{periph}	μA
I _{DD_BV(ADC)}	СС	Т	ADC supply current on V _{DD_BV}	V _{DD} = 5.5 V Ballast static consumption (no conversion)		41 × f _{periph}	μA
					Ballast dynamic consumption (continuous conversion) ³	5 × f _{periph}	μA
IDD_HV_ADC(ADC)	СС	Т	ADC supply current on V _{DD_HV_ADC}	V _{DD} = 5.5 V	Analog static consumption (no conversion)	2 × f _{periph}	μA
					Analog dynamic consumption (continuous conversion)	75 × f _{periph} + 32	μA
I _{DD_HV} (FLASH)	CC	Т	CFlash + DFlash supply current on V_{DD_HV}	V _{DD} = 5.5 V	—	8.21	mA
I _{DD_HV(PLL)}	CC	Т	PLL supply current on V _{DD_HV}	V _{DD} = 5.5 V	_	30 × f _{periph}	μÂ

Table 42. On-chip peripherals current consumption¹ (continued)

¹ Operating conditions: $T_A = 25$ °C, $f_{periph} = 8$ MHz to 48 MHz

 ² f_{periph} is an absolute value.
 ³ During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., $(41 + 5) \times f_{periph}$.

4.18.2 **DSPI** characteristics

Table 43.	DSPI	characteristics ¹
-----------	------	------------------------------

No	No. Symbol C		C	Paramete	r	DSPIC	Unit		
110.			Ŭ	i aramete			Тур	Max	Unit
1	t _{SCK}	SR	D	SCK cycle time	Master mode (MTFE = 0)	125	_	—	ns
			D		Slave mode (MTFE = 0)	125	_	—	
			D		Master mode (MTFE = 1)	83	_	—	
			D		Slave mode (MTFE = 1)	83	_		
—	f _{DSPI}	SR	D	DSPI digital controller frequer	PI digital controller frequency		_	f _{CPU}	MHz

No	lo Symbol		Symbol C Parameter		r	DSPIC)/DSPI1		Unit
NO.	Symbo	,		i arameter		Min	Тур	Max	Unit
_	∆t _{CSC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode	Master mode	_	_	130 ²	ns
_	∆t _{ASC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1 \rightarrow 1	Master mode	_		130 ⁽²⁾	ns
2	t _{CSCext} ³	SR	D	CS to SCK delay	Slave mode	32	—	_	ns
3	t _{ASCext} 4	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	—	—	ns
4	t _{SDC}	CC	D	SCK duty cycle	Master mode	—	t _{SCK} /2	—	ns
		SR	D		Slave mode	t _{SCK} /2	—	—	
5	t _A	SR	D	Slave access time	—	1/f _{DSPI} + 70	—	—	ns
6	t _{DI}	SR	D	Slave SOUT disable time	-	7	_		ns
7	t _{PCSC}	SR	D	PCSx to PCSS time	—	0	—	—	ns
8	t _{PASC}	SR	D	PCSS to PCSx time	_	0	_	_	ns
9	t _{SUI}	SR	D	Data setup time for inputs	Master mode	43	—	_	ns
					Slave mode	5	—	—	
10	t _{HI}	SR	D	Data hold time for inputs	Master mode	0	—	—	ns
					Slave mode	2 ⁵	_		
11	t _{SUO} 6	CC	D	Data valid after SCK edge	Master mode	—	—	32	ns
					Slave mode	_		52	
12	t _{HO} ⁽⁶⁾	CC	D	Data hold time for outputs	Master mode	0	—	—	ns
					Slave mode	8	_	_	

Table 43	DSPI	characteristics ¹	(continued)
----------	------	------------------------------	-------------

 $^1\,$ Operating conditions: C_{OUT} = 10 to 50 pF, Slew_{IN} = 3.5 to 15 ns

² Maximum is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM pad

³ The t_{CSC} delay value is configurable through a register. When configuring t_{CSC} (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{CSC} to ensure positive t_{CSCext}.

⁴ The t_{ASC} delay value is configurable through a register. When configuring t_{ASC} (using PASC and ASC fields in DSPI_CTARx registers), delay between internal CS and internal SCK must be higher than Δt_{ASC} to ensure positive t_{ASCext}.

⁵ This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of DSPI_MCR.

⁶ SCK and SOUT configured as MEDIUM pad

Figure 19. DSPI classic SPI timing – slave, CPHA = 1

Figure 20. DSPI modified transfer format timing – master, CPHA = 0

MPC5602D Microcontroller Data Sheet, Rev. 6

6 Ordering information

Figure 32. Commercial product code structure

Document revision history

7 Document revision history

Table 45 summarizes revisions to this document.

Table 45. Revision history

Revision	Date	Description of Changes
1	30 Sep 2009	Initial release
2	18 Feb 2010	Updated the following tables: - Absolute maximum ratings - Low voltage power domain electrical characteristics; - On-chip peripherals current consumption - DSPI characteristics; - JTAG characteristics; - ADC conversion characteristics; Inserted a note on "Flash power supply DC characteristics" section.
3	10 Aug 2010	 "Features" section: Updated information concerning eMIOS, ADC, LINFlex, Nexus and low power capabilities "MPC5602D device comparison" table: updated the "Execution speed" row "MPC5602D series block diagram" figure: updated max number of Crossbar Switches updated Legend "MPC5602D series block summary" table: added contents concernig the eDMA block "100 LQFP pin configuration (top view)" figure: removed alternate functions updated supply pins "64 LQFP pin configuration (top view)" figure: removed alternate functions Added "Pin muxing" section "NVUSRO register" section: Deleted "NVUSRO[WATCHDOG_EN] field description" section "Recommended operating conditions (3.3 V)" table: TV_{DD}: deleted min value In footnote No. 3, changed capacitance value between V_{DD_BV} and V_{SS_LV} "Recommended operating conditions (5.0 V)" table: deleted TV_{DD} min value "LQFP thermal characteristics" table: changed R_{bUC} values "I/O input DC electrical characteristics" table: W_{FI}: updated max value W_{NFI}: updated max value "Voltage regulator electrical characteristics" "Low voltage power domain electrical characteristics" "Low voltage power domain electrical characteristics" "Low voltage power domain electrical characteristics" "Fast external crystal oscillator (16 MHz) electrical characteristics" "Fast internal RC oscillator (16 MHz) electrical characteristics" "ADC conversion characteristics" "ADC conversion characteristics" "On-chip peripherals current consumption" "DSPI characteristics" section: removed "DSPI PCS strobe (PCSS) timing" figure
3 (continued)	10 Aug 2010	"Ordering information" section: removed "Orderable part number summary" table

MPC5602D Microcontroller Data Sheet, Rev. 6

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5602D Rev. 6 01/2013 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org © Freescale Semiconductor, Inc. 2009–2013. All rights reserved.

