NXP USA Inc. - SPC5602DF1MLH3R Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	45
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5602df1mlh3r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Package pinouts and signal descriptions

							r tion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE' configura	64 LQFP	100 LQFP
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] — EIRQ[2] ADC1_S[1]	SIUL eMIOS_0 — SIUL ADC	I/O I/O — I I	S	Tristate	44	71
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁵	GPIO[8] E0UC[8] E0UC[14] — EIRQ[3] ABS[0]	SIUL eMIOS_0 eMIOS_0 SIUL BAM	I/O I/O — I I	S	Input, weak pull-up	45	72
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁵	GPIO[9] E0UC[9] — CS2_1 FAB	SIUL eMIOS_0 DSPI_1 BAM	I/O I/O I/O I	S	Pull-down	46	73
PA[10]	PCR[10]	AF0 AF1 AF2 AF3 —	GPIO[10] E0UC[10] — LIN2TX ADC1_S[2]	SIUL eMIOS_0 LINFlex_2 ADC	I/O I/O — 0 I	S	Tristate	47	74
PA[11]	PCR[11]	AF0 AF1 AF2 AF3 — — —	GPIO[11] E0UC[11] — EIRQ[16] ADC1_S[3] LIN2RX	SIUL eMIOS_0 — SIUL ADC LINFlex_2	I/O I/O — I I I	S	Tristate	48	75
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — — EIRQ[17] SIN_0	SIUL — — SIUL DSPI_0	I/O — — — I I	S	Tristate	22	31
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 CS3_1	SIUL DSPI_0 DSPI_1	I/O O I/O	М	Tristate	21	30
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4]	SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL	I/O I/O I/O I/O I	М	Tristate	19	28

 Table 5. Functional port pin descriptions (continued)

Package pinouts and signal descriptions

							r tion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE ⁻ configura	64 LQFP	100 LQFP
PC[7]	PCR[39]	AF0 AF1 AF2 AF3 —	GPIO[39] — — LIN1RX WKPU[12] ³	SIUL — — LINFlex_1 WKPU	I/O — — — — —	S	Tristate	17	26
PC[8]	PCR[40]	AF0 AF1 AF2 AF3	GPIO[40] LIN2TX E0UC[3] —	SIUL LINFlex_2 eMIOS_0 —	I/O O I/O —	S	Tristate	63	99
PC[9]	PCR[41]	AF0 AF1 AF2 AF3 — —	GPIO[41] — E0UC[7] — LIN2RX WKPU[13] ³	SIUL — eMIOS_0 — LINFlex_2 WKPU	I/O — I/O — I	S	Tristate	2	2
PC[10]	PCR[42]	AF0 AF1 AF2 AF3	GPIO[42] MA[1]	SIUL — — ADC	I/O — — O	М	Tristate	13	22
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 —	GPIO[43] — — MA[2] WKPU[5] ³	SIUL — ADC WKPU	I/O — — — 0 I	S	Tristate	_	21
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — EIRQ[19]	SIUL eMIOS_0 — SIUL	I/O I/O — I	Μ	Tristate	_	97
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] —	SIUL eMIOS_0 —	I/O I/O —	S	Tristate	_	98
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] EIRQ[8]	SIUL eMIOS_0 — SIUL	I/O I/O — I	S	Tristate	_	3
PC[15]	PCR[47]	AF0 AF1 AF2 AF3 —	GPIO[47] E0UC[15] — EIRQ[20]	SIUL eMIOS_0 — SIUL	I/O I/O — I	Μ	Tristate	_	4

 Table 5. Functional port pin descriptions (continued)

Package pinouts and signal descriptions

							T Ition	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE ⁻ configura	64 LQFP	100 LQFP
PE[9]	PCR[73]	AF0	GPIO[73]	SIUL	I/O	S	Tristate	—	10
		AF2 AF3 —	E0UC[23] WKPU[7] ³	eMIOS_0 WKPU	I/O — I				
PE[10]	PCR[74]	AF0	GPIO[74]	SIUL	I/O	S	Tristate	—	11
		AF1 AF2 AF3	 CS3_1 	DSPI_1	0				
		—	EIRQ[10]	SIUL	I				
PE[11]	PCR[75]	AF0 AF1 AF2 AF3 —	GPIO[75] E0UC[24] CS4_1 — WKPU[14] ³	SIUL eMIOS_0 DSPI_1 — WKPU	I/O I/O O I	S	Tristate	_	13
PE[12]	PCR[76]	AF0	GPIO[76]	SIUL	I/O	S	Tristate		76
		AF1 AF2 AF3 — —	 	ADC SIUL	 				
-		L		Port	н			L	L
PH[9] ⁶	PCR[121]	AF0 AF1 AF2 AF3	GPIO[121] — TCK —	SIUL — JTAGC —	I/O — I —	S	Input, weak pull-up	60	88
PH[10] ⁶	PCR[122]	AF0 AF1 AF2 AF3	GPIO[122] — TMS —	SIUL — JTAGC —	I/O — I —	S	Input, weak pull-up	53	81

Table 5. Functional	port pin	descriptions	(continued)
,			· · · · · · · · · · · · · · · · · · ·

¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

³ All WKPU pins also support external interrupt capability. See "wakeup unit" chapter of the device reference manual for further details.

⁴ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

⁵ "Not applicable" because these functions are available only while the device is booting. Refer to "BAM" chapter of the device reference manual for details.

Symbo	Symbol		Parameter	Conditions	Va	lue	Unit	
Symbo	1	C	Farameter	Conditions	Min	Max	•	
V _{DD_BV} ³	SR	—	Voltage on VDD_BV pin (regulator supply) with	_	3.0	3.6	V	
			respect to ground (V _{SS})	Relative to V _{DD}	$V_{DD} - 0.1$	V _{DD} + 0.1		
V _{SS_ADC}	SR	_	Voltage on VSS_HV_ADC (ADC reference) pin with respect to ground (V _{SS})	—	V _{SS} -0.1	V _{SS} + 0.1	V	
$V_{DD_ADC}^4$	SR	_	Voltage on VDD_HV_ADC pin (ADC reference)	_	3.0 ⁵	3.6	V	
			with respect to ground (V _{SS})	Relative to V _{DD}	$V_{DD}-0.1$	V _{DD} + 0.1		
V _{IN}	SR		Voltage on any GPIO pin with respect to ground	—	$V_{SS}-0.1$	—	V	
			(V _{SS})	Relative to V _{DD}	—	V _{DD} + 0.1		
I _{INJPAD}	SR	_	Injected input current on any pin during overload condition	—	-5	5	mA	
I _{INJSUM}	SR		Absolute sum of all injected input currents during overload condition	—	-50	50	mA	
TV _{DD}	SR		V _{DD} slope to ensure correct power up ⁶	—	—	0.25	V/µs	
T _{A C-Grade} Part	SR	_	Ambient temperature under bias	f _{CPU} ≤ 48 MHz	-40	85	°C	
T _{J C-Grade} Part	SR		Junction temperature under bias		-40	110		
T _{A V-Grade} Part	SR		Ambient temperature under bias		-40	105		
T _{J V-Grade} Part	SR	_	Junction temperature under bias		-40	130		
T _{A M-Grade} Part	SR	—	Ambient temperature under bias]	-40	125		
T _{J M-Grade} Part	SR	—	Junction temperature under bias]	-40	150		

Table 11. Recommended operating conditions (3.3 V) (continued)

¹ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.
 ² 330 nF capacitance needs to be provided between each V_{DD_LV}/V_{SS_LV} supply pair.

³ 470 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics).

 4 100 nF capacitance needs to be provided between V_{DD_ADC}/V_{SS_ADC} pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.

⁶ Guaranteed by device validation

Symbol		c	Parameter	Conditions	Val	Unit	
Cymbe				Contailions	Min	Мах	Unit
V _{SS}	SR		Digital ground on VSS_HV pins	—	0	0	V

Table 12. Recommended operating	conditions (5.0 V)
---------------------------------	--------------------

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

 P_{INT} is the product of I_{DD} and V_{DD} , expressed in watts. This is the chip internal power.

P_{I/O} represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_{D} = K / (T_{J} + 273 °C)$$
 Eqn. 2

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

K is a constant for the particular part, which may be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J may be obtained by solving equations 1 and 2 iteratively for any value of T_A .

4.7 I/O pad electrical characteristics

4.7.1 I/O pad types

The device provides four main I/O pad types depending on the associated alternate functions:

- Slow pads—These pads are the most common pads, providing a good compromise between transition time and low electromagnetic emission.
- Medium pads—These pads provide transition fast enough for the serial communication channels with controlled current to reduce electromagnetic emission.
- Input only pads—These pads are associated to ADC channels (ADC_P[X]) providing low input leakage.

Medium pads can use slow configuration to reduce electromagnetic emission except for PC[1], that is medium only, at the cost of reducing AC performance.

4.7.2 I/O input DC characteristics

Table 14 provides input DC electrical characteristics as described in Figure 4.

Figure 4. Input DC electrical characteristics definition

Table 14.	I/O inpu	t DC electric	cal characteristics
-----------	----------	---------------	---------------------

Symb	Symbol	C	Parameter	Condit	Conditions ¹		Value			
Symb		C	raianietei	Condit		Min	Тур	Max	om	
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	—		0.65V _{DD}	_	V _{DD} +0.4	V	
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	_		-0.4	_	0.35V _{DD}	V	
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_		0.1V _{DD}	_	—	V	
I _{LKG}	СС	D	Digital input leakage	No injection	$T_A = -40 \ ^\circ C$	—	2	200	nA	
		D		on adjacent	T _A = 25 °C	—	2	200		
		D			T _A = 85 °C	_	5	300		
		D			T _A = 105 °C	—	12	500		
		Ρ			T _A = 125 °C	_	70	1000		
W_{FI}^2	SR	Ρ	Digital input filtered pulse	—		—	_	40	ns	
W _{NFI} ⁽²⁾	SR	Ρ	Digital input not filtered pulse	_	-	1000		—	ns	

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

4.7.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

• Table 15 provides weak pull figures. Both pull-up and pull-down resistances are supported.

MPC5602D Microcontroller Data Sheet, Rev. 6

	100 LQFP/64 LQFP							
Pad	Weig	ht 5 V	Weigh	t 3.3 V				
	SRC ² = 0	SRC = 1	SRC = 0	SRC = 1				
PB[3]	9%	9%	10%	10%				
PC[9]	8%	8%	10%	10%				
PC[14]	8%	8%	10%	10%				
PC[15]	8%	11%	9%	10%				
PA[2]	8%	8%	9%	9%				
PE[0]	7%	7%	9%	9%				
PA[1]	7%	7%	8%	8%				
PE[1]	7%	10%	8%	8%				
PE[8]	6%	9%	8%	8%				
PE[9]	6%	6%	7%	7%				
PE[10]	6%	6%	7%	7%				
PA[0]	5%	7%	6%	7%				
PE[11]	5%	5%	6%	6%				
PC[11]	7%	7%	9%	9%				
PC[10]	8%	11%	9%	10%				
PB[0]	8%	11%	9%	10%				
PB[1]	8%	8%	10%	10%				
PC[6]	8%	8%	10%	10%				
PC[7]	8%	8%	10%	10%				
PA[15]	8%	11%	9%	10%				
PA[14]	7%	11%	9%	9%				
PA[4]	7%	7%	8%	8%				
PA[13]	7%	10%	8%	9%				
PA[12]	7%	7%	8%	8%				
PB[9]	1%	1%	1%	1%				
PB[8]	1%	1%	1%	1%				
PB[10]	5%	5%	6%	6%				
PD[0]	1%	1%	1%	1%				
PD[1]	1%	1%	1%	1%				
PD[2]	1%	1%	1%	1%				
PD[3]	1%	1%	1%	1%				
PD[4]	1%	1%	1%	1%				

Table 21. I/O weight¹

Symbo	Symbol (Paramotor	Conditions ¹		Value		Unit
Symbo		C	Farameter	Conditions	Min	Тур	Max	Onic
t _{tr}	СС	D	Output transition time output pin ³	C _L = 25 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	10	ns
			MEDIUM configuration	C _L = 50 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	20	
				C _L = 100 pF, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	40	
				C _L = 25 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	12	
				C _L = 50 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	25	
				C _L = 100 pF, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	40	
W _{FRST}	SR	Ρ	RESET input filtered pulse	_	_	_	40	ns
W _{NFRST}	SR	Ρ	RESET input not filtered pulse	_	1000	_	_	ns
I _{WPU}	СС	Ρ	Weak pull-up current	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	10	_	150	μΑ
			adsolute value	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	10	_	150	
				$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^4$	10	_	250	

10010 22, $1000000000000000000000000000000000000$

¹ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of the device reference manual).

 $^3~$ CL includes device and package capacitance (C_{PKG} < 5 pF).

⁴ The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET are configured in input or in high impedance state.

4.9 **Power management electrical characteristics**

4.9.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply V_{DD_LV} from the high voltage ballast supply V_{DD_BV} . The regulator itself is supplied by the common I/O supply V_{DD} . The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through V_{DD} power pin.
- BV: High voltage external power supply for internal ballast module. This must be provided externally through V_{DD_BV} power pin. Voltage values should be aligned with V_{DD} .
- LV: Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:

- LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.

Symbol		<u>د</u>	Parameter Conditions ¹			Value		Unit
Symbol	I	C	Farameter	Conditions	Min	Тур	Max	Unit
C _{DEC1}	SR		Decoupling capacitance ² ballast	V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 4.5$ V to 5.5 V	100 ³	470 ⁴		nF
	V _{DD_BV} / V _{DD_BV}		V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 3 V$ to 3.6 V	400				
C _{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	—	nF
V _{MREG}	СС	Т	Main regulator output voltage	Before exiting from reset	—	1.32	—	V
		P		After trimming	1.16	1.28	_	-
I _{MREG}	SR		Main regulator current provided to $V_{DD_{LV}}$ domain	—	_	_	150	mA
I _{MREGINT}	СС	D	Main regulator module current	I _{MREG} = 200 mA	_	—	2	mA
			consumption	I _{MREG} = 0 mA	—	 1.16 1.28		
V _{LPREG}	СС	Ρ	Low-power regulator output voltage	After trimming	1.16	1.28	_	V
I _{LPREG}	SR		Low power regulator current provided to $V_{\text{DD_LV}}$ domain	—	—	_	15	mA
I _{LPREGINT}	СС	D	Low-power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	_	_	600	μA
				I _{LPREG} = 0 mA; T _A = 55 °C	_	5		-
V _{ULPREG}	СС	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28		V
I _{ULPREG}	SR	_	Ultra low power regulator current provided to V _{DD_LV} domain		_	_	5	mA
IULPREGINT	сс	D	Ultra low power regulator module current consumption	I _{ULPREG} = 5 mA; T _A = 55 °C	_	_	100	μA
				I _{ULPREG} = 0 mA; T _A = 55 °C	—	2		
I _{DD_BV}	СС	D	In-rush average current on V_{DD_BV} during power-up ⁵	—	_	_	300 ⁶	mA

Table 23. Voltage regulator electrical characteristics (continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.

 $^3\,$ This value is acceptable to guarantee operation from 4.5 V to 5.5 V.

⁴ External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.

⁵ In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 μs, depending on external capacitances to be loaded).

⁶ The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

Symbol C					Va			
		С	Parameter	Min	Typ ¹	Initial max ²	Max ³	Unit
t _{dwprogram}	СС	С	Double word (64 bits) program time ⁴	_	22	50	500	μs
t _{16Kpperase}	СС	С	16 KB block preprogram and erase time	—	300	500	5000	ms
t _{32Kpperase}	СС	С	32 KB block preprogram and erase time	—	400	600	5000	ms
t _{128Kpperase}	СС	С	128 KB block preprogram and erase time	—	800	1300	7500	ms
t _{esus}	СС	С	Erase suspend latency	—	—	30	30	μs

Table 26. Program and erase specifications (code flash)

¹ Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

- ³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
- ⁴ Actual hardware programming times. This does not include software overhead.

Symbol C Parameter Value Min Typ ¹					Va	lue		
		Initial max ²	Max ³	Unit				
t _{swprogram}	СС	С	Single word (32 bits) program time ⁴	_	30	70	300	μs
t _{16Kpperase}	СС	С	16 KB block preprogram and erase time	_	700	800	1500	ms
t _{Bank_D}	СС	С	64 KB block preprogram and erase time	_	1900	2300	4800	ms

Table 27. Program and erase specifications (data flash)

¹ Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁴ Actual hardware programming times. This does not include software overhead.

Symbol		С	Ratings	Conditions	Class	Max value	Unit
V _{ESD(HBM)}	CC	Т	Electrostatic discharge voltage (Human Body Model)	T _A = 25 °C conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	CC	Т	Electrostatic discharge voltage (Machine Model)	T _A = 25 °C conforming to AEC-Q100-003	M2	200	V
V _{ESD(CDM)} CC		Т	Electrostatic discharge voltage	$T_A = 25 ^{\circ}C$	C3A	500	V
		(Charged Device Model) [conforming to AEC-Q100-011			750 (corners)	V	

 Table 33. ESD absolute maximum ratings^{1 2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

4.12.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 34. Latch-up results

Syn	nbol	С	Parameter	Conditions	Class
LU	CC	Т	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

4.17 ADC electrical characteristics

4.17.1 Introduction

The device provides a 12-bit Successive Approximation Register (SAR) analog-to-digital converter.

Figure 11. ADC characteristics and error definitions

Figure 12. Input equivalent circuit (precise channels)

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (\mathbf{R}_{SW} + \mathbf{R}_{AD}) \bullet \frac{\mathbf{C}_P \bullet \mathbf{C}_S}{\mathbf{C}_P + \mathbf{C}_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_s is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_L sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

Egn. 5

Eqn. 6

Eqn. 7

Eqn. 8

Eqn. 9

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the $R_F C_F$ filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant $R_F C_F$ of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

Cumh	-1	~	Devenuetor	Cand	4:1	Value			L I
Symbo	וכ	C	Parameter	Conai	tions	Min	Тур	Max	
t _c	CC	Ρ	Conversion time ⁶ V _{DD} = 3.3 V	f _{ADC} = 20 MHz, INPCMP = 0		2.4	—	—	μs
				f _{ADC} = 13.33 MHz, INPCMP = 0		—	—	3.6	
		Ρ	Conversion time ⁽⁶⁾ V _{DD} = 5.0 V	f _{ADC} = 32 MHz, INPCMP = 0		1.5	—	_	μs
				f _{ADC} = 13.33 M INPCMP = 0	Hz,	—	—	3.6	
C _S	СС	D	ADC input sampling capacitance	-	_		5		pF
C _{P1}	СС	D	ADC input pin capacitance 1	-	_		3		
C _{P2}	СС	D	ADC input pin capacitance 2	—				pF	
C _{P3}	СС	D	ADC input pin capacitance 3	—		1.5			pF
R _{SW1}	СС	D	Internal resistance of analog source	_		—	—	1	kΩ
R _{SW2}	СС	D	Internal resistance of analog source	—		_	—	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	—		—	—	0.3	kΩ
I _{INJ}	SR	—	Input current Injection	Current injection on	V _{DD} = 3.3 V ± 10%	-5	—	5	mA
				one ADC input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	-	5	
INLP	СС	Т	Absolute Integral non-linearity-precise channels	No overload		_	1	3	LSB
INLX	СС	Т	Absolute Integral non-linearity-extended channels	No overload		_	1.5	5	LSB
DNL	СС	Т	Absolute Differential non-linearity	No overload		_	0.5	1	LSB
E _O	СС	Т	Absolute Offset error	_	_	_	2		LSB
E _G	СС	Т	Absolute Gain error	_	_	_	2		LSB
TUEP ⁷	СС	Ρ	Total unadjusted error	Without current	injection	-6		6	LSB
		Т	input only pins	With current inj	ection	-8		8	

Table 41. ADC conversion characteristics (continued)
--

Symbol		С	Parameter		Conditions	Typical value ²	Unit
I _{DD_BV(SPI)}	CC	Т	SPI (DSPI) supply Ballast static consumption (only clocked)		1	μΑ	
			current on V _{DD_BV}	Ballast dynar communicatio • Baudrate: • Transmiss • Frame: 16	nic consumption (continuous on): 2 Mbit/s ion every 8 μs bits	16 × f _{periph}	μA
I _{DD_BV(ADC)}	СС	Т	ADC supply current on V _{DD_BV}	V _{DD} = 5.5 V	Ballast static consumption (no conversion)	41 × f _{periph}	μA
					Ballast dynamic consumption (continuous conversion) ³	5 × f _{periph}	μA
IDD_HV_ADC(ADC)	СС	Т	ADC supply current on V _{DD_HV_ADC}	V _{DD} = 5.5 V	Analog static consumption (no conversion)	2 × f _{periph}	μA
					Analog dynamic consumption (continuous conversion)	75 × f _{periph} + 32	μA
I _{DD_HV} (FLASH)	CC	Т	CFlash + DFlash supply current on V_{DD_HV}	V _{DD} = 5.5 V	—	8.21	mA
I _{DD_HV(PLL)}	CC	Т	PLL supply current on V _{DD_HV}	V _{DD} = 5.5 V	_	30 × f _{periph}	μÂ

Table 42. On-chip peripherals current consumption¹ (continued)

¹ Operating conditions: $T_A = 25$ °C, $f_{periph} = 8$ MHz to 48 MHz

 ² f_{periph} is an absolute value.
 ³ During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., $(41 + 5) \times f_{periph}$.

4.18.2 **DSPI** characteristics

Table 43.	DSPI	characteristics ¹
-----------	------	------------------------------

No Symbol		C	Paramete	DSPIC	Unit				
110.	Oymot	51	Ŭ	i aramete		Min	Тур	Max	Unit
1	t _{SCK}	SR	D	SCK cycle time	Master mode (MTFE = 0)	125	_	—	ns
			D		Slave mode (MTFE = 0)	125	_	—	
			D		Master mode (MTFE = 1)	83	_	—	
			D		Slave mode (MTFE = 1)	83	_		
—	f _{DSPI}	SR	D	DSPI digital controller frequer	ю	—	_	f _{CPU}	MHz

Figure 23. DSPI modified transfer format timing – slave, CPHA = 1

Figure 24. DSPI PCS strobe (PCSS) timing

	MECHANICA	L OUTLINES	DOCUMENT NO: 98ASS23308W			
	DICTIO	ONARY	PAGE:	98	3	
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	Н		
NOTES:						
1. ALL DIMENSIONS ARE IN MILL	IMETERS.					
2. INTERPRET DIMENSIONS AND	TOLERANCES PER	R ASME Y14.5M-1	994.			
3 datums b, c and d to be	DETERMINED AT	DATUM PLANE H.				
4. THE TOP PACKAGE BODY SIZ BY A MAXIMUM OF 0.1 MM.	ZE MAY BE SMALL	ER THAN THE BC	TTOM PA	ACKAGE SIZI	Ξ	
5. DIMENSIONS DO NOT INCLUDE PROTRUSION IS 0.25 mm PE SIZE DIMENSIONS INCLUDING	MOLD PROTRUS R SIDE. THE DIM MOLD MISMATCH.	IONS. THE MAXIMU ENSIONS ARE MAX	JM ALLOV KIMUM BC	VABLE DDY		
6. DIMENSION DOES NOT INCLUE CAUSE THE LEAD WIDTH TO AND AN ADJACENT LEAD SH	DE DAM BAR PRO EXCEED 0.35. MI IALL BE 0.07 MM	TRUSION. PROTRU NIMUM SPACE BE ⁻	SIONS SH TWEEN PF	HALL NOT ROTRUSION		
7. DIMENSIONS ARE DETERMINED) AT THE SEATING	G PLANE, DATUM	A.			
TITLE:		CASE NUMBER: 9	983–02			
100 LEAD LQF 14 x 14 0.5 PITCH	P 1 4 THICK	STANDARD: NON	-JEDEC			
, , , , , , , , , , , , , , , , , , ,		PACKAGE CODE:	8264	SHEET:	3	

Figure 28. 100 LQFP package mechanical drawing (Part 3 of 3)

MPC5602D Microcontroller Data Sheet, Rev. 6

Document revision history

Revision	Date	Description of Changes
3.1	23 Feb 2011	Deleted the "Freescale Confidential Proprietary" label (the document is public)

Table 45. Revision history (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5602D Rev. 6 01/2013 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org © Freescale Semiconductor, Inc. 2009–2013. All rights reserved.

