E·XFL

NXP USA Inc. - SPC5602DF1MLL4 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 16
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 33x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5602df1mll4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document overview

This document describes the device features and highlights the important electrical and physical characteristics.

1.2 Description

These 32-bit automotive microcontrollers are a family of system-on-chip (SoC) devices designed to be central to the development of the next wave of central vehicle body controller, smart junction box, front module, peripheral body, door control and seat control applications.

This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology and designed specifically for embedded applications.

The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power Architecture technology and only implements the VLE (variable-length encoding) APU (auxiliary processing unit), providing improved code density. It operates at speeds of up to 48 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with the user's implementations.

The device platform has a single level of memory hierarchy and can support a wide range of on-chip static random access memory (SRAM) and internal flash memory.

Feature CPU Execution speed Code flash memory Data flash memory Data flash memory Data flash memory SRAM eDMA ADC (12-bit) CTU Fotal timer I/O ¹ eMIOS • Type X ² • Type G ⁴ • Type G ⁴	Device								
reature	MPC5601DxLH	MPC5601DxLL	MPC5602DxLH	MPC5602DxLL					
CPU		e20	0z0h						
Execution speed		Static – up	to 48 MHz						
Code flash memory	128	KB	25	6 KB					
Data flash memory		64 KB (4	× 16 KB)						
SRAM	12	KB	16	KB					
eDMA		16	ch						
ADC (12-bit)	16 ch	33 ch	16 ch	33 ch					
СТU	16 ch								
Total timer I/O ¹ eMIOS	14 ch, 16-bit 28 ch, 16-bit		14 ch, 16-bit	28 ch, 16-bit					
• Type X ²	2 ch	5 ch	2 ch	5 ch					
• Type Y ³	—	9 ch	—	9 ch					
• Type G ⁴	7 ch	7 ch	7 ch	7 ch					
• Type H ⁵	4 ch	7 ch	4 ch	7 ch					
SCI (LINFlex)			3						
SPI (DSPI)			2						
CAN (FlexCAN)			1						
GPIO ⁶	45	79	45	79					

Table 1. MPC5602D device comparison

Package pinouts and signal descriptions

							r tion	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE ⁻ configura	64 LQFP	100 LQFP
PB[7]	PCR[23]	AF0 AF1 AF2 AF3 —	GPIO[23] — — ADC1_P[3]	SIUL — — ADC	 - - 	Ι	Tristate	37	55
PB[8]	PCR[24]	AF0 AF1 AF2 AF3 — —	GPIO[24] — — ADC1_S[4] WKPU[25] ³	SIUL — — ADC WKPU		Ι	Tristate	30	39
PB[9]	PCR[25]	AF0 AF1 AF2 AF3 —	GPIO[25] — — ADC1_S[5] WKPU[26] ³	SIUL — — ADC WKPU	 - 	-	Tristate	29	38
PB[10]	PCR[26]	AF0 AF1 AF2 AF3 — —	GPIO[26] — — ADC1_S[6] WKPU[8] ³	SIUL — — ADC WKPU	I/O — — — I I	J	Tristate	31	40
PB[11]	PCR[27]	AF0 AF1 AF2 AF3 —	GPIO[27] E0UC[3] — CS0_0 ADC1_S[12]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O I/O I	J	Tristate	38	59
PB[12]	PCR[28]	AF0 AF1 AF2 AF3 —	GPIO[28] E0UC[4] — CS1_0 ADC1_X[0]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	39	61
PB[13]	PCR[29]	AF0 AF1 AF2 AF3 —	GPIO[29] E0UC[5] — CS2_0 ADC1_X[1]	SIUL eMIOS_0 DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	40	63
PB[14]	PCR[30]	AF0 AF1 AF2 AF3 —	GPIO[30] E0UC[6] — CS3_0 ADC1_X[2]	SIUL eMIOS_0 — DSPI_0 ADC	I/O I/O — 0 I	J	Tristate	41	65

 Table 5. Functional port pin descriptions (continued)

							T ation	Pin n	umber
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESE [:] configura	64 LQFP	100 LQFP
PE[0]	PCR[64]	AF0 AF1 AF2 AF3	GPIO[64] E0UC[16] 	SIUL eMIOS_0 — — WKPU	I/O I/O —	S	Tristate		6
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] —	SIUL eMIOS_0 —	I/O I/O —	Μ	Tristate		8
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] EIRQ[21] SIN_1	SIUL eMIOS_0 — SIUL DSPI_1	I/O I/O — I I	Μ	Tristate	_	89
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O —	Μ	Tristate	_	90
PE[4]	PCR[68]	AF0 AF1 AF2 AF3 —	GPIO[68] E0UC[20] SCK_1 — EIRQ[9]	SIUL eMIOS_0 DSPI_1 — SIUL	I/O I/O I/O — I	Μ	Tristate		93
PE[5]	PCR[69]	AF0 AF1 AF2 AF3	GPIO[69] E0UC[21] CS0_1 MA[2]	SIUL eMIOS_0 DSPI_1 ADC	I/O I/O I/O O	М	Tristate	_	94
PE[6]	PCR[70]	AF0 AF1 AF2 AF3 —	GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	Μ	Tristate	_	95
PE[7]	PCR[71]	AF0 AF1 AF2 AF3 —	GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23]	SIUL eMIOS_0 DSPI_0 ADC SIUL	I/O I/O O I	Μ	Tristate	_	96
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] E0UC[22] 	SIUL — eMIOS_0 —	I/O — I/O —	Μ	Tristate	—	9

.

⁶ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
 PC[0:1] are available as JTAG pins (TDI and TDO respectively).
 PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1 2001.

4 Electrical characteristics

4.1 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This can be done by the internal pull-up or pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

4.2 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 6 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 6. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4.3 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

Svm	bol	<u>ر</u>	Parameter		V	alue		Unit	
Syn	1001	C	Farameter		Conditions	Min	Тур	Max	onn
V _{OH}	СС	С	Output high level MEDIUM configuration	Push Pull	I _{OH} = -3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}			V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	0.8V _{DD}	_	—	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	V _{DD} – 0.8		_	
		С			I _{OH} = −100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	-	—	
V _{OL}	СС	С	Output low level MEDIUM configuration	Push Pull	I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	_	0.2V _{DD}	V
		Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	_		0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^{(2)}$	_		0.1V _{DD}	
		С	1		I_{OL} = 1 mA, V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 (recommended)	_		0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—		0.1V _{DD}	

Table 17. MEDIUM configuration output buffer electrical characteristics

RESET are configured in input or in high impedance state.

	100 LQFP/64 LQFP					
Pad	Weigl	ht 5 V	Weigh	t 3.3 V		
	SRC ² = 0	SRC = 1	SRC = 0	SRC = 1		
PC[0]	6%	9%	7%	8%		
PE[2]	7%	10%	8%	9%		
PE[3]	7%	10%	9%	9%		
PC[5]	8%	11%	9%	10%		
PC[4]	8%	11%	9%	10%		
PE[4]	8%	12%	10%	10%		
PE[5]	8%	12%	10%	11%		
PE[6]	9%	12%	10%	11%		
PE[7]	9%	12%	10%	11%		
PC[12]	9%	13%	11%	11%		
PC[13]	9%	9%	11%	11%		
PC[8]	9%	9%	11%	11%		
PB[2]	9%	13%	11%	12%		

Table 21. I/O weight¹ (continued)

¹ $V_{DD} = 3.3 \text{ V} \pm 10\% \text{ / } 5.0 \text{ V} \pm 10\%, \text{ T}_{A} = -40 \text{ to } 125 \text{ °C}, \text{ unless otherwise specified}$ ² SRC: "Slew Rate Control" bit in SIU_PCR

RESET electrical characteristics 4.8

The device implements a dedicated bidirectional RESET pin.

Figure 5. Start-up reset requirements

Symbol		<u>د</u>	Parameter	Conditions ¹		Value		Unit
Symbol	I	C	Farameter	Conditions	Min	Тур	Max	Unit
C _{DEC1}	SR		Decoupling capacitance ² ballast	V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 4.5$ V to 5.5 V	100 ³	470 ⁴		nF
				V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 3 V$ to 3.6 V	400			
C _{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	—	nF
V _{MREG}	СС	Т	Main regulator output voltage	Before exiting from reset	—	1.32	—	V
		Ρ		After trimming	1.16	1.28	_	-
I _{MREG}	SR		Main regulator current provided to $V_{DD_{LV}}$ domain	—	_	_	150	mA
I _{MREGINT}	СС	D	Main regulator module current	I _{MREG} = 200 mA	_	—	2	mA
			consumption	I _{MREG} = 0 mA	—	—	1	
V _{LPREG}	СС	Ρ	Low-power regulator output voltage	After trimming	1.16	1.28	_	V
I _{LPREG}	SR		Low power regulator current provided to $V_{\text{DD_LV}}$ domain	—	—	_	15	mA
I _{LPREGINT}	СС	D	Low-power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	_	_	600	μA
				I _{LPREG} = 0 mA; T _A = 55 °C	_	5		-
V _{ULPREG}	СС	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28		V
I _{ULPREG}	SR	_	Ultra low power regulator current provided to V _{DD_LV} domain		_	_	5	mA
IULPREGINT	сс	D	Ultra low power regulator module current consumption	I _{ULPREG} = 5 mA; T _A = 55 °C	_	_	100	μA
				I _{ULPREG} = 0 mA; T _A = 55 °C	—	2		
I _{DD_BV}	СС	D	In-rush average current on V_{DD_BV} during power-up ⁵	—	_	_	300 ⁶	mA

Table 23. Voltage regulator electrical characteristics (continued)

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified.

² This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.

 $^3\,$ This value is acceptable to guarantee operation from 4.5 V to 5.5 V.

⁴ External regulator and capacitance circuitry must be capable of providing I_{DD_BV} while maintaining supply V_{DD_BV} in operating range.

⁵ In-rush average current is seen only for short time during power-up and on standby exit (maximum 20 μs, depending on external capacitances to be loaded).

⁶ The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must be sized accordingly. Refer to I_{MREG} value for minimum amount of current to be provided in cc.

Symbo		C	Paramotor	Conditions		Value		
Symbol		C	Farameter	Conditions	Min	Тур	Мах	Onic
P/E	СС	СС	Number of program/erase	16 KB blocks	100,000	—	—	cycles
			operating temperature range	32 KB blocks	10,000	100,000	—	cycles
			(T _J)	128 KB blocks	1,000	100,000	—	cycles
Retention	СС	С	Minimum data retention at 85 °C average ambient temperature ¹	Blocks with 0–1,000 P/E cycles	20	_	_	years
				Blocks with 1,001–10,000 P/E cycles	10	_	_	
				Blocks with 10,001–100,000 P/E cycles	5	_	_	

Table 28. Flash module life

¹ Ambient temperature averaged over application duration. It is recommended not to exceed the product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 29. Flash memory read access timing

Symbol		С	Parameter	Conditions ¹	Max	Unit	
f _{CFREAD}	СС	Ρ	Maximum working frequency for reading code flash memory at given	2 wait states	48	MHz	
		С	number of walt states in worst conditions	0 wait states	20	0	
f _{DFREAD}	CC	Ρ	Maximum working frequency for reading data flash memory at given number of wait states in worst conditions	6 wait states	48	MHz	

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

4.11.2 Flash power supply DC characteristics

Table 30 shows the power supply DC characteristics on external supply.

NOTE

Power supply for data flash is actually provided by code flash; this means that data flash cannot work if code flash is not powered.

Table 30. Flash power supply DC electrical characteristics

Symbol		ol.	DI C. Parameter		Conditions ¹			Value		Unit
		Ŭ	i di dificici				Тур	Max		
I _{CFRI}	EAD	СС	D	um of the current consumption on	Flash module read	Code flash	_	_	33	mA
I _{DFRI}	EAD	СС	D	V _{DDHV} and V _{DDBV} on read access	$T_{CPU} = 48 \text{ MHz}$	Data flash	_	_	4	mA
I _{CFN}	10D	СС	D	Sum of the current consumption on	Program/Erase on-going	Code flash			33	mA
I _{DFN}	10D	СС	D	modification (program/erase)	$f_{CPU} = 48 \text{ MHz}$	Data flash			6	mA

٠

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)
- Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

4.12.2 Electromagnetic interference (EMI)

The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.

Symbol		c	Baramotor	Conditions			Value		
		C	Farameter				Тур	Max	
	SR		Scan range	_		0.150	_	1000	MHz
f _{CPU}	SR		Operating frequency	_		—	48	—	MHz
V _{DD_LV}	SR		LV operating voltages	_		—	1.28	—	V
S _{EMI}	СС	Т	Peak level	V _{DD} = 5 V, T _A = 25 °C, 100 LQFP package	No PLL frequency modulation	—	_	18	dBµ V
				$f_{OSC} = 8 \text{ MHz/}f_{CPU} = 48 \text{ MHz}$	± 2% PLL frequency modulation	_	_	14	dBµ V

Table 32. EMI radiated emission measurement^{1 2}

¹ EMI testing and I/O port waveforms per IEC 61967-1, -2, -4

² For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your local marketing representative.

4.12.3 Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity.

4.12.3.1 Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

4.14 FMPLL electrical characteristics

The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

Symbol		<u>د</u>	Paramotor	Conditions ¹	Value			Unit
		C	Parameter Conditions		Min	Тур	Мах	Unit
f _{PLLIN}	SR	—	FMPLL reference clock ²	_	4		48	MHz
Δ_{PLLIN}	SR		- FMPLL reference clock duty — cycle ⁽²⁾		40	_	60	%
f _{PLLOUT}	СС	D	FMPLL output clock frequency —		16	_	48	MHz
f _{VCO} ³	СС	Ρ	VCO frequency without — frequency modulation		256	_	512	MHz
			VCO frequency with frequency modulation	_	245	_	533	
f _{CPU}	SR	—	System clock frequency	—	_	_	48	MHz
f _{FREE}	СС	Ρ	Free-running frequency	unning frequency — 20 —		—	150	MHz
t _{LOCK}	СС	P FMPLL lock time Stable oscillator (f _{PLLIN} = 16 MHz) —		40	100	μs		
Δt_{LTJIT}	СС		FMPLL long term jitter	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} at 48 MHz, 4,000 cycles		_	10	ns
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C — —		4	mA	

Table 37. FMPLL electrical characteristics

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered $\pm 4\%$.

4.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz fast internal RC oscillator (FIRC). This is used as the default clock at the power-up of the device.

Symbol		<u>د</u>	Paramotor	Conditions ¹	Value			Unit
		C	Faiametei	Conditions	Min	Тур	Max	
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C, trimmed		16		MHz
	SR -		frequency	_	12		20	
I _{FIRCRUN} 2,	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed	_	_	200	μA
I _{FIRCPWD}	СС	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 25 °C			10	μA

Table 38. Fast internal RC oscillator (16 MHz) electrical characteristics

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

$$\tau_1 = (\mathbf{R}_{SW} + \mathbf{R}_{AD}) \bullet \frac{\mathbf{C}_P \bullet \mathbf{C}_S}{\mathbf{C}_P + \mathbf{C}_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_s is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_L sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

Egn. 5

Eqn. 6

Eqn. 7

Eqn. 8

Eqn. 9

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the $R_F C_F$ filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant $R_F C_F$ of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as anti-aliasing.

Figure 15. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (t_c). Again the conversion period t_c is longer than the sampling time t_s , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time t_s , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on C_S :

Eqn. 11

$$\frac{V_{A2}}{V_A} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Eqn. 12

$$C_F > 2048 \bullet C_S$$

Symbol		~	Devenuetor	Conditional		Value			Unit		
Symbo	וכ	C	Parameter	Conditions		Min	Min Typ				
t _c	CC	Ρ	Conversion time ⁶ V _{DD} = 3.3 V	$f_{ADC} = 20 \text{ MHz},$ INPCMP = 0		2.4	—	—	μs		
				f _{ADC} = 13.33 MHz, INPCMP = 0		—	—	3.6			
		Ρ	Conversion time ⁽⁶⁾ V _{DD} = 5.0 V	f _{ADC} = 32 MHz, INPCMP = 0		1.5	—	_	μs		
				f _{ADC} = 13.33 M INPCMP = 0	Hz,	—	—	3.6			
C _S	СС	D	ADC input sampling capacitance			_			5		pF
C _{P1}	СС	D	ADC input pin capacitance 1			3			pF		
C _{P2}	СС	D	ADC input pin capacitance 2	_	_		1		pF		
C _{P3}	СС	D	ADC input pin capacitance 3	_	_		1.5		pF		
R _{SW1}	СС	D	Internal resistance of analog source	_	_	—	—	1	kΩ		
R _{SW2}	СС	D	Internal resistance of analog source	—		_	—	2	kΩ		
R _{AD}	СС	D	Internal resistance of analog source	_	-	—	_	0.3	kΩ		
I _{INJ}	SR	—	Input current Injection	Current injection on	V _{DD} = 3.3 V ± 10%	-5	-	5	mA		
				one ADC input, different from the converted one	V _{DD} = 5.0 V ± 10%	-5	—	5			
INLP	СС	Т	Absolute Integral non-linearity-precise channels	No overload		_	1	3	LSB		
INLX	СС	Т	Absolute Integral non-linearity-extended channels	No overload		_	1.5	5	LSB		
DNL	СС	Т	Absolute Differential non-linearity	No overload		_	0.5	1	LSB		
EO	СС	Т	Absolute Offset error	-		_	2		LSB		
E _G	СС	Т	Absolute Gain error	_	_	_	2		LSB		
TUEP ⁷	СС	Ρ	Total unadjusted error	Without current	injection	-6		6	LSB		
		Т	input only pins	With current injection		-8		8			

Table 41. Abo conversion characteristics (continueu)
--

Figure 16. DSPI classic SPI timing – master, CPHA = 0

Figure 18. DSPI classic SPI timing – slave, CPHA = 0

Figure 22. DSPI modified transfer format timing – slave, CPHA = 0

Figure 23. DSPI modified transfer format timing – slave, CPHA = 1

Figure 24. DSPI PCS strobe (PCSS) timing

Package characteristics

Figure 30. 64 LQFP mechanical drawing (part 2 of 3)

Document revision history

7 Document revision history

Table 45 summarizes revisions to this document.

Table 45. Revision history

Revision	Date	Description of Changes
1	30 Sep 2009	Initial release
2	18 Feb 2010	Updated the following tables: - Absolute maximum ratings - Low voltage power domain electrical characteristics; - On-chip peripherals current consumption - DSPI characteristics; - JTAG characteristics; - ADC conversion characteristics; Inserted a note on "Flash power supply DC characteristics" section.
3	10 Aug 2010	 "Features" section: Updated information concerning eMIOS, ADC, LINFlex, Nexus and low power capabilities "MPC5602D device comparison" table: updated the "Execution speed" row "MPC5602D series block diagram" figure: updated max number of Crossbar Switches updated Legend "MPC5602D series block summary" table: added contents concernig the eDMA block "100 LQFP pin configuration (top view)" figure: removed alternate functions updated supply pins "64 LQFP pin configuration (top view)" figure: removed alternate functions Added "Pin muxing" section "NVUSRO register" section: Deleted "NVUSRO[WATCHDOG_EN] field description" section "Recommended operating conditions (3.3 V)" table: TV_{DD}: deleted min value In footnote No. 3, changed capacitance value between V_{DD_BV} and V_{SS_LV} "Recommended operating conditions (5.0 V)" table: deleted TV_{DD} min value "LQFP thermal characteristics" table: changed R_{bUC} values "I/O input DC electrical characteristics" table: W_{FI}: updated max value W_{NFI}: updated max value "Voltage regulator electrical characteristics" "Low voltage power domain electrical characteristics" "Low voltage power domain electrical characteristics" "Low voltage power domain electrical characteristics" "Fast external crystal oscillator (16 MHz) electrical characteristics" "Fast internal RC oscillator (16 MHz) electrical characteristics" "ADC conversion characteristics" "ADC conversion characteristics" "On-chip peripherals current consumption" "DSPI characteristics" section: removed "DSPI PCS strobe (PCSS) timing" figure
3 (continued)	10 Aug 2010	"Ordering information" section: removed "Orderable part number summary" table

Revision	Date	Description of Changes
4	14 Jul 2011	Formatting and editorial changes throughout Device comparison table: for the "Total timer I/O eMIOS", changed "13 ch" to "14 ch"
		Features: Replaced "e200z0" with "e200z0h"; added an explanation of which LINFlex
		modules support master mode and slave
		MPC5601D/MPC5602D series block summary:
		added definition for "AUTOSAR" acronym
		configuration (top view): changed pin 6 from VPP_TEST to VSS_HV
		Added section "Pad configuration during reset phases"
		Added section "Voltage supply pins"
		Added section "Pad types"
		Added section "System pins"
		update includes replacing all instances of WKUP with WKPU (WKPU is the correct abbreviation for Wakeup Unit)
		Section "NVUSRO register": edited content to separate configuration into electrical
		parameters and digital functionality
		Added section "NVUSRO[WATCHDOG_EN] field description"
		Absolute maximum ratings: Removed "C" column from table
		Replaced "TBD" with "—" in T _{VDD} min value cell of 3.3 V and 5 V recommended operating conditions tables
		LQFP thermal characteristics: removed $R_{\theta JB}$ single layer board conditions; updated footnote 4
		I/O input DC electrical characteristics: removed footnote "All values need to be
		confirmed during device validation"; updated I _{LKG} characteristics
		MEDIUM configuration output buffer electrical characteristics: changed " $I_{OH} = 100 \ \mu$ A"
		to " I_{OL} = 100 µA" in V _{OL} conditions
		I/O consumption. replaced instances of Root medium square with Root mean square
		Section "Low voltage detector electrical characteristics": changed title (was "Voltage
		monitor electrical characteristics"); added a fifth LVD (LVDHV3B); added event status flag names found in RGM chapter of device reference manual to POR module and
		LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage
		detector"; deleted note referencing power domain No. 2 (this domain is not present
		on the device); updated electrical characteristics table
		voltage domain power consumption")
		Program and erase specifications (code flash): updated symbols; updated t _{esus} values
		Updated Flash memory read access timing
		EMI radiated emission measurement: updated S _{EMI} values
		Crystal oscillator and resonator connection scheme: inserted footnote about possibly
		requiring a series resistor
		Fast internal RC oscillator (16 MHz) electrical characteristics: updated t _{FIRCSU} values
		Section "Input impedance and ADC accuracy": changed "V _A /V _{A2} " to "V _{A2} /V _A " in Equation 13
		ADC conversion characteristics:
		• updated conditions for sampling time $V_{DD} = 5.0 V$
		• updated conditions for conversion time $V_{DD} = 5.0 \text{ V}$
		Commercial product code structure: added character for frequency; updated optional
		Restored the revision history table and added an entry for Rev. 3.1
		Updated Abbreviations

Table 45. Revision history (continued)