

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, Microwire, SD, SPI, SSI, SSP, UART/USART, USB, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, WDT
Number of I/O	49
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	16K × 8
RAM Size	136K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1837jet100e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

32-bit ARM Cortex-M3 microcontroller

Pin name	LBGA256	TFBGA100	LQFP144	LQFP208		Reset state	Type	Description
P1_20	M10	K10	70	100	[2]	N;	I/O	GPIO0[15] — General purpose digital input/output pin.
						PU	I/O	SSP1_SSEL — Slave Select for SSP1.
							-	R — Function reserved.
							0	ENET_TXD1 — Ethernet transmit data 1 (RMII/MII interface).
							I	T0_CAP2 — Capture input 2 of timer 0.
							-	R — Function reserved.
							-	R — Function reserved.
							I/O	EMC_D11 — External memory data line 11.
P2_0	T16	G10	75	108	[2]	N;	-	R — Function reserved.
						PU	0	U0_TXD — Transmitter output for USART0. See <u>Table 4</u> for ISP mode.
							I/O	EMC_A13 — External memory address line 13.
							0	USB0_PPWR — VBUS drive signal (towards external charge pump or power management unit); indicates that VBUS must be driven (active HIGH). Add a pull-down resistor to disable the power switch at reset. This signal has opposite polarity compared to the USB_PPWR used on other NXP LPC parts.
							I/O	GPIO5[0] — General purpose digital input/output pin.
							-	R — Function reserved.
							I	T3_CAP0 — Capture input 0 of timer 3.
							0	ENET_MDC — Ethernet MIIM clock.
P2_1	N15	G7	81	116	[2]	N;	-	R — Function reserved.
						PU	1	U0_RXD — Receiver input for USART0. See <u>Table 4</u> for ISP mode.
							I/O	EMC_A12 — External memory address line 12.
							I	USB0_PWR_FAULT — Port power fault signal indicating overcurrent condition; this signal monitors over-current on the USB bus (external circuitry required to detect over-current condition).
							I/O	GPIO5[1] — General purpose digital input/output pin.
							-	R — Function reserved.
							I	T3_CAP1 — Capture input 1 of timer 3.
							-	R — Function reserved.

 Table 3.
 Pin description ...continued

32-bit ARM Cortex-M3 microcontroller

Pin name	LBGA256	TFBGA100	LQFP144	LQFP208		Reset state	Type	Description
P2_12	E15	B9	106	153	[2]	N;	I/O	GPIO1[12] — General purpose digital input/output pin.
						PU	0	CTOUT_4 — SCTimer/PWM output 4. Match output 3 of timer 3.
							-	R — Function reserved.
							I/O	EMC_A3 — External memory address line 3.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							I/O	U2_UCLK — Serial clock input/output for USART2 in synchronous mode.
P2_13	C16	A10	108	156	[2]	N;	I/O	GPIO1[13] — General purpose digital input/output pin.
						PU	I	CTIN_4 — SCTimer/PWM input 4. Capture input 2 of timer 1.
							-	R — Function reserved.
							I/O	EMC_A4 — External memory address line 4.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							I/O	U2_DIR — RS-485/EIA-485 output enable/direction control for USART2.
P3_0	F13	A8	112	161	[2]	N; PU	I/O	I2S0_RX_SCK — I ² S receive clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the l^2S -bus specification.
							0	I2S0_RX_MCLK — I ² S receive master clock.
							I/O	I2S0_TX_SCK — Transmit Clock. It is driven by the master and received by the slave. Corresponds to the signal SCK in the l^2S -bus specification.
							0	I2S0_TX_MCLK — I ² S transmit master clock.
							I/O	SSP0_SCK — Serial clock for SSP0.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.

 Table 3.
 Pin description ...continued

32-bit ARM Cortex-M3 microcontroller

Pin name	LBGA256	TFBGA100	LQFP144	LQFP208		Reset state	Type	Description
P4_10	M3	-	35	51	[2]	N;	-	R — Function reserved.
						PU	I	CTIN_2 — SCTimer/PWM input 2. Capture input 2 of timer 0.
							0	LCD_VD10 — LCD data.
							-	R — Function reserved.
							I/O	GPIO5[14] — General purpose digital input/output pin.
							0	LCD_VD14 — LCD data.
							-	R — Function reserved.
							-	R — Function reserved.
P5_0	N3	-	37	53	[2]	N;	I/O	GPIO2[9] — General purpose digital input/output pin.
						PU	0	MCOB2 — Motor control PWM channel 2, output B.
							I/O	EMC_D12 — External memory data line 12.
							-	R — Function reserved.
							I	U1_DSR — Data Set Ready input for UART1.
							I	T1_CAP0 — Capture input 0 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.
P5_1	P3	-	39	55	[2]	N;	I/O	GPIO2[10] — General purpose digital input/output pin.
						PU	I	MCI2 — Motor control PWM channel 2, input.
							I/O	EMC_D13 — External memory data line 13.
							-	R — Function reserved.
							0	U1_DTR — Data Terminal Ready output for UART1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART1.
							I	T1_CAP1 — Capture input 1 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.
P5_2	R4	-	46	63	[2]	N;	I/O	GPIO2[11] — General purpose digital input/output pin.
						PU	I	MCI1 — Motor control PWM channel 1, input.
							I/O	EMC_D14 — External memory data line 14.
							-	R — Function reserved.
							0	U1_RTS — Request to Send output for UART1. Can also be configured to be an RS-485/EIA-485 output enable signal for UART1.
							I	T1_CAP2 — Capture input 2 of timer 1.
							-	R — Function reserved.
							-	R — Function reserved.

 Table 3.
 Pin description ...continued

32-bit ARM Cortex-M3 microcontroller

Boot mode	BOOT_SRC bit 3	BOOT_SRC bit 2	BOOT_SRC bit 1	BOOT_SRC bit 0	Description			
USB0	0	1	1	0	Boot from USB0.			
USB1	0	1	1	1	Boot from USB1.			
SPI (SSP)	1	0	0	0	Boot from SPI flash connected to the SSP0 interface on P3_3 (function SSP0_SCK), P3_6 (function SSP0_SSEL), P3_7 (function SSP0_MISO), and P3_8 (function SSP0_MOSI) ^[1] .			
USART3	1	0	0	1	Enter ISP mode using USART3 functions on pins P2_3 and P2_4.			

Table 4. Boot mode when OTP BOOT_SRC bits are programmed

[1] The boot loader programs the appropriate pin function at reset to boot using either SSP0 or SPIFI. **Remark:** Pin functions for SPIFI and SSP0 boot are different.

Boot mode	Pins				Description
	P2_9	P2_8	P1_2	P1_1	
USART0	LOW	LOW	LOW	LOW	Enter ISP mode using USART0 pins P2_0 and P2_1.
SPIFI	LOW	LOW	LOW	HIGH	Boot from Quad SPI flash connected to the SPIFI interface on P3_3 to P3_8 ^[1] .
EMC 8-bit	LOW	LOW	HIGH	LOW	Boot from external static memory (such as NOR flash) using CS0 and an 8-bit data bus.
EMC 16-bit	LOW	LOW	HIGH	HIGH	Boot from external static memory (such as NOR flash) using CS0 and a 16-bit data bus.
EMC 32-bit	LOW	HIGH	LOW	LOW	Boot from external static memory (such as NOR flash) using CS0 and a 32-bit data bus.
USB0	LOW	HIGH	LOW	HIGH	Boot from USB0
USB1	LOW	HIGH	HIGH	LOW	Boot from USB1.
SPI (SSP)	LOW	HIGH	HIGH	HIGH	Boot from SPI flash connected to the SSP0 interface on P3_3 (function SSP0_SCK), P3_6 (function SSP0_SSEL), P3_7 (function SSP0_MISO), and P3_8 (function SSP0_MOSI) ^[1] .
USART3	HIGH	LOW	LOW	LOW	Enter ISP mode using USART3 pins P2_3 and P2_4.

Table 5. Boot mode when OPT BOOT_SRC bits are zero

[1] The boot loader programs the appropriate pin function at reset to boot using either SSP0 or SPIFI. **Remark:** Pin functions for SPIFI and SSP0 boot are different.

32-bit ARM Cortex-M3 microcontroller

7.13 One-Time Programmable (OTP) memory

The OTP provides 64 bit+ 256 bit of memory for general-purpose use.

7.14 General-Purpose I/O (GPIO)

The LPC185x/3x/2x/1x provides 8 GPIO ports with up to 31 GPIO pins each.

Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate registers allow setting or clearing any number of outputs simultaneously. The value of the output register may be read back as well as the current state of the port pins.

All GPIO pins default to inputs with pull-up resistors enabled and input buffer disabled on reset. The input buffer must be turned on in the system control block SFS register before the GPIO input can be read.

7.14.1 Features

- Accelerated GPIO functions:
 - GPIO registers are located on the AHB so that the fastest possible I/O timing can be achieved.
 - Mask registers allow treating sets of port bits as a group, leaving other bits unchanged.
 - All GPIO registers are byte and half-word addressable.
 - Entire port value can be written in one instruction.
- Bit-level set and clear registers allow a single instruction set or clear of any number of bits in one port.
- Direction control of individual bits.
- Up to eight GPIO pins can be selected from all GPIO pins to create an edge- or level-sensitive GPIO interrupt request.
- Two GPIO group interrupts can be triggered by any pin or pins in each port.

7.15 AHB peripherals

7.15.1 State Configurable Timer/PWM (SCTimer/PWM) subsystem

The SCTimer/PWM allows a wide variety of timing, counting, output modulation, and input capture operations. The inputs and outputs of the SCTimer/PWM are shared with the capture and match inputs/outputs of the 32-bit general-purpose counter/timers.

The SCTimer/PWM can be configured as two 16-bit counters or a unified 32-bit counter. In the two-counter case, in addition to the counter value the following operational elements are independent for each half:

- State variable.
- Limit, halt, stop, and start conditions.
- Values of Match/Capture registers, plus reload or capture control values.

In the two-counter case, the following operational elements are global to the SCTimer/PWM, but the last three can use match conditions from either counter:

32-bit ARM Cortex-M3 microcontroller

transfers, with frames of 4 bit to 16 bit of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data.

7.16.3.1 Features

- Maximum SSP speed in full-duplex mode of 25 Mbit/s; for transmit only 50 Mbit/s (master) and 15 Mbit/s (slave).
- Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National Semiconductor Microwire buses.
- Synchronous serial communication.
- Master or slave operation.
- Eight-frame FIFOs for both transmit and receive.
- 4-bit to 16-bit frame.
- Connected to the GPDMA.

7.16.4 I²C-bus interface

Remark: The LPC185x/3x/2x/1x contain two I²C-bus interfaces.

The I²C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line (SCL) and a Serial Data line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (for example, an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I²C-bus interface is a multi-master bus and can be controlled by more than one bus master connected to it.

7.16.4.1 Features

- I²C0 is a standard I²C-bus compliant bus interface with open-drain pins. I²C0 also supports Fast mode plus with bit rates up to 1 Mbit/s.
- I²C1 uses standard I/O pins with bit rates of up to 400 kbit/s (Fast I²C-bus).
- Easy to configure as master, slave, or master/slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I²C-bus can be used for test and diagnostic purposes.
- All I²C-bus controllers support multiple address recognition and a bus monitor mode.

7.16.5 I²S interface

Remark: The LPC185x/3x/2x/1x contain two I²S interfaces.

All information provided in this document is subject to legal disclaimers.

LPC185X 3X 2X 1X

32-bit ARM Cortex-M3 microcontroller

- Increments/decrements depending on direction.
- Programmable for 2× or 4× position counting.
- Velocity capture using built-in timer.
- Velocity compare function with "less than" interrupt.
- Uses 32-bit registers for position and velocity.
- Three position-compare registers with interrupts.
- Index counter for revolution counting.
- Index compare register with interrupts.
- Can combine index and position interrupts to produce an interrupt for whole and partial revolution displacement.
- Digital filter with programmable delays for encoder input signals.
- Can accept decoded signal inputs (clk and direction).

7.17.4 Repetitive Interrupt (RI) timer

The repetitive interrupt timer provides a free-running 32-bit counter which is compared to a selectable value, generating an interrupt when a match occurs. Any bits of the timer compare function can be masked such that they do not contribute to the match detection. The repetitive interrupt timer can be used to create an interrupt that repeats at predetermined intervals.

7.17.4.1 Features

- 32-bit counter. Counter can be free-running or be reset by a generated interrupt.
- 32-bit compare value.
- 32-bit compare mask. An interrupt is generated when the counter value equals the compare value, after masking. This mechanism allows for combinations not possible with a simple compare.

7.17.5 Windowed WatchDog Timer (WWDT)

The purpose of the watchdog is to reset the controller if software fails to periodically service it within a programmable time window.

7.17.5.1 Features

- Internally resets chip if not periodically reloaded during the programmable time-out period.
- Optional windowed operation requires reload to occur between a minimum and maximum time period, both programmable.
- Optional warning interrupt can be generated at a programmable time prior to watchdog time-out.
- Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled.
- Incorrect feed sequence causes reset or interrupt if enabled.
- Flag to indicate watchdog reset.
- Programmable 24-bit timer with internal prescaler.

LPC185X 3X 2X 1X

32-bit ARM Cortex-M3 microcontroller

- Dedicated battery power supply pin.
- RTC power supply is isolated from the rest of the chip.
- Calibration counter allows adjustment to better than ±1 sec/day with 1 sec resolution.
- Periodic interrupts can be generated from increments of any field of the time registers.
- Alarm interrupt can be generated for a specific date/time.

7.19.2 Event monitor/recorder

The event monitor/recorder allows recording and creating a time stamp of events related to the WAKEUP pins. Sensors report changes to the state of the WAKEUP pins, and the event monitor/recorder stores records of such events. The event recorder can be powered by the backup battery.

The event monitor/recorder can monitor the integrity of the device and record any tampering events.

7.19.2.1 Features

- Supports three digital event inputs in the VBAT power domain.
- An event is defined as a level change at the digital event inputs.
- For each event channel, two timestamps mark the first and the last occurrence of an event. Each channel also has a dedicated counter tracking the total number of events. Timestamp values are taken from the RTC.
- Runs in VBAT power domain, independent of system power supply. The event/recorder/monitor can therefore operate in Deep power-down mode.
- Low power consumption.
- Interrupt available if system is running.
- A qualified event can be used as a wake-up trigger.
- State of event interrupts accessible by software through GPIO.

7.19.3 Alarm timer

The alarm timer is a 16-bit timer and counts down at 1 kHz from a preset value generating alarms in intervals of up to 1 min. The counter triggers a status bit when it reaches 0x00 and asserts an interrupt, if enabled.

The alarm timer is part of the RTC power domain and can be battery powered.

7.20 System control

7.20.1 Configuration registers (CREG)

The following settings are controlled in the configuration register block:

- BOD trip settings
- Oscillator output
- DMA-to-peripheral muxing
- Ethernet mode
- Memory mapping

NXP Semiconductors

LPC185x/3x/2x/1x

32-bit ARM Cortex-M3 microcontroller

The LPC185x/3x/2x/1x support four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.

The LPC185x/3x/2x/1x can wake up from Deep-sleep, Power-down, and Deep power-down modes via the WAKEUP[3:0] pins and interrupts generated by battery powered blocks in the RTC power domain.

7.20.10 Code security (Code Read Protection - CRP)

CRP enables different levels of security so that access to the on-chip flash and use of the JTAG and ISP can be restricted. CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by CRP.

32-bit ARM Cortex-M3 microcontroller

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
I _{DD(IO)}	I/O supply current	deep sleep mode		-	< 0.1	-	μA
		power-down mode		-	< 0.1	-	μA
		deep power-down mode		-	< 0.1	-	μA
I _{DDA}	Analog supply current	on pin VDDA;	[9]	-	0.4	-	-
		deep sleep mode					μA
		power-down mode	[9]	-	0.4	-	μA
		deep power-down mode	[9]	-	0.007	-	μA
RESET pin					1	I	
V _{IH}	HIGH-level input voltage		[8]	$0.8 \times (V_{ps} - 0.35)$	-	5.5	V
V _{IL}	LOW-level input voltage		[8]	0	-	$0.3 \times (V_{ps} - 0.1)$	V
V _{hys}	hysteresis voltage		[8]	$\begin{array}{c} 0.05\times(V_{ps}\\-\ 0.35) \end{array}$	-	-	V
Standard I/O p	ins - normal drive strengt	th					
CI	input capacitance			-	-	2	pF
ILL	LOW-level leakage current	$V_1 = 0 V$; on-chip pull-up resistor disabled		-	3	-	nA
I _{LH}	HIGH-level leakage current	V _I = V _{DD(IO)} ; on-chip pull-down resistor disabled		-	3	-	nA
		$V_I = 5 V; T_{amb} = 25 °C$		-	0.5	-	nA
		$V_{I} = 5 V; T_{amb} = 105 °C$		-	40	-	nA
I _{OZ}	OFF-state output current	$V_O = 0 V$ to $V_{DD(IO)}$; on-chip pull-up/down resistors disabled; absolute value		-	3	-	nA
VI	input voltage	pin configured to provide a digital function:		0	-	5.5	V
		$V_{OD(IO)} \ge 2.4 \text{ V}$					
		$V_{DD(IO)} = 0 V$		0	-	3.6	V
Vo	output voltage	output active		0	-	V _{DD(IO)}	V
V _{IH}	HIGH-level input voltage			0.7 × V _{DD(IO)}	-	5.5	V
V _{IL}	LOW-level input voltage			0	-	$0.3 \times V_{DD(IO)}$	V
V _{hys}	hysteresis voltage			$0.1 \times V_{DD(IO)}$	-	-	V
V _{OH}	HIGH-level output voltage	I _{OH} = -6 mA		V _{DD(IO)} – 0.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 6 mA		-	-	0.4	V
I _{ОН}	HIGH-level output current	$V_{OH} = V_{DD(IO)} - 0.4 \text{ V}$		-6	-	-	mA

Table 11. Static characteristics ...continued

Product data sheet

32-bit ARM Cortex-M3 microcontroller

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		6	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	drive HIGH; connected to ground	[10]	-	-	87	mA
I _{OLS}	LOW-level short-circuit output current	drive LOW; connected to $V_{DD(IO)}$	[10]	-	-	77	mA
I _{pd}	pull-down current	V ₁ = 5 V	[12] [13] [14]	-	93	-	μA
I _{pu}	pull-up current	V ₁ = 0 V	[12] [13] [14]	-	-62	-	μA
		$V_{DD(IO)}$ < $V_I \le 5 V$		-	10	-	μA
R _s	series resistance	on I/O pins with analog function; analog function enabled			200		Ω
I/O pins - hig	gh drive strength						
CI	input capacitance			-	-	5.2	pF
ILL	LOW-level leakage current	$V_I = 0 V$; on-chip pull-up resistor disabled		-	3	-	nA
I _{OZ}	OFF-state output current	$V_O = 0 V$ to $V_{DD(IO)}$; on-chip pull-up/down resistors disabled; absolute value		-	3	-	nA
VI	input voltage	pin configured to provide a digital function;					
		$V_{DD(IO)} \ge 2.4 \text{ V}$		0	-	5.5	V
		$V_{DD(IO)} = 0 V$		0	-	3.6	V
Vo	output voltage	output active		0	-	V _{DD(IO)}	V
V _{IH}	HIGH-level input voltage			$0.7 \times V_{DD(IO)}$	-	5.5	V
V _{IL}	LOW-level input voltage			0	-	$0.3 \times V_{DD(IO)}$	V
V _{hys}	hysteresis voltage			$0.1 \times V_{DD(IO)}$	-	-	V
l _{pd}	pull-down current	$V_{I} = V_{DD(IO)}$	[12] [13] [14]	-	62	-	μA
I _{pu}	pull-up current	V _I = 0 V	[12] [13] [14]	-	-62	-	μΑ
		$V_{DD(IO)} < V_I \le 5 V$		-	10	-	μA

Table 11. Static characteristics ... continued $T_{orb} = -40$ °C to +105 °C, unless otherwise specified.

32-bit ARM Cortex-M3 microcontroller

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
I/O pins - high	n drive strength: ultra-high dri	ve mode		1			
ILH	HIGH-level leakage current	$V_I = V_{DD(IO)}$; on-chip pull-down resistor disabled		-	3	-	nA
		V _I = 5 V; T _{amb} = 25 °C		-	0.6	-	nA
		V _I = 5 V; T _{amb} = 105 °C		-	63	-	nA
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD(IO)} - 0.4 V$		-20	-	-	mA
I _{OL}	LOW-level output current	V _{OL} = 0.4 V		20	-	-	mA
I _{OHS}	HIGH-level short-circuit output current	drive HIGH; connected to ground	[10]	-	-	165	mA
I _{OLS}	LOW-level short-circuit output current	drive LOW; connected to $V_{DD(IO)}$	[10]	-	-	156	mA
I/O pins - hig	h-speed			1	1		1
CI	input capacitance			-	-	2	pF
ILL	LOW-level leakage current	V _I = 0 V; on-chip pull-up resistor disabled		-	3	-	nA
ILH	HIGH-level leakage current	V _I = V _{DD(IO)} ; on-chip pull-down resistor disabled		-	3	-	nA
		V _I = 5 V; T _{amb} = 25 °C		-	0.5	-	nA
		V _I = 5 V; T _{amb} = 105 °C		-	40	-	nA
I _{OZ}	OFF-state output current	$V_O = 0 V$ to $V_{DD(IO)}$; on-chip pull-up/down resistors disabled; absolute value		-	3	-	nA
VI	input voltage	pin configured to provide a digital function;					
		$V_{DD(IO)} \ge 2.4 \text{ V}$		0	-	5.5	V
		$V_{DD(IO)} = 0 V$		0	-	3.6	V
Vo	output voltage	output active		0	-	V _{DD(IO)}	V
V _{IH}	HIGH-level input voltage			$0.7 \times V_{DD(IO)}$	-	5.5	V
V _{IL}	LOW-level input voltage			0	-	$0.3 \times V_{DD(IO)}$	V
V _{hys}	hysteresis voltage			$0.1 \times V_{DD(IO)}$	-	-	V
V _{OH}	HIGH-level output voltage	I _{OH} = -8 mA		V _{DD(IO)} - 0.4	-	-	V
V _{OL}	LOW-level output voltage	I _{OL} = 8 mA		-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{OH} = V_{DD(IO)} - 0.4 V$		-8	-	-	mA

Table 11.Static characteristics ...continued $T_{omb} = -40$ °C to +105 °C. unless otherwise specified.

32-bit ARM Cortex-M3 microcontroller

10.3 Electrical pin characteristics

002aah361

0.5 V_{OL} (V)

0.6

0.4

32-bit ARM Cortex-M3 microcontroller

-40 °C

+25 °C

+85 °C

+105 °C

Conditions: $V_{DD(REG)(3V3)} = V_{DD(IO)} = 3.3$ V; normal-drive; EHD = 0x0.

LPC185X_3X_2X_1X

Conditions: $V_{DD(REG)(3V3)} = V_{DD(IO)} = 3.3 \text{ V};$ medium-drive; EHD = 0x1.

0.3

0.2

25

15

10

5

0

0

0.1

I_{OL} (mA) 20

32-bit ARM Cortex-M3 microcontroller

[9] A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system but the requirement t_{SU;DAT} = 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{r(max)} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-mode I²C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.

11.10 I²S-bus interface

Table 25. Dynamic characteristics: I²S-bus interface pins

 $T_{amb} = -40$ °C to 105 °C; 2.4 V $\leq V_{DD(REG)(3V3)} \leq 3.6$ V; 2.7 V $\leq V_{DD(IO)} \leq 3.6$ V; $C_L = 20$ pF. Conditions and data refer to I2S0 and I2S1 pins. Simulated values.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
common	to input and output						<u>.</u>
t _r	rise time			-	4	-	ns
t _f	fall time			-	4	-	ns
t _{WH}	pulse width HIGH	on pins I2Sx_TX_SCK and I2Sx_RX_SCK		36	-	-	ns
t _{WL}	pulse width LOW	on pins I2Sx_TX_SCK and I2Sx_RX_SCK		36	-	-	ns
output							
t _{v(Q)}	data output valid time	on pin I2Sx_TX_SDA	[1]	-	4.4	-	ns
		on pin I2Sx_TX_WS		-	4.3	-	ns
input							
t _{su(D)}	data input set-up time	on pin I2Sx_RX_SDA	<u>[1]</u>	-	0	-	ns
		on pin I2Sx_RX_WS			0.20		ns
t _{h(D)}	data input hold time	on pin I2Sx_RX_SDA	[1]	-	3.7	-	ns
		on pin I2Sx_RX_WS		-	3.9	-	ns

[1] Clock to the I²S-bus interface BASE_APB1_CLK = 150 MHz; peripheral clock to the I²S-bus interface PCLK = BASE_APB1_CLK / 12. I²S clock cycle time $T_{cy(clk)}$ = 79.2 ns, corresponds to the SCK signal in the I²S-bus specification.

32-bit ARM Cortex-M3 microcontroller

12. ADC/DAC electrical characteristics

Table 37. ADC characteristics

 $V_{DDA(3V3)}$ over specified ranges; $T_{amb} = -40$ °C to +105 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
VIA	analog input voltage			0	-	V _{DDA(3V3)}	V
C _{ia}	analog input capacitance			-	-	2	pF
ED	differential linearity error	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[1][2]	-	±0.8	-	LSB
		$2.4~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} < 2.7~\text{V}$		-	±1.0	-	LSB
E _{L(adj)}	integral non-linearity	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[3]	-	±0.8	-	LSB
		$2.4 \text{ V} \le \text{V}_{\text{DDA}(3V3)}$ < 2.7 V		-	±1.5	-	LSB
Eo	offset error	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[4]	-	±0.15	-	LSB
		$2.4 \text{ V} \le \text{V}_{\text{DDA}(3V3)}$ < 2.7 V		-	±0.15	-	LSB
E _G	gain error	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[5]	-	±0.3	-	%
		$2.4 \text{ V} \le \text{V}_{\text{DDA}(3V3)}$ < 2.7 V		-	±0.35	-	%
Ε _T	absolute error	$2.7~\text{V} \leq \text{V}_{\text{DDA}(3\text{V3})} \leq 3.6~\text{V}$	[6]	-	±3	-	LSB
		$2.4 \text{ V} \le \text{V}_{\text{DDA}(3V3)}$ < 2.7 V		-	±4	-	LSB
R _{vsi}	voltage source interface resistance	see Figure 40		-	-	$\begin{array}{c} 1/(7 \times f_{clk(ADC)} \times \\ C_{ia}) \end{array}$	kΩ
R _i	input resistance		[7][8]	-	-	1.2	MΩ
f _{clk(ADC)}	ADC clock frequency			-	-	4.5	MHz
f _s	sampling frequency	10-bit resolution; 11 clock cycles		-	-	400	kSamples/s
		2-bit resolution; 3 clock cycles				1.5	MSamples/s

[1] The ADC is monotonic, there are no missing codes.

- [2] The differential linearity error (E_D) is the difference between the actual step width and the ideal step width. See Figure 39.
- [3] The integral non-linearity (E_{L(adj)}) is the peak difference between the center of the steps of the actual and the ideal transfer curve after appropriate adjustment of gain and offset errors. See <u>Figure 39</u>.
- [4] The offset error (E_O) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the ideal curve. See Figure 39.
- [5] The gain error (E_G) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See <u>Figure 39</u>.
- [6] The absolute error (E_T) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC and the ideal transfer curve. See <u>Figure 39</u>.

[7] $T_{amb} = 25 \ ^{\circ}C.$

[8] Input resistance R_i depends on the sampling frequency fs: R_i = 2 k Ω + 1 / (f_s × C_{ia}).

32-bit ARM Cortex-M3 microcontroller

13.3 RTC oscillator

In the RTC oscillator circuit, only the crystal (XTAL) and the capacitances C_{RTCX1} and C_{RTCX2} need to be connected externally. Typical capacitance values for C_{RTCX1} and C_{RTCX2} are $C_{RTCX1/2} = 20$ (typical) ± 4 pF.

An external clock can be connected to RTCX1 if RTCX2 is left open. The recommended amplitude of the clock signal is $V_{i(RMS)}$ = 100 mV to 200 mV with a coupling capacitance of 5 pF to 10 pF.

13.4 XTAL and RTCX Printed Circuit Board (PCB) layout guidelines

Connect the crystal on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{X1} , C_{X2} , and C_{X3} in case of third overtone crystal usage have a common ground plane. Also connect the external components to the ground plain. To keep the noise coupled in via the PCB as small as possible, make loops and parasitics as small as possible. Choose smaller values of C_{X1} and C_{X2} if parasitics increase in the PCB layout.

Ensure no high-speed or high-drive signals are near the RTCX1/2 signals.

13.5 Standard I/O pin configuration

Figure 44 shows the possible pin modes for standard I/O pins with analog input function:

- Digital output driver enabled/disabled
- Digital input: Pull-up enabled/disabled
- Digital input: Pull-down enabled/disabled
- Digital input: Repeater mode enabled/disabled
- Digital input: Input buffer enabled/disabled
- Analog input

The default configuration for standard I/O pins is input buffer disabled and pull-up enabled. The weak MOS devices provide a drive capability equivalent to pull-up and pull-down resistors.

32-bit ARM Cortex-M3 microcontroller

14. Package outline

All information provided in this document is subject to legal disclaimers.

LPC185X 3X 2X 1X

32-bit ARM Cortex-M3 microcontroller

Table 44. Abbreviations ... continued

Acronym	Description
USART	Universal Synchronous Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
UTMI	USB 2.0 Transceiver Macrocell Interface

17. References

- [1] LPC18xx User manual UM10430: http://www.nxp.com/documents/user_manual/UM10430.pdf
- [2] LPC18xx Errata sheet: http://www.nxp.com/documents/errata_sheet/ES_LPC18XX.pdf

32-bit ARM Cortex-M3 microcontroller

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b)

20. Contact information

whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. I²C-bus — logo is a trademark of NXP B.V.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com