

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

-XF

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, LCD, POR, PWM, WDT                                 |
| Number of I/O              | 24                                                                         |
| Program Memory Size        | 14KB (8K x 14)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 256 x 8                                                                    |
| RAM Size                   | 1K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                                |
| Data Converters            | A/D 20x12b; D/A 1x5b                                                       |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 28-UFQFN Exposed Pad                                                       |
| Supplier Device Package    | 28-UQFN (4x4)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f19155-e-mv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.1 Register and Bit Naming Conventions

## 1.1.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

### 1.1.2 BIT NAMES

There are two variants for bit names:

- Short name: Bit function abbreviation
- Long name: Peripheral abbreviation + short name

#### 1.1.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits.*ShortName*. For example, the enable bit, EN, in the COG1CON0 register can be set in C programs with the instruction COG1CON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore plus the name of the register in which the bit resides to avoid naming contentions.

### 1.1.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique to the peripheral, thereby making every long bit name unique. The long bit name for the COG1 enable bit is the COG1 prefix, G1, appended with the enable bit short name, EN, resulting in the unique bit name G1EN.

Long bit names are useful in both C and assembly programs. For example, in C the COG1CON0 enable bit can be set with the G1EN = 1 instruction. In assembly, this bit can be set with the BSF COG1CON0, G1EN instruction.

## 1.1.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same register. Bit fields adhere only to the short bit naming convention. For example, the three Least Significant bits of the COG1CON0 register contain the mode control bits. The short name for this field is MD. There is no long bit name variant. Bit field access is only possible in C programs. The following example demonstrates a C program instruction for setting the COG1 to the Push-Pull mode:

COG1CON0bits.MD = 0x5;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended with the number of the bit position within the field. For example, the Most Significant mode bit has the short bit name MD2 and the long bit name is G1MD2. The following two examples demonstrate assembly program sequences for setting the COG1 to Push-Pull mode.

## EXAMPLE 1-1: ASSEMBLY SEQUENCE 1 FOR SETTING COG1 TO PUSH-PULL MODE

| MUADM | ~(1< <gimdi)< th=""></gimdi)<>             |
|-------|--------------------------------------------|
| ANDWF | COG1CON0,F                                 |
| MIVON | 1< <g1md2 1<<g1md0<="" td=""  =""></g1md2> |
| LORWF | COG1CON0,F                                 |

#### EXAMPLE 1-2: ASSEMBLY SEQUENCE 2 FOR SETTING COG1 TO PUSH-PULL MODE

| BSF | COG1CON0,G1MD2 |
|-----|----------------|
| BCF | COG1CON0,G1MD1 |
| BSF | COG1CON0,G1MD0 |

## 1.1.3 REGISTER AND BIT NAMING EXCEPTIONS

## 1.1.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits are contained in registers that span more than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short name variant.

## 1.1.3.2 Legacy Peripherals

There are some peripherals that do not strictly adhere to these naming conventions. Peripherals that have existed for many years and are present in almost every device are the exceptions. These exceptions were necessary to limit the adverse impact of the new conventions on legacy code. Peripherals that do adhere to the new convention will include a table in the registers section indicating the long name prefix for each peripheral instance. Peripherals that fall into the exception category will not have this table. These peripherals include, but are not limited to, the following:

- EUSART
- MSSP

| Name                                                                              | Function               | Input Type       | Output<br>Type | Description                                            |
|-----------------------------------------------------------------------------------|------------------------|------------------|----------------|--------------------------------------------------------|
| RC0/T1CKI <sup>(1)</sup> /SMTWIN1 <sup>(1)</sup> /IOCC0/SOSCO                     | RC0                    | TTL/ST           | CMOS/OD        | General purpose I/O.                                   |
|                                                                                   | T1CKI <sup>(1)</sup>   | —                | _              | Timer1 clock input.                                    |
|                                                                                   | SMTWIN1 <sup>(1)</sup> | _                | _              | SMT window input.                                      |
|                                                                                   | IOCC0                  | TTL/ST           | _              | Interrupt-on-change input.                             |
|                                                                                   | SOSCO                  | #VALUE!          | AN             | 32.768 kHz secondary oscillator crystal driver output. |
| RC1/T4IN <sup>(1)</sup> /SMTSIG1 <sup>(1)</sup> /CCP2 <sup>(1)</sup> /IOCC1/SOSCI | RC1                    | TTL/ST           | CMOS/OD        | General purpose I/O.                                   |
|                                                                                   | T4IN <sup>(1)</sup>    | -                | —              | Timer4 external input.                                 |
|                                                                                   | SMTSIG1 <sup>(1)</sup> | -                | _              | SMT signal input.                                      |
|                                                                                   | CCP2 <sup>(1)</sup>    | _                | _              | CCP Capture Input.                                     |
|                                                                                   | IOCC1                  | TTL/ST           | _              | Interrupt-on-change input.                             |
|                                                                                   | SOSCI                  |                  | —              | 32.768 kHz secondary oscillator crystal driver input.  |
| RC2/CCP1 <sup>(1)</sup> /IOCC2/ANC2/SEG18/COM2                                    | RC2                    | TTL/ST           | CMOS/OD        | General purpose I/O.                                   |
|                                                                                   | CCP1 <sup>(1)</sup>    | —                | _              | CCP Capture Input.                                     |
|                                                                                   | IOCC2                  | TTL/ST           | _              | Interrupt-on-change input.                             |
|                                                                                   | ANC2                   | AN               | _              | ADC Channel input.                                     |
|                                                                                   | SEG18                  | _                | AN             | LCD Analog output.                                     |
|                                                                                   | COM2                   | _                | AN             | LCD Driver Common Outputs.                             |
| RC3/T2IN/SCL <sup>(3,4)</sup> /SCK <sup>(1)</sup> /SEG19                          | RC3                    | TTL/ST           | CMOS/OD        | General purpose I/O.                                   |
|                                                                                   | T2IN <sup>(1)</sup>    | _                | —              | Timer2 external input.                                 |
|                                                                                   | SCL <sup>(3,4)</sup>   | l <sup>2</sup> C | OD             | MSSP I <sup>2</sup> Cclock input/output.               |
|                                                                                   | SCK <sup>(1)</sup>     | TTL/ST           | _              | MSSP SPI clock input/output                            |
|                                                                                   | IOCC3                  | TTL/ST           | _              | Interrupt-on-change input.                             |
|                                                                                   | ANC3                   | AN               | _              | ADC Channel input.                                     |
|                                                                                   | SEG19                  | _                | AN             | LCD Analog output.                                     |
| RC4/SDA <sup>(3,4)</sup> /SDI <sup>(1)</sup> /IOCC4/ANC4/SEG20                    | RC4                    | TTL/ST           | CMOS/OD        | General purpose I/O.                                   |
|                                                                                   | SDA <sup>(3,4)</sup>   | TTL/ST           | _              | MSSP I <sup>2</sup> C data input/output.               |
|                                                                                   | SDI <sup>(1)</sup>     | I <sup>2</sup> C | OD             | MSSP SPI serial data in.                               |
|                                                                                   | IOCC4                  | TTL/ST           | _              | Interrupt-on-change input.                             |
|                                                                                   | ANC4                   | AN               | _              | ADC Channel input.                                     |
|                                                                                   | SEG20                  | _                | AN             | LCD Analog output.                                     |
| RC6/CK1 <sup>(3)</sup> /TX1 <sup>(1)</sup> /IOCC6/ANC6/SEG22/COM5/VLCD2           | RC6                    | TTL/ST           | CMOS/OD        | General purpose I/O.                                   |
|                                                                                   | CK1 <sup>(3)</sup>     | -                | —              | EUSART synchronous clock out                           |
|                                                                                   | TX1 <sup>(1)</sup>     | _                | —              | EUSART asynchronous TX data out                        |
|                                                                                   | IOCC6                  | TTL/ST           | _              | Interrupt-on-change input.                             |
|                                                                                   | ANC6                   | AN               | _              | ADC Channel input.                                     |
|                                                                                   | SEG22                  |                  | AN             | LCD Analog output.                                     |
|                                                                                   | COM5                   |                  | AN             | LCD Driver Common Outputs.                             |
|                                                                                   | VLCD2                  | AN               | _              | LCD analog input                                       |
| Legend: AN = Analog input or output CMOS =                                        | CMOS compati           | ble input or out | tput OD = O    | Dpen-Drain                                             |

#### **TABLE 1-2:** PIC16(L)F19155/56 PINOUT DESCRIPTION (CONTINUED)

Legend:

CMOS = CMOS compatible input or output OD = Open-Drain

ST = Schmitt Trigger input with CMOS levels  $I^2C$  = Schmitt Trigger input with  $I^2C$ TTL = TTL compatible input HV = High Voltage XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 14-2 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as 2: described in Table 14-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I<sup>2</sup>C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I<sup>2</sup>C specific or SMBus input buffer thresholds. 4:

| FIGURE 10-2:        | INTEF                              | RUPT LAT                              | ENCY                                        |                                     |                                       |                |                              |
|---------------------|------------------------------------|---------------------------------------|---------------------------------------------|-------------------------------------|---------------------------------------|----------------|------------------------------|
|                     |                                    |                                       |                                             |                                     |                                       |                | Rev. 10-000269E<br>8/31/2016 |
| OSC1 ∕\<br>Q1       |                                    |                                       |                                             |                                     | V V V V V V V V V V V V V V V V V V V |                |                              |
|                     |                                    |                                       |                                             |                                     |                                       |                |                              |
| INT<br>pin          | Vali                               | d Interrupt I<br>indow <sup>(1)</sup> | 1 Cycle I                                   | nstruction a                        | it PC                                 |                |                              |
| Fetch               | PC - 1                             | PC i                                  | PC + 1                                      | X                                   | PC = 0x0004                           | PC = 0x0005    | PC = 0x0006                  |
| Execute             | PC - 21                            | PC - 1                                | PC                                          | NOP                                 | NOP                                   | PC = 0x0004    | PC = 0x0005                  |
|                     | Ind<br>L                           | leterminate<br>.atency <sup>(2)</sup> |                                             | Latency                             | •                                     |                |                              |
| Note 1: Ar<br>2: Si | n interrupt may<br>ince an interru | occur at any ti<br>ot may occur a     | me during the in the internet time during t | nterrupt window<br>he interrupt win | dow, the actual lat                   | ency can vary. |                              |



|                                                                                                            |                                                                                                                                                   |                  | _    |              |                  |                  |             |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|--------------|------------------|------------------|-------------|
| R/W-0/0                                                                                                    | ) U-0                                                                                                                                             | U-0              | U-0  | U-0          | U-0              | R/W-0/0          | R/W-0/0     |
| CRIE                                                                                                       |                                                                                                                                                   |                  |      |              |                  | CCP2IE           | CCP1IE      |
| bit 7                                                                                                      |                                                                                                                                                   |                  |      |              |                  |                  | bit 0       |
| ·                                                                                                          |                                                                                                                                                   |                  |      |              |                  |                  |             |
| Legend:                                                                                                    |                                                                                                                                                   |                  |      |              |                  |                  |             |
| R = Reada                                                                                                  | ble bit                                                                                                                                           | W = Writable     | bit  | U = Unimplei | mented bit, read | d as '0'         |             |
| u = Bit is u                                                                                               | nchanged                                                                                                                                          | x = Bit is unkr  | nown | -n/n = Value | at POR and BO    | R/Value at all o | ther Resets |
| '1' = Bit is s                                                                                             | set                                                                                                                                               | '0' = Bit is cle | ared | HS = Hardwa  | are set          |                  |             |
| bit 7<br>bit 6-2                                                                                           | bit 7 CRIE: Clock Recovery Interrupt Enable bit<br>1 = Clock Recovery interrupt is enabled<br>0 = Clock Recovery interrupt is disabled<br>bit 6 2 |                  |      |              |                  |                  |             |
| bit 1                                                                                                      | bit 1 CCP2IE: CCP2 Interrupt Enable bit<br>1 = CCP2 interrupt is enabled<br>0 = CCP2 interrupt is disabled                                        |                  |      |              |                  |                  |             |
| bit 0 CCP1IE: CCP1 Interrupt Enable bit<br>1 = CCP1 interrupt is enabled<br>0 = CCP1 interrupt is disabled |                                                                                                                                                   |                  |      |              |                  |                  |             |
| Note:                                                                                                      | <b>Note:</b> Bit PEIE of the INTCON register must be set to enable any peripheral interrupt controlled by registers PIE1-PIE8.                    |                  |      |              |                  |                  |             |

## REGISTER 10-8: PIE6: PERIPHERAL INTERRUPT ENABLE REGISTER 6

| Name   | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3  | Bit 2     | Bit 1     | Bit 0   | Register<br>on Page |
|--------|--------|--------|--------|--------|--------|-----------|-----------|---------|---------------------|
| INTCON | GIE    | PEIE   | _      | —      | —      | —         | _         | INTEDG  | 164                 |
| PIE0   | _      | _      | TMR0IE | IOCIE  | —      | —         | _         | INTE    | 165                 |
| PIE1   | OSFIE  | CSWIE  | -      | -      | —      | —         | ADTIE     | ADIE    | 166                 |
| PIE2   | -      | ZCDIE  |        | -      | —      | —         | C2IE      | C1IE    | 167                 |
| PIE3   | RC2IE  | TX2IE  | RC1IE  | TX1IE  | —      | —         | BCL1IE    | SSP1IE  | 168                 |
| PIE4   | _      | —      | _      | _      | TMR4IE | —         | TMR2IE    | TMR1IE  | 169                 |
| PIE5   | CLC4IE | CLC3IE | CLC2IE | CLC1IE | —      | —         | —         | TMR1GIE | 170                 |
| PIE6   | CRIE   | —      | -      | _      | —      | —         | CCP2IE    | CCP1IE  | 171                 |
| PIE7   | _      | —      | NVMIE  | _      | —      | —         | —         | CWG1IE  | 172                 |
| PIE8   | LCDIE  | RTCCIE | -      | _      | —      | SMT1PWAIE | SMT1PRAIE | SMT1IE  | 173                 |
| PIR0   | _      | —      | TMR0IF | IOCIF  | —      | —         | —         | INTF    | 174                 |
| PIR1   | OSFIF  | CSWIF  |        | -      | _      | _         | ADTIF     | ADIF    | 175                 |
| PIR2   | -      | ZCDIF  |        | -      | —      | —         | C2IF      | C1IF    | 176                 |
| PIR3   | RC2IF  | TX2IF  | RC1IF  | TX1IF  | —      | —         | BCL1IF    | SSP1IF  | 177                 |
| PIR4   | _      | _      | _      | _      | TMR4IF | —         | TMR2IF    | TMR1IF  | 178                 |
| PIR5   | CLC4IF | CLC3IF | CLC2IF | CLC1IF | —      | —         | _         | TMR1GIF | 179                 |
| PIR6   | CRIF   | —      | _      | _      | —      | —         | CCP2IF    | CCP1IF  | 180                 |
| PIR7   | _      | —      | NVMIF  | —      | —      | —         | —         | CWG1IF  | 181                 |
| PIR8   | LCDIF  | RTCCIF | _      | _      | _      | SMT1PWAIF | SMT1PRAIF | SMT1IF  | 182                 |

## TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

**Legend:** — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

## 11.2.3.2 Peripheral Usage in Sleep

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Windowed Watchdog Timer (WWDT)
- External interrupt pin/interrupt-on-change pins
- Timer1 (with external clock source)

It is the responsibility of the end user to determine what is acceptable for their application when setting the VREGPM settings in order to ensure operation in Sleep.

| Note: | The PIC16LF19155/56/75/76/85/86 does not have a configurable Low-Power Sleep |
|-------|------------------------------------------------------------------------------|
|       | mode. PIC16LF19155/56/75/76/85/86 is                                         |
|       | an unregulated device and is always in the                                   |
|       | lowest power state when in Sleep, with no                                    |
|       | wake-up time penalty. This device has a                                      |
|       | lower maximum VDD and I/O voltage than                                       |
|       | the PIC16F19155/56/75/76/85/86. See                                          |
|       | Section 39.0 "Electrical                                                     |
|       | Specifications" for more information.                                        |

## 11.3 IDLE Mode

When the Idle Enable (IDLEN) bit is clear (IDLEN = 0), the SLEEP instruction will put the device into full Sleep mode (see Section 11.2 "Sleep Mode"). When IDLEN is set (IDLEN = 1), the SLEEP instruction will put the device into IDLE mode. In IDLE mode, the CPU and memory operations are halted, but the peripheral clocks continue to run. This mode is similar to DOZE mode, except that in IDLE both the CPU and PFM are shut off.

| Note: | Peripherals using Fosc will continue      |
|-------|-------------------------------------------|
|       | running while in Idle (but not in Sleep). |
|       | Peripherals using HFINTOSC,               |
|       | LFINTOSC, or SOSC will continue           |
|       | running in both Idle and Sleep.           |

**Note:** If CLKOUT is enabled (CLKOUT = 0, Configuration Word 1), the output will continue operating while in Idle.

## 11.3.0.1 Idle and Interrupts

IDLE mode ends when an interrupt occurs (even if GIE = 0), but IDLEN is not changed. The device can re-enter IDLE by executing the SLEEP instruction.

If Recover-on-Interrupt is enabled (ROI = 1), the interrupt that brings the device out of Idle also restores full-speed CPU execution when doze is also enabled.

## 11.3.0.2 Idle and WWDT

When in IDLE, the WWDT Reset is blocked and will instead wake the device. The WWDT wake-up is not an interrupt, therefore ROI does not apply.

Note: The WWDT can bring the device out of IDLE, in the same way it brings the device out of Sleep. The DOZEN bit is not affected.

| R/W-x/u          | R/W-x/u                                                   | R/W-x/u           | R/W-x/u | R/W-x/u                                               | U-0 | R/W-x/u | R/W-x/u |  |
|------------------|-----------------------------------------------------------|-------------------|---------|-------------------------------------------------------|-----|---------|---------|--|
| LATE7            | LATE6                                                     | LATE5             | LATE4   | LATE3                                                 | —   | LATE1   | LATE0   |  |
| bit 7            |                                                           |                   |         |                                                       |     |         | bit 0   |  |
|                  |                                                           |                   |         |                                                       |     |         |         |  |
| Legend:          |                                                           |                   |         |                                                       |     |         |         |  |
| R = Readable bit |                                                           | W = Writable bit  |         | U = Unimplemented bit, read as '0'                    |     |         |         |  |
| u = Bit is unch  | anged                                                     | x = Bit is unkn   | nown    | -n/n = Value at POR and BOR/Value at all other Resets |     |         |         |  |
| '1' = Bit is set |                                                           | '0' = Bit is clea | ared    |                                                       |     |         |         |  |
|                  |                                                           |                   |         |                                                       |     |         |         |  |
| bit 7-3          | LATE<7:3>: RE<7:3> Output Latch Value bits <sup>(1)</sup> |                   |         |                                                       |     |         |         |  |
| bit 2            | Unimplemented: Read as '0'                                |                   |         |                                                       |     |         |         |  |
| bit 1-0          | LATE<1:0>: RE<1:0> Output Latch Value bits <sup>(1)</sup> |                   |         |                                                       |     |         |         |  |

### **REGISTER 14-35: LATE: PORTE DATA LATCH REGISTER**

Note 1: Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.

### **REGISTER 14-36: ANSELE: PORTE ANALOG SELECT REGISTER**

allow external control of the voltage on the pin.

| R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | R/W-1/1 | U-0 | R/W-1/1 | R/W-1/1 |
|---------|---------|---------|---------|---------|-----|---------|---------|
| ANSE7   | ANSE6   | ANSE5   | ANSE4   | ANSE3   | —   | ANSE1   | ANSE0   |
| bit 7   |         |         |         |         |     |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7-3 | <ul> <li>ANSE&lt;7:3&gt;: Analog Select between Analog or Digital Function on pins RE&lt;7:3&gt;, respectively</li> <li>1 = Analog input. Pin is assigned as analog input<sup>(1)</sup>. Digital input buffer disabled.</li> <li>0 = Digital I/O. Pin is assigned to port or digital special function.</li> </ul> |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 2   | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                                        |
| bit 1-0 | <ul> <li>ANSE&lt;1:0&gt;: Analog Select between Analog or Digital Function on pins RE&lt;1:0&gt;, respectively</li> <li>1 = Analog input. Pin is assigned as analog input<sup>(1)</sup>. Digital input buffer disabled.</li> <li>0 = Digital I/O. Pin is assigned to port or digital special function.</li> </ul> |
| Note 1: | When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to                                                                                                                                                                                                           |

© 2017 Microchip Technology Inc.

| Name   | Bit 7 | Bit 6 | Bit 5 | Bit 4       | Bit 3       | Bit 2       | Bit 1 | Bit 0 | Register on page |  |
|--------|-------|-------|-------|-------------|-------------|-------------|-------|-------|------------------|--|
| RD1PPS | -     | _     | _     |             |             | RD1PPS<4:02 | >     |       | 265              |  |
| RD2PPS | _     | _     | _     |             |             | RD2PPS<4:0  | >     |       | 265              |  |
| RD3PPS | _     | _     | _     |             |             | RD3PPS<4:0  | >     |       | 265              |  |
| RD4PPS | _     | _     |       |             |             | RD4PPS<4:0  | >     |       | 265              |  |
| RD5PPS | _     | _     |       |             |             | RD5PPS<4:0  | >     |       | 265              |  |
| RD6PPS | _     | _     |       |             |             | RD6PPS<4:0  | >     |       | 265              |  |
| RD7PPS | _     | _     |       |             |             | RD7PPS<4:0  | >     |       | 265              |  |
| RE0PPS | _     | _     |       |             |             | RE0PPS<4:0  | >     |       | 265              |  |
| RE1PPS | _     | _     |       |             |             | RE1PPS<4:0  | >     |       | 265              |  |
| RE2PPS | _     | _     |       |             |             | RE2PPS<4:0  | >     |       | 265              |  |
| RF0PPS | _     | _     |       |             |             | RF0PPS<4:0> | >     |       | 265              |  |
| RF1PPS | _     | _     |       |             |             | RF1PPS<4:0  | >     |       | 265              |  |
| RF2PPS | _     | _     |       |             |             | RF2PPS<4:0  | >     |       | 265              |  |
| RF3PPS | —     | _     | -     |             | RF3PPS<4:0> |             |       |       |                  |  |
| RF4PPS | —     | _     | -     | RF4PPS<4:0> |             |             |       |       | 265              |  |
| RF5PPS | _     | _     | _     | RF5PPS<4:0> |             |             |       |       | 265              |  |
| RF6PPS | _     | _     | _     |             | RF6PPS<4:0> |             |       |       |                  |  |
| RF7PPS | _     | _     | _     |             |             | RF7PPS<4:0  | >     |       | 265              |  |

## TABLE 15-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.



## 21.4 Operation During Sleep

The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected.

## 21.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DAC10UT1/2 pins.
- The DAC1R<4:0> range select bits are cleared.

| REGISTER 22-2: | CMxCON1: COMPARATOR Cx CONTROL REGISTER 1 |
|----------------|-------------------------------------------|
|----------------|-------------------------------------------|

| U-0                                     | U-0                                                                  | U-0 | U-0 | U-0                                                   | U-0 | R/W-0/0 | R/W-0/0 |  |  |  |
|-----------------------------------------|----------------------------------------------------------------------|-----|-----|-------------------------------------------------------|-----|---------|---------|--|--|--|
| —                                       | _                                                                    | —   | —   | _                                                     | —   | INTP    | INTN    |  |  |  |
| bit 7 bit 0                             |                                                                      |     |     |                                                       |     |         |         |  |  |  |
|                                         |                                                                      |     |     |                                                       |     |         |         |  |  |  |
| Legend:                                 | Legend:                                                              |     |     |                                                       |     |         |         |  |  |  |
| R = Readable                            | R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' |     |     |                                                       |     |         |         |  |  |  |
| u = Bit is unchanged x = Bit is unknown |                                                                      |     |     | -n/n = Value at POR and BOR/Value at all other Resets |     |         |         |  |  |  |
| '1' = Bit is set '0' = Bit is cleared   |                                                                      |     |     |                                                       |     |         |         |  |  |  |

| bit 7-2<br>bit 1 | Unimplemented: Read as '0'<br>INTP: Comparator Interrupt on Positive-Going Edge Enable bits                                                                                                                                                                         |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | <ul> <li>1 = The CxIF interrupt flag will be set upon a positive-going edge of the CxOUT bit</li> <li>0 = No interrupt flag will be set on a positive-going edge of the CxOUT bit</li> </ul>                                                                        |
| bit 0            | <ul> <li>INTN: Comparator Interrupt on Negative-Going Edge Enable bits</li> <li>1 = The CxIF interrupt flag will be set upon a negative-going edge of the CxOUT bit</li> <li>0 = No interrupt flag will be set on a negative-going edge of the CxOUT bit</li> </ul> |

## 27.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)
- Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.





## 31.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 31.9 "CWG Steering Mode"**.





## 31.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWG1CLKCON register.

| Name     | Bit 7    | Bit 6    | Bit 5                               | Bit 4       | Bit 3          | Bit 2    | Bit 1       | Bit 0    | Register<br>on Page |  |  |
|----------|----------|----------|-------------------------------------|-------------|----------------|----------|-------------|----------|---------------------|--|--|
| INTCON   | GIE      | PEIE     | —                                   | —           | —              | —        | —           | INTEDG   | 164                 |  |  |
| PIR5     | CLC4IF   | CLC3IF   | CLC2IF                              | CLC1IF      | _              | _        | _           | TMR1GIF  | 179                 |  |  |
| PIE5     | CLC4IE   | CLC4IE   | CLC2IE                              | CLC1IE      | _              | _        | _           | TMR1GIE  | 170                 |  |  |
| CLC1CON  | LC1EN    | _        | LC10UT                              | LC1INTP     | LC1INTN        |          | LC1MODE<2:0 | >        | 501                 |  |  |
| CLC1POL  | LC1POL   | _        | _                                   | _           | LC1G4POL       | LC1G3POL | LC1G2POL    | LC1G1POL | 502                 |  |  |
| CLC1SEL0 | _        | _        |                                     |             | LC1D           | 1S<5:0>  |             |          | 503                 |  |  |
| CLC1SEL1 | _        | _        |                                     |             | LC1D           | 2S<5:0>  |             |          | 503                 |  |  |
| CLC1SEL2 | _        | _        |                                     |             | LC1D           | 3S<5:0>  |             |          | 503                 |  |  |
| CLC1SEL3 | _        | _        |                                     |             | LC1D           | 4S<5:0>  |             |          | 504                 |  |  |
| CLC1GLS0 | LC1G1D4T | LC1G1D4N | LC1G1D3T                            | LC1G1D3N    | LC1G1D2T       | LC1G1D2N | LC1G1D1T    | LC1G1D1N | 505                 |  |  |
| CLC1GLS1 | LC1G2D4T | LC1G2D4N | LC1G2D3T                            | LC1G2D3N    | LC1G2D2T       | LC1G2D2N | LC1G2D1T    | LC1G2D1N | 506                 |  |  |
| CLC1GLS2 | LC1G3D4T | LC1G3D4N | LC1G3D3T                            | LC1G3D3N    | LC1G3D2T       | LC1G3D2N | LC1G3D1T    | LC1G3D1N | 507                 |  |  |
| CLC1GLS3 | LC1G4D4T | LC1G4D4N | LC1G4D3T                            | LC1G4D3N    | LC1G4D2T       | LC1G4D2N | LC1G4D1T    | LC1G4D1N | 508                 |  |  |
| CLC2CON  | LC2EN    | _        | LC2OUT LC2INTP LC2INTN LC2MODE<2:0> |             |                |          | >           | 501      |                     |  |  |
| CLC2POL  | LC2POL   | _        | _                                   | _           | LC2G4POL       | LC2G3POL | LC2G2POL    | LC2G1POL | 502                 |  |  |
| CLC2SEL0 | _        | _        |                                     | LC2D1S<5:0> |                |          |             |          |                     |  |  |
| CLC2SEL1 | _        | _        |                                     | LC2D2S<5:0> |                |          |             |          |                     |  |  |
| CLC2SEL2 | _        | _        |                                     | LC2D3S<5:0> |                |          |             |          |                     |  |  |
| CLC2SEL3 | _        | _        |                                     |             | LC2D           | 4S<5:0>  |             |          | 504                 |  |  |
| CLC2GLS0 | LC2G1D4T | LC2G1D4N | LC2G1D3T                            | LC2G1D3N    | LC2G1D2T       | LC2G1D2N | LC2G1D1T    | LC2G1D1N | 505                 |  |  |
| CLC2GLS1 | LC2G2D4T | LC2G2D4N | LC2G2D3T                            | LC2G2D3N    | LC2G2D2T       | LC2G2D2N | LC2G2D1T    | LC2G2D1N | 506                 |  |  |
| CLC2GLS2 | LC2G3D4T | LC2G3D4N | LC2G3D3T                            | LC2G3D3N    | LC2G3D2T       | LC2G3D2N | LC2G3D1T    | LC2G3D1N | 507                 |  |  |
| CLC2GLS3 | LC2G4D4T | LC2G4D4N | LC2G4D3T                            | LC2G4D3N    | LC2G4D2T       | LC2G4D2N | LC2G4D1T    | LC2G4D1N | 508                 |  |  |
| CLC3CON  | LC3EN    | _        | LC3OUT                              | LC3INTP     | <b>LC3INTN</b> |          | LC3MODE<2:0 | >        | 501                 |  |  |
| CLC3POL  | LC3POL   | _        | _                                   | _           | LC3G4POL       | LC3G3POL | LC3G2POL    | LC3G1POL | 502                 |  |  |
| CLC3SEL0 | _        | _        |                                     |             | LC3D           | 1S<5:0>  |             |          | 503                 |  |  |
| CLC3SEL1 | _        | _        |                                     |             | LC3D           | 2S<5:0>  |             |          | 503                 |  |  |
| CLC3SEL2 | _        | _        |                                     |             | LC3D           | 3S<5:0>  |             |          | 503                 |  |  |
| CLC3SEL3 | _        | _        |                                     |             | LC3D           | 4S<5:0>  |             |          | 504                 |  |  |
| CLC3GLS0 | LC3G1D4T | LC3G1D4N | LC3G1D3T                            | LC3G1D3N    | LC3G1D2T       | LC3G1D2N | LC3G1D1T    | LC3G1D1N | 505                 |  |  |
| CLC3GLS1 | LC3G2D4T | LC3G2D4N | LC3G2D3T                            | LC3G2D3N    | LC3G2D2T       | LC3G2D2N | LC3G2D1T    | LC3G2D1N | 506                 |  |  |
| CLC3GLS2 | LC3G3D4T | LC3G3D4N | LC3G3D3T                            | LC3G3D3N    | LC3G3D2T       | LC3G3D2N | LC3G3D1T    | LC3G3D1N | 507                 |  |  |
| CLC3GLS3 | LC3G4D4T | LC3G4D4N | LC3G4D3T                            | LC3G4D3N    | LC3G4D2T       | LC3G4D2N | LC3G4D1T    | LC3G4D1N | 508                 |  |  |
| CLC4CON  | LC4EN    | _        | LC4OUT                              | LC4INTP     | LC4INTN        |          | LC4MODE<2:0 | >        | 501                 |  |  |
| CLC4POL  | LC4POL   | _        | _                                   | _           | LC4G4POL       | LC4G3POL | LC4G2POL    | LC4G1POL | 502                 |  |  |
| CLC4SEL0 |          | _        |                                     |             | LC4D           | 1S<5:0>  |             |          | 503                 |  |  |
| CLC4SEL1 | _        | —        |                                     |             | LC4D           | 2S<5:0>  |             |          | 503                 |  |  |
| CLC4SEL2 |          | —        |                                     |             | LC4D           | 3S<5:0>  |             |          | 503                 |  |  |
| CLC4SEL3 |          | —        |                                     |             | LC4D           | 4S<5:0>  |             |          | 504                 |  |  |
| CLC4GLS0 | LC4G1D4T | LC4G1D4N | LC4G1D3T                            | LC4G1D3N    | LC4G1D2T       | LC4G1D2N | LC4G1D1T    | LC4G1D1N | 505                 |  |  |

## TABLE 32-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.







## 35.13 LCD Interrupts

The LCD timing generation provides an interrupt that defines the LCD frame timing. This interrupt can be used to coordinate the writing of the pixel data with the start of a new frame, which produces a visually crisp transition of the image.

This interrupt can also be used to synchronize external events to the LCD. For example, the interface to an external segment driver can be synchronized for segment data updates to the LCD frame.

A new frame is defined as beginning at the leading edge of the COM0 common signal. The interrupt will be set immediately after the LCD controller completes accessing all pixel data required for a frame. This will occur at a fixed interval before the frame boundary (TFINT), as shown in Figure 35-20.

The LCD controller will begin to access the next frame between the interrupt and when the controller accesses the data (TFWR). New data must be written within TFWR, as this is when the LCD controller will begin to access the data for the next frame. When the LCD driver is running with Type-B waveforms, and the LMUX<3:0> bits are not equal to '0001', the following issues may arise.

Since the DC voltage on the pixel takes two frames to maintain 0V, the pixel data must not change between subsequent frames. If the pixel data were allowed to change, the waveform for the odd frames would not necessarily be the complement of the waveform generated in the even frames and a DC component would be introduced into the panel.

Because of this, using Type-B waveforms requires synchronizing the LCD pixel updates to occur within a subframe after the frame interrupt.

To correctly sequence writing in Type-B, the interrupt only occurs on complete phase intervals. If the user attempts to write when the write is disabled, the WERR bit (LCDCON<5>) is set.

**Note:** The interrupt is not generated when the Type-A waveform is selected and when the Type-B with no multiplex (static) is selected.

FIGURE 35-20: EXAMPLE WAVEFORMS AND INTERRUPT TIMING IN QUARTER DUTY CYCLE DRIVE



| LSLF             | Logical Left Shift                                                                                                                                                                                                                  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ]LSLF f{,d}                                                                                                                                                                                                          |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in \left[ 0,1 \right] \end{array}$                                                                                                                                                       |
| Operation:       | $(f<7>) \rightarrow C$<br>$(f<6:0>) \rightarrow dest<7:1>$<br>$0 \rightarrow dest<0>$                                                                                                                                               |
| Status Affected: | C, Z                                                                                                                                                                                                                                |
| Description:     | The contents of register 'f' are shifted<br>one bit to the left through the Carry flag.<br>A '0' is shifted into the LSb. If 'd' is '0',<br>the result is placed in W. If 'd' is '1', the<br>result is stored back in register 'f'. |
|                  |                                                                                                                                                                                                                                     |

| С | ◀ | register f | • | -0 |
|---|---|------------|---|----|
|   |   |            |   |    |

| LSRF             | Logical Right Shift                                                                                                                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ]LSRF f{,d}                                                                                                                                                                                                           |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                                                                                    |
| Operation:       | $\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$                                                                                                         |
| Status Affected: | C, Z                                                                                                                                                                                                                                 |
| Description:     | The contents of register 'f' are shifted<br>one bit to the right through the Carry<br>flag. A '0' is shifted into the MSb. If 'd' is<br>'0', the result is placed in W. If 'd' is '1',<br>the result is stored back in register 'f'. |
|                  | 0→ register f → C                                                                                                                                                                                                                    |

| MOVF             | Move f                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] MOVF f,d                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                                                                                                                                |  |  |  |  |  |
| Operation:       | $(f) \rightarrow (dest)$                                                                                                                                                                                                                                                         |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Description:     | The contents of register f is moved to<br>a destination dependent upon the<br>status of d. If $d = 0$ , destination is W<br>register. If $d = 1$ , the destination is file<br>register f itself. $d = 1$ is useful to test a<br>file register since status flag Z is<br>affected |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Cycles:          | 1                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Example:         | MOVF FSR, 0                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                  | After Instruction<br>W = value in FSR register<br>Z = 1                                                                                                                                                                                                                          |  |  |  |  |  |

© 2017 Microchip Technology Inc.

| Address | Name | Bit 7  | Bit 6         | Bit 5  | Bit 4   | Bit 3   | Bit 2     | Bit 1     | Bit 0   | Register<br>on page |  |
|---------|------|--------|---------------|--------|---------|---------|-----------|-----------|---------|---------------------|--|
| 68Dh    | _    |        | Unimplemented |        |         |         |           |           |         |                     |  |
| 68Eh    | _    |        | Unimplemented |        |         |         |           |           |         |                     |  |
| 68Fh    | -    |        |               |        | Unimple | emented |           |           |         |                     |  |
| 690h    | _    |        |               |        | Unimple | emented |           |           |         |                     |  |
| 691h    | —    |        | Unimplemented |        |         |         |           |           |         |                     |  |
| 692h    | —    |        | Unimplemented |        |         |         |           |           |         |                     |  |
| 693h    |      |        |               |        | Unimple | emented |           |           |         |                     |  |
| 694h    | —    |        | Unimplemented |        |         |         |           |           |         |                     |  |
| 695h    |      |        |               |        | Unimple | emented |           |           |         |                     |  |
| 696h    |      |        |               |        | Unimple | emented |           |           |         |                     |  |
| 697h    | —    |        |               |        | Unimpl  | emented |           |           |         |                     |  |
| 698h    |      |        |               |        | Unimpl  | emented |           |           |         |                     |  |
| 699h    |      |        |               |        | Unimple | emented |           |           |         |                     |  |
| 69An    |      |        | Unimplemented |        |         |         |           |           |         |                     |  |
| 69Ch    |      |        | Unimplemented |        |         |         |           |           |         |                     |  |
| 690h    |      |        |               |        |         |         |           |           |         |                     |  |
| 69Eh    |      |        |               |        |         |         |           |           |         |                     |  |
| 69Fh    |      |        |               |        | Unimpl  | emented |           |           |         |                     |  |
| 70Ch    | PIR0 | _      | _             | TMR0IF | IOCIF   | _       | _         | _         | INTF    | 174                 |  |
| 70Dh    | PIR1 | OSEIE  | CSWIF         | _      |         | _       | _         | ADTIF     | ADIF    | 175                 |  |
| 70Eh    | PIR2 | _      | ZCDIF         |        | _       | _       | _         | C2IF      | C1IF    | 176                 |  |
| 70Fh    | PIR3 | RC2IF  | TX2IF         | RC1IF  | TX1IF   | _       | _         | BCL1IF    | SSP1IF  | 177                 |  |
| 710h    | PIR4 | _      | _             | _      | —       | TMR4IF  | _         | TMR2IF    | TMR1IF  | 178                 |  |
| 711h    | PIR5 | CLC4IF | CLC3IF        | CLC2IF | CLC1IF  | _       | _         | _         | TMR1GIF | 179                 |  |
| 712h    | PIR6 | CRIF   | _             | _      | _       | _       | _         | CCP2IF    | CCP1IF  | 180                 |  |
| 713h    | PIR7 | _      | _             | NVMIF  | _       | _       | _         | _         | CWG1IF  | 181                 |  |
| 714h    | PIR8 | LCDIF  | RTCCIF        | -      | _       | _       | SMT1PWAIF | SMT1PRAIF | SMT1IF  | 182                 |  |
| 715h    | _    |        |               |        | Unimpl  | emented | •         | •         | •       |                     |  |
| 716h    | PIE0 | —      | _             | TMR0IE | IOCIE   | —       | —         | _         | INTE    | 165                 |  |
| 717h    | PIE1 | OSFIE  | CSWIE         | _      | —       | —       | _         | ADTIE     | ADIE    | 166                 |  |
| 718h    | PIE2 | _      | ZCDIE         |        | _       | _       | _         | C2IE      | C1IE    | 167                 |  |
| 719h    | PIE3 | RC2IE  | TX2IE         | RC1IE  | TX1IE   | —       | _         | BCL1IE    | SSP1IE  | 168                 |  |
| 71Ah    | PIE4 | —      | _             | _      | —       | TMR4IF  | —         | TMR2IE    | TMR1IE  | 169                 |  |
| 71Bh    | PIE5 | CLC4IE | CLC3IE        | CLC2IE | CLC1IE  | —       | -         | —         | TMR1GIE | 170                 |  |
| 71Ch    | PIE6 | CRIE   | _             | _      | —       | —       | _         | CCP2IE    | CCP1IE  | 171                 |  |
| 71Dh    | PIE7 | _      | —             | NVMIE  | —       | —       | —         | —         | CWG1IE  | 172                 |  |
| 71Eh    | PIE8 | LCDIE  | RTCCIE        | _      | _       | _       | SMT1PWAIE | SMT1PRAIE | SMT1IE  | 173                 |  |
| 71Fh    | _    |        |               |        | Unimple | emented |           |           |         |                     |  |

## TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend:

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.