

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19155-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Complementary Waveform Generator (CWG):
 - Rising and falling edge dead-band control
 - Full-bridge, half-bridge, 1-channel drive
 Multiple signal sources
- Two Capture/Compare/PWM (CCP) module
- Two 10-Bit PWMs
- Peripheral Pin Select (PPS):
- Enables pin mapping of digital I/O
- Communication:
 - Two EUSART, RS-232, RS-485, LIN compatible
 - One SPI/I²C, SMBus, PMBus™ compatible
- Up to 43 I/O Pins:
 - Individually programmable pull-ups
 - Slew rate control
 - Interrupt-on-change with edge-select
 - Input level selection control (ST or TTL)
 - Digital open-drain enable

Analog Peripherals

- Analog-to-Digital Converter with Computation (ADC²):
 - 12-bit with up to 39 external channels
 - Automates math functions on input signals: averaging, filter calculations, oversampling and threshold comparison
 - Conversion available during Sleep
- Two Comparators:
 - (1) Low-Power Clocked Comparator
 - (1) High-Speed Comparator
 - Fixed Voltage Reference at (non)inverting input(s)
 - Comparator outputs externally accessible
- 5-Bit Digital-to-Analog Converter (DAC):
 - 5-bit resolution, rail-to-rail
 - Positive Reference Selection
 - Unbuffered I/O pin output
 - Internal connections to ADCs and comparators
- Voltage Reference:
 - Fixed Voltage Reference with 1.024V, 2.048V and 4.096V output levels
- Zero-Cross Detect Module:
 - AC high-voltage zero-crossing detection for simplifying TRIAC control
 - Synchronized switching control and timing

Flexible Oscillator Structure

- High-Precision Internal Oscillator:
 - Active Clock Tuning of HFINTOSC over voltage and temperature (ACT)
 - Selectable frequency range up to 32 MHz ±1% typical
- x2/x4 PLL with Internal and External Sources
- Low-Power Internal 31 kHz Oscillator (LFINTOSC)
- External 32 kHz Crystal Oscillator (SOSC)
 - Oscillator Start-up Timer (OST)Ensures stability of crystal oscillator source
- External Oscillator Block with:
- Three external clock modes up to 32 MHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripherals clock stops

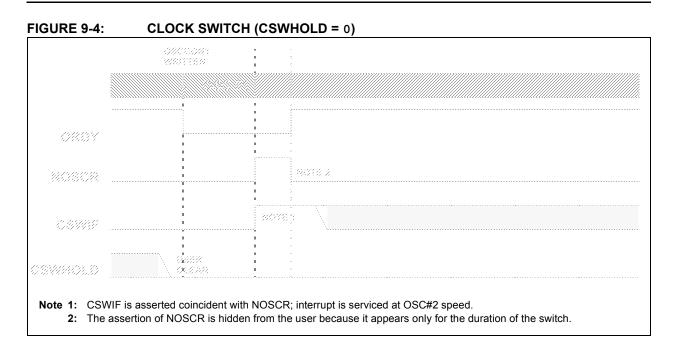
8.15 Power Control (PCON) Registers

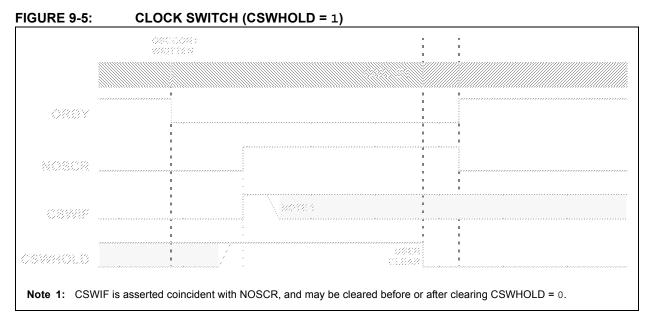
The Power Control (PCON) registers contain flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Timer Window Violation Reset
 (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)
- Memory Violation Reset (MEMV)
- VBAT Reset (VBATBOR)

The PCON0 register bits are shown in Register 8-2.

The PCON1 register bits are shown in Register 8-3.


Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-4).


Software should reset the bit to the inactive state after the restart (hardware will not reset the bit).

Software may also set any PCON bit to the active state, so that user code may be tested, but no reset action will be generated.

All bits in PCON1 and PCON0 will maintain their state when either VDD or VBAT is powered.

PIC16(L)F19155/56/75/76/85/86

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	_
bit 7							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
 bit 7 EXTOEN: External Oscillator Manual Request Enable bit 1 = EXTOSC is explicitly enabled, operating as specified by FEXTOSC 0 = EXTOSC could be enabled by another module 							
bit 6	bit 6 HFOEN: HFINTOSC Oscillator Manual Request Enable bit 1 = HFINTOSC is explicitly enabled, operating as specified by OSCFRQ 0 = HFINTOSC could be enabled by another module						
bit 5	1 = MFINTC	NTOSC Oscilla SC is explicitly SC could be e	enabled		bit		
bit 4 LFOEN: LFINTOSC (31 kHz) Oscillator Manual Request Enable bit 1 = LFINTOSC is explicitly enabled 0 = LFINTOSC could be enabled by another module							
bit 3 SOSCEN: Secondary (Timer1) Oscillator Manual Request bit 1 = Secondary oscillator is explicitly enabled, operating as specified by SOSCPWR 0 = Secondary oscillator could be enabled by another module							
bit 2	1 = FRC is e	COscillator Ma explicitly enable uld be enabled	ed				
bit 1-0							

REGISTER 9-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0
bit 7		•		•			bit 0
Legend:							

REGISTER 14-3: LATA: PORTA DATA LATCH REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 LATA<7:6>: RA<7:6> Output Latch Value bit	s ⁽¹⁾
---	------------------

bit 5 **Unimplemented:** Read as '0'

bit 4-0 LATA<4:0>: RA<4:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 14-4: ANSELA: PORTA ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSA7	ANSA6	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **ANSA<7:6>**: Analog Select between Analog or Digital Function on pins RA<7:6>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

bit 5 Unimplemented: Read as '0'

bit 4-0 **ANSA<4:0>**: Analog Select between Analog or Digital Function on pins RA<4:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	229
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	229
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	230
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	230
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	231
ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	231
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	232
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	232
HIDRVB	_	_		—	—	—	HIDB1	—	232

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

18.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. An output of 3.072V is also available as a voltage source to drive the LCD segments. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- ADC positive reference
- Comparator positive and negative input
- 5-Bit Digital-to-Analog Converter (DAC1)
- · LCD Voltage Source to drive the LCD segments

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

Note: Fixed Voltage Reference output cannot exceed VDD.

18.1 Independent Gain Amplifiers

The output of the FVR, which is connected to the ADC, comparators, and DAC, is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels. In addition, a 3x mode is also available to run the LCD module. The user must set the FVREN bit of the FVRCON register along with setting the LCD, LCDVSRC<3:0> of the LCDVCON2 register to 0b0011.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 19.0 "Analog-to-Digital Converter with Computation (ADC2) Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference Section 21.0 "5-Bit Digital-to-Analog Converter (DAC1) Module" and Section 22.0 "Comparator Module" for additional information.

18.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize.

FVRRDY is an indicator of the reference being ready. If an LF device, or the BOR enabled then FVRRDY will be high prior to setting FVREN as those module require the reference voltage.

18.3 Register Definitions: FVR Control

REGISTER 18-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFVI	R<1:0>
bit 7							bit 0

Legend:	abla bit		$11 - 11$ minutes and a bit $r_{2} = 1 - 1 - 1$			
R = Read		W = Writable bit	U = Unimplemented bit, read as '0'			
	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is	set	'0' = Bit is cleared	q = Value depends on condition			
bit 7	1 = Fixed	ixed Voltage Reference Enal Voltage Reference is enable Voltage Reference is disable	d ⁽⁴⁾			
bit 6	1 = Fixed	Fixed Voltage Reference Re Voltage Reference output is Voltage Reference output is	ready for use			
bit 5	1 = Temp	nperature Indicator Enable b erature Indicator is enabled erature Indicator is disabled	it ⁽³⁾			
bit 4	1 = Temp	emperature Indicator Range erature in High Range erature in Low Range	Selection bit ⁽³⁾			
bit 3-2	11 = Com 10 = Com 01 = Com	C1:0>: Comparator FVR Buffer parator FVR Buffer Gain is 4 parator FVR Buffer Gain is 2 parator FVR Buffer Gain is 1 parator FVR Buffer is off	x, (4.096∨) ⁽²⁾ x, (2.048∨) ⁽²⁾			
bit 1-0	ADFVR<1:0>: ADC FVR Buffer Gain Selection bit 11 = ADC FVR Buffer Gain is 4x, $(4.096V)^{(2)}$ 10 = ADC FVR Buffer Gain is 2x, $(2.048V)^{(2)}$ 01 = ADC FVR Buffer Gain is 1x, $(1.024V)$ 00 = ADC FVR Buffer is off					
Note 1: 2: 3: 4:	Fixed Voltage F See Section 20	Reference output cannot exce	56/75/76/85/86 devices only. eed VDD. Module (TIM)" for additional information.			

© 2017 Microchip Technology Inc.

REGISTER 19-30: ADERRL: ADC SETPOINT ERROR LOW BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
ERR<7:0>							
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

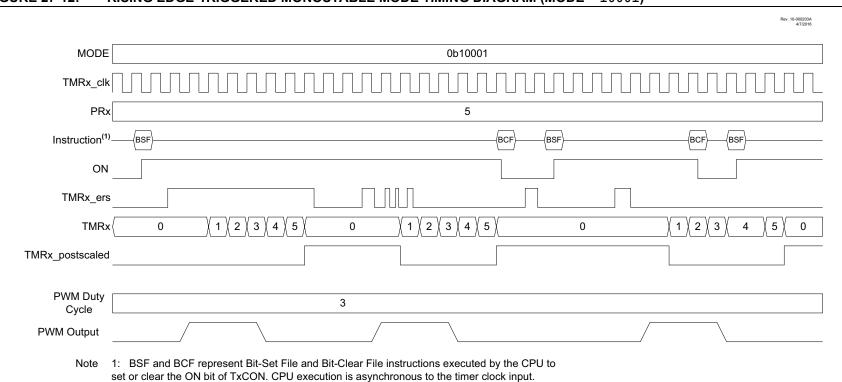
bit 7-0 **ERR<7:0>**: ADC Setpoint Error LSB. Lower byte of ADC Setpoint Error calculation is determined by ADCALC bits of ADCON3, see Register 19-4 for more details.

REGISTER 19-31: ADLTHH: ADC LOWER THRESHOLD HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
LTH<15:8>											
bit 7 bit											

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **LTH<15:8>**: ADC Lower Threshold MSB. LTH and UTH are compared with ERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.


REGISTER 19-32: ADLTHL: ADC LOWER THRESHOLD LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
LTH<7:0>											
bit 7											

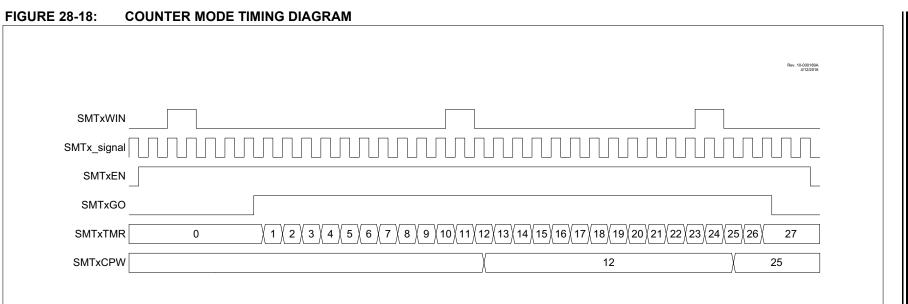
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **LTH<7:0>**: ADC Lower Threshold LSB. LTH and UTH are compared with ERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

© 2017 Microchip Technology Inc.

PIC16(L)F19155/56/75/76/85/86

FIGURE 27-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)


B 44 6 15	B 444 6 15	D B B B B B B B B B B	B # 4 / 6 / 7	B B B B B B B B B B	D # M A / A	B # 4 / 6 / 6	D M M M			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
PSYNC ^{(1, 2}	²⁾ CKPOL ⁽³⁾	CKSYNC ^(4, 5)		Ν	/IODE<4:0> ^{(6, 7})				
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable b	it	U = Unimplen	nented bit, read	l as '0'				
u = Bit is un	changed	x = Bit is unkno	wn	-n/n = Value a	at POR and BO	R/Value at all	other Resets			
'1' = Bit is s	et	'0' = Bit is clear	ed							
bit 7	PSYNC: Tim	ner2/4 Prescaler S	Synchronizati	on Enable bit ^{(1,}	2)					
		Prescaler Output is								
		Prescaler Output is	•							
bit 6		ner2/4 Clock Pola	•							
	Ų	dge of input clock clocks timer/prescaler dge of input clock clocks timer/prescaler								
	•	•		•						
bit 5		imer2/4 Clock Sy								
			ter bit is synchronized to TMR2_clk input ter bit is not synchronized to TMR2_clk input							
bit 4-0	-	: Timer2/4 Contro								
DIL 4-0	See Table 27									
	•	nsures that reading	•		alue.					
2:	When this bit is	'1', Timer2/4 canr	not operate in	Sleep mode.						
3:	CKPOL should r	not be changed w	hile ON = 1.							
4:	Setting this bit e	nsures glitch-free	operation wh	nen the ON is e	nabled or disab	led.				
5:	When this bit is s	set then the timer of	operation will	be delayed by t	wo TMRx input	clocks after the	e ON bit is set.			
	Unless otherwise ing the value of	e indicated, all mo TMRx).	odes start upo	n ON = 1 and st	top upon ON =	0 (stops occur	without affect-			
7.										

REGISTER 27-3: TxHLT: TIMER2/4 HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
—	—	—			SSEL<4:0>							
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d bit, read as '0'						
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets					
'1' = Bit is se	et	'0' = Bit is cle	eared	q = Value dep	ends on condi	tion						
bit 7-5	Unimplem	ented: Read as	'0'									
bit 4-0	SSEL<4:0>	SMTx Signal S	Selection bits									
	11111 = R	11111 = Reserved										
	•											
	•											
	10001 = R	eserved										
		TCC_Seconds										
	01111 = C	LC4OUT										
	01110 = C											
	01101 = C											
	01100 = C 01011 = Z											
	01011 = 2											
	01001 = C											
	01000 = P'											
	00111 = P											
	00110 = C											
	00101 = C											
		00100 = TMR4_postscaler 00011 = TMR2 postscaler										
		VIR1 overflow										
		MR0_overflow										
	00000 = S	MTSIG pin										

REGISTER 28-6: SMTxSIG: SMTx SIGNAL INPUT SELECT REGISTER

28.7.11 WINDOWED COUNTER MODE

Windowed Counter mode counts pulses on the SMTx_signal input, within a window dictated by the SMTxWIN input. It begins counting upon seeing a rising edge of the SMTxWIN input, updates the SMTxCPW register on a falling edge of the SMTxWIN input, and updates the SMTxCPR register on each rising edge of the SMTxWIN input beyond the first. See Figure 28-21 and Figure 28-22.

33.4.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDA is held valid after the falling edge of SCL. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

TABLE 33-1:	I ² C BUS TERMS
-------------	----------------------------

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDA and SCL lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/\overline{W} bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCL low to stall communication.
Bus Collision	Any time the SDA line is sampled low by the module while it is out- putting and expected high state.

33.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 33-12 shows wave forms for Start and Stop conditions.

33.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

Note:	At least one SCL low time must appear
	before a Stop is valid, therefore, if the SDA
	line goes low then high again while the SCL
	line stays high, only the Start condition is
	detected.

33.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 33-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

33.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

		SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc	: = 3.686	4 MHz	Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207		
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51		
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25		
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_		
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5		
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_		
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	_	_	_		
115.2k	_		_	_	_	_	115.2k	0.00	1	_	—	_		

TABLE 34-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215		
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303		
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151		
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287		
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264		
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143		
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47		
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23		

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832		
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207		
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103		
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25		
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23		
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12		
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_		
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	_	_		

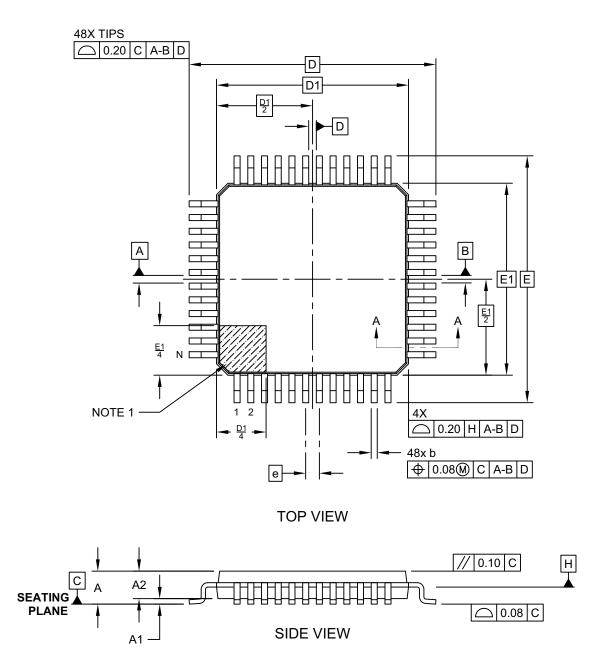
PIC16(L)F19155/56/75/76/85/86

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
C0Ch	RTCCON	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	_	RTCCLK	SEL<1:0>	357
C0Dh	RTCCAL				C	AL				358
C0Eh	ALRMCON	ALRMEN	CHIME		AMASI	<<3:0>		_	_	361
C0Fh	ALRMRPT				A	RPT				361
C10h	YEAR		YEARH<3:0> YEARL<3:0>						358	
C11h	MONTH	-	_	—	MONTHH	MONTHL<3:0>			358	
C12h	WEEKDAY	_	_	_	_	_		WDAY<2:0>		359
C13h	DAY	_	_	DAY	H<1:0>		DA	YL<3:0>		359
C14h	HOURS	_	_	HRI	H<1:0>		HF	L<3:0>		359
C15h	MINUTES	_		MINH<2:0>			MI	NL<3:0>		360
C16h	SECONDS	_		SECH<2:0>			SE	CL<3:0>		360
C17h	ALRMMTH	_	_	-	ALRMH- MONTH		ALRMLN	10NTH <3:0>		362
C18h	ALRMWD	—	_	_	—	_		ALRMLWDAY<2:0)>	362
C19h	ALRMDAY	—	_	ALRMH	IDAY<1:0>		MONTHL<3:0>			362
C1Ah	ALRMHR	—	_	ALRM	HR<1:0>					363
C1Bh	ALRMMIN	—	/	ALRMHMIN<2:0)>	ALRMLMIN<3:0>				363
C1Ch	ALRMSEC	—	ŀ	ALRMHSEC<2:	0>	ALRMLSEC<3:0>				363
C1Dh	_				Unimp	emented				
C1Eh	_		Unimplemented							
C1Fh	_		Unimplemented							
C8Ch	_		Unimplemented							
C8Dh	_		Unimplemented							
C8Eh	_		Unimplemented							
C8Fh	_		·							
C90h	_			Unimplemented Unimplemented						
C91h	_					emented				
C92h	_					emented				
C93h	_					emented				
C94h	_					emented				
C95h	_				Unimp	emented				
C96h	_					emented				
C97h	_				Unimp	emented				
C98h	_					emented				
C99h	_					emented				
C9Ah	_				Unimp	emented				
C9Bh	_					emented				
C9Ch	_					emented				
C9Dh	_				Unimp	emented				
C9Eh	_				•	emented				
C9Fh	_					emented				
D0Ch					· ·					
— D1Fh	_				Unimp	emented				
D8Ch	_				Unimp	emented				
D9Fh					-			haded locations u		

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

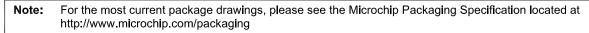
Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: Unimplemented data memory locations, read as '0'.

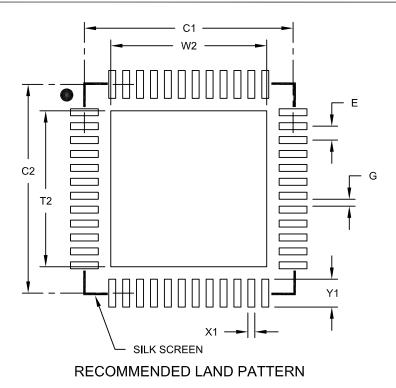
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
E0Ch										
— E1Fh	_				Unimpl	emented				
E8Ch	VB0GPR				VBC	GPR				
E8Dh	VB1GPR		VB1GPR							
E8Eh	VB2GPR	VB2GPR								
E8Fh	VB3GPR	VB3GPR								
E90h	_	Unimplemented								
E91h	_				Unimpl	emented				
E92h	_				Unimpl	emented				
E93h	—				Unimpl	emented				
E94h	_				Unimpl	emented				
E95h	_				Unimpl	emented				
E96h	_				Unimpl	emented				
E97h	—				Unimpl	emented				
E98h	—		Unimplemented							
E99h	—		Unimplemented							
E9Ah	—		Unimplemented							
E9Bh	—		Unimplemented							
E9Ch	—		Unimplemented							
E9Dh	_		Unimplemented							
E9Eh	_	Unimplemented								
E9Fh	_		Unimplemented							
F0Ch		Linimplemented								
 1C9Fh	_	Unimplemented								
1D0Ch	LCDCON	LCDEN	SLPEN	WERR	CS		LMU	X<3:0>		622
1D0Dh	LCDPS	WFT	_	LCDA	WA		LP<3:0>			623
1D0Eh	LCDSE0	SE07	SE06	SE05	SE04	SE03	SE02	SE01	SE00	624
1D0Fh	LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE09	SE08	624
1D10h	LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	624
1D11h	LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	624
1D12h	LCDSE4	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32	624
1D13h	LCDSE5	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	624
1D14h	LCDVCON1	LPEN	EN5V			_		BIAS<2:0>		625
1D15h	LCDVCON2		_			LCDVSRC3	LCDVSRC2	LCDVSRC1	LCDVSRC0	626
1D16h	LCDREF	_	—	_	—	_		LCDCST<2:0>		628
1D17h	LCDRL	LRLA	\P<1:0>	LRLE	3P<1:0>	LCDIRI	LRLAT<2:0>			627
1D18h	LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	624
1D19h	LCDDATA1	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	624
1D1Ah	LCDDATA2	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	624
1D1Bh	LCDDATA3	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0	624
1D1Ch	LCDDATA4	S39C0	S38C0	S37C0	S36C0	S35C0	S34C0	S33C0	S32C0	624
1D1Dh	LCDDATA5	_	_	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0	624
1D1Eh	LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	624
1D1Fh	LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	624
Legend:					= unimplemented					read as '0'


TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

 Legend:
 x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

 Note
 1:
 Unimplemented data memory locations, read as '0'.


48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimensio	Dimension Limits			MAX
Contact Pitch	E		0.40 BSC	
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A