

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19155-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 19											
				CPU	CORE REGISTERS	; see Table 4-3 for	specifics				
98Ch	_				Unimplei	mented					
98Dh	—				Unimplei	nented					
98Eh	—				Unimplei	nented					
98Fh	CMOUT	—		—	—	—	—	MC2OUT	MC10UT	0000 0000	0000 0000
990h	CM1CON0	ON	OUT	—	POL	—	—	HYS	SYNC	00-000	00-000
991h	CM1CON1	—		—	—	—	—	INTP	INTN	0000 0000	0000 0000
992h	CM1NSEL	—		—	—	—		NCH<2:0>		0000 0000	0000 0000
992h		—		—	—	—	NCH2	NCH1	NCH0	0000 0000	0000 0000
993h	CM1PSEL	—		—	—		PCF	1<3:0>		0000 0000	0000 0000
993h		—		_	—	—	PCH2	PCH1	PCH0	0000 0000	0000 0000
994h	CM2CON0	ON	OUT	—	POL	—	—	HYS	SYNC	00-000	00-000
995h	CM2CON1	—	_	—	—	—	—	INTP	INTN	0000 0000	0000 0000
996h	CM2NSEL	—	_	—	—	—		NCH<2:0>		0000 0000	0000 0000
996h		—	_	—	—	—	NCH2	NCH1	NCH0	0000 0000	0000 0000
997h	CM2PSEL	—	_	—	—	—		PCH<2:0>		0000 0000	0000 0000
997h		—	_	—	—	—	PCH2	PCH1	PCH0	0000 0000	0000 0000
998h	—				Unimplei	mented					
999h	—				Unimplei	mented					
99Ah	—				Unimplei	mented					
99Bh	—				Unimplei	mented					
99Ch	—				Unimplei	mented					
99Dh	—				Unimplei	mented					
99Eh	—				Unimplei	mented					
99Fh	—				Unimplei	mented					

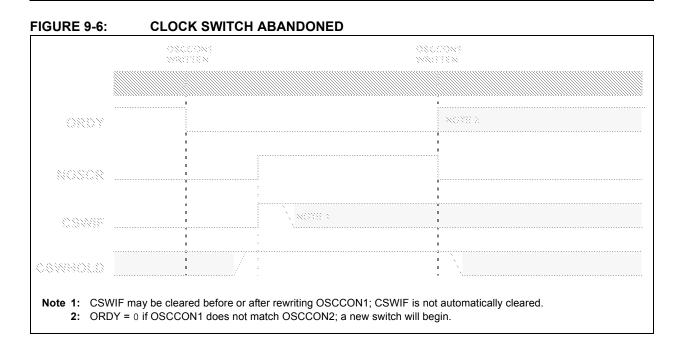
TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

			1			. ,				,	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Banks 30-5	Sanks 30-57										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
F0Ch — 1C9Fh	_				Unimpler	nented					
Legend:	x = unknown, u	= unchanged, g	= depends on cor	ndition, - = unimple	emented, read as '0',	r = reserved. Sh	aded locations un	implemented, rea	ad as '0'.		


Note 1: Unimplemented data memory locations, read as '0'.

1	TABLE 4	4-12: SPEC	IAL FUNC	FION REGIST	ER SUMMA	RY BANKS 0-	63 PIC16(L)	F19155/56/7	5/76/85/86 (CONTINUED)	
	Addroop	Nomo	Dit 7	Dit 6	Dit E	Dit 4	Dit 2	Dit 2	Dit 1	Rit 0	Value on:	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 61 (C	Bank 61 (Continued)										
1EE5h	—				Unimpler	nented					
1EE6h	—				Unimpler	nented					
1EE7h	—				Unimpler	nented					
1EE8h	_		Unimplemented								
1EE9h	—				Unimpler	nented					
1EEAh	—				Unimpler	nented					
1EEBh	—				Unimpler	nented					
1EECh	—				Unimpler	nented					
1EEDh	—				Unimpler	nented					
1EEEh	_				Unimpler	nented					
1EEFh	_				Unimpler	nented					
1											

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0
		TMR0IF	IOCIF	_	_	_	INTF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is :	set	'0' = Bit is clea	ared	HS= Hardwa	re Set		
bit 7-6	Unimplemer	nted: Read as 'o)'				
bit 5		er0 Overflow In					
		register has ove register did not		t be cleared in	software)		
bit 4	IOCIF: Interr	upt-on-Change	Interrupt Flag	bit (read-only)	(2)		
		more of the IOC d by the IOC mo		gister bits are o	currently set, ind	icating an ena	bled edge was
		f the IOCAF-IOC		oits are current	ly set		
bit 3-1	Unimplemer	nted: Read as 'o)'				
bit 0	INTF: INT EX	ternal Interrupt	Flag bit ⁽¹⁾				
		Γexternal interru Γexternal interru	•	•	ed in software)		
2:	The External Inter The IOCIF bit is the application firmwa	ne logical OR of	all the IOCAF	-IOCEF flags.	Therefore, to cl		flag,

REGISTER 10-11:	PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0
-----------------	--

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O
- pinsCurrent draw from pins with internal weak
- pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Any module with a clock source that is not Fosc can be enabled. Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 21.0 "5-Bit Digital-to-Analog Converter (DAC1) Module", Section 18.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

11.2.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled.
- 2. BOR Reset, if enabled.
- 3. POR Reset.
- 4. Watchdog Timer, if enabled.
- 5. Any external interrupt.
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information).

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 8.14 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WWDT is cleared when the device wakes-up from Sleep, regardless of the source of wake-up.

EXAMPLE 13-1: PFM PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
    PROG_ADDR_HI : PROG_ADDR_LO
    data will be returned in the variables;
*
    PROG_DATA_HI, PROG_DATA_LO
    BANKSELNVMADRL; Select Bank for NVMCON registersMOVLWPROG_ADDR_LO;MOVWFNVMADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWFNVMADRH; Store MSB of address
             NVMCON1,NVMREGS ; Do not select Configuration Space
    BCF
                NVMCON1, RD
    BSF
                                      ; Initiate read
    MOVF
                 NVMDATL,W
                                        ; Get LSB of word
                NVMDATL,W; Get LSB of wordPROG_DATA_LO; Store in user locationNVMDATH,W; Get MSB of wordPROG_DATA_HI; Store in user location
    MOVWF
    MOVF
    MOVWF
```

EXAMPLE 13-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY (PFM)

; This sampl	e row erase routine as	sumes the following:
; 1.A valid	address within the era	se row is loaded in variables ADDRH:ADDRL
; 2.ADDRH an	nd ADDRL are located in	x common RAM (locations $0x70 - 0x7F$)
BANKSEL	NVMADRL	
MOVF	ADDRL,W	
MOVWF	NVMADRL	; Load lower 8 bits of erase address boundary
MOVF	ADDRH,W	_
MOVWF	NVMADRH	; Load upper 6 bits of erase address boundary
BCF	NVMCON1, NVMREGS	; Choose PFM memory area
BSF	NVMCON1, FREE	; Specify an erase operation
BSF	NVMCON1,WREN	; Enable writes
BCF	INTCON,GIE	; Disable interrupts during unlock sequence
;	F	EOUIRED UNLOCK SEQUENCE:
		~ ~
MOVLW	55h	; Load 55h to get ready for unlock sequence
MOVWF	NVMCON2	; First step is to load 55h into NVMCON2
MOVLW	AAh	; Second step is to load AAh into W
MOVWF	NVMCON2	; Third step is to load AAh into NVMCON2
BSF	NVMCON1,WR	; Final step is to set WR bit
;		
2.22		
BSF		; Re-enable interrupts, erase is complete
BCF	NVMCON1,WREN	; Disable writes

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY (PFM)

; This write routine assumes the following:

; 1.3	32 bytes of d	ata are loaded, startir	ng at the address in DATA_ADDR
; 2.E	Each word of	data to be written is m	nade up of two adjacent bytes in DATA_ADDR,
; 5	stored in lit	tle endian format	
; 3. <i>I</i>	A valid start	ing address (the least	significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. <i>1</i>	ADDRH and ADD	RL are located in commo	on RAM (locations 0x70 - 0x7F)
; 5.1	WM interrupt	s are not taken into ac	count
	BANKSEL	NVMADRH	
	MOVF	ADDRH, W	
	MOVWF	NVMADRH	; Load initial address
	MOVF	ADDRL,W	
	MOVWF	NVMADRL	
	MOVLW	LOW DATA ADDR	; Load initial data address
	MOVWF	FSR0L	
	MOVLW	HIGH DATA_ADDR	
	MOVWF	FSR0H	
	BCF	NVMCON1, NVMREGS	; Set Program Flash Memory as write location
	BSF	NVMCON1, WREN	; Enable writes
	BSF	NVMCON1, LWLO	; Load only write latches
LOOP	MONTH	ECDO	
	MOVIW	FSR0++	· Trad Street date in the
	MOVWF	NVMDATL	; Load first data byte
	MOVIW MOVWF	FSR0++ NVMDATH	; Load second data byte
			/ Houd Second data byte
	MOVF	NVMADRL,W	· Charle if lower bits of address and 00000
	XORLW	0x1F	; Check if lower bits of address are 00000 ; and if on last of 32 addresses
	ANDLW BTFSC	0x1F	; Last of 32 words?
	GOTO	STATUS,Z START_WRITE	; If so, go write latches into memory
	CALL INCF	UNLOCK_SEQ	; If not, go load latch ; Increment address
	GOTO	NVMADRL, F LOOP	, increment address
	0010		
START	_WRITE		
	BCF	NVMCON1,LWLO	; Latch writes complete, now write memory
	CALL	UNLOCK_SEQ	; Perform required unlock sequence
	BCF	NVMCON1,WREN	; Disable writes
UNLOCI	K_SEQ		
	MOVLW	55h	
	BCF	INTCON, GIE	; Disable interrupts
	MOVWF	NVMCON2	; Begin unlock sequence
	MOVLW	AAh	
	MOVWF	NVMCON2	
	BSF	NVMCON1,WR	
	BSF	INTCON,GIE	; Unlock sequence complete, re-enable interrupts
	return		

R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0		
IOCCF7	IOCCF6		IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HS - Bit is set	t in hardware				
bit 7-6		•	0	ORTC Flag bits					
		ed change was IOCCPx = 1 a			pin d on RCx, or wh	nen IOCCNx =	1 and a falling		

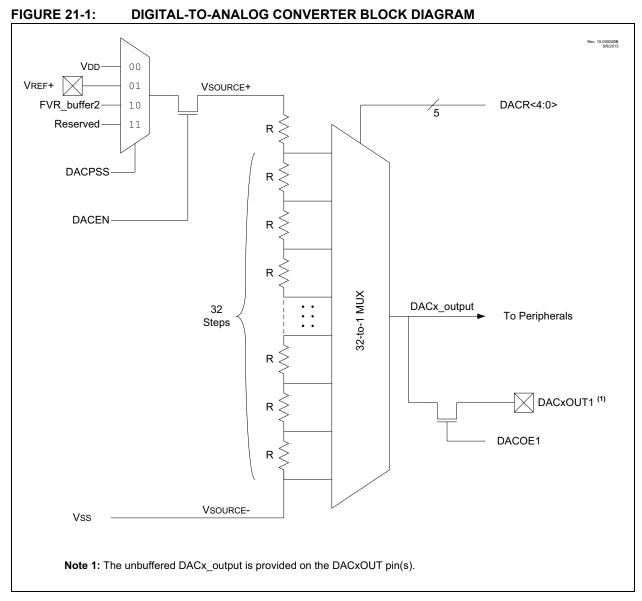
	edge was detected on RCx.
	0 = No change was detected, or the user cleared the detected change
bit 5	Unimplemented: Read as '0'
bit 4-0	IOCCF<4:0>: Interrupt-on-Change PORTC Flag bits 1 = An enabled change was detected on the associated pin
	Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.

^{0 =} No change was detected, or the user cleared the detected change

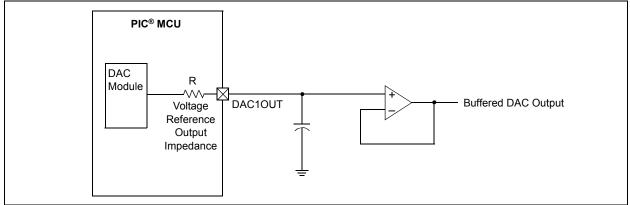
REGISTER 17-10: IOCEP: INTERRUPT-ON-CHANGE PORTE POSITIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	U-0	U-0		
—	—	—	—	IOCEP3 ⁽¹⁾	—	—	—		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware


bit 3 IOCEP3: Interrupt-on-Change PORTE Positive Edge Enable bit

1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCEFx bit and IOCIF flag will be set upon detecting an edge.


0 = Interrupt-on-Change disabled for the associated pin

bit 2-0 Unimplemented: Read as '0'

Note 1: If MCLRE = 1 or LVP = 1, RC port functionality is disabled and IOC is not available on RE3.

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

© 2017 Microchip Technology Inc.

21.4 Operation During Sleep

The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected.

21.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled.
- DAC output voltage is removed from the DAC10UT1/2 pins.
- The DAC1R<4:0> range select bits are cleared.

B 44 6 15	B 444 6 15	D B B B B B B B B B B	B # 4 / 6 / 7	B B B B B B B B B B	D # M A / A	B # 4 / 6 / 6	D M M M			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
PSYNC ^{(1, 2}	²⁾ CKPOL ⁽³⁾	CKSYNC ^(4, 5)		Ν	/IODE<4:0> ^{(6, 7})				
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable b	= Writable bit U = Unimplemented bit, read as '0'							
u = Bit is un	changed	x = Bit is unkno	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Rese							
'1' = Bit is s	et	'0' = Bit is clear	ed							
bit 7	PSYNC: Tim	ner2/4 Prescaler S	Synchronizati	on Enable bit ^{(1,}	2)					
		Prescaler Output is								
		Prescaler Output is	•							
bit 6		ner2/4 Clock Pola	•							
	 1 = Falling edge of input clock clocks timer/prescaler 0 = Rising edge of input clock clocks timer/prescaler 									
	•	•		•						
bit 5		imer2/4 Clock Sy								
		ster bit is synchro ster bit is not sync								
bit 4-0	-	: Timer2/4 Contro								
DIL 4-0	See Table 27									
	•	nsures that reading	•		alue.					
2:	When this bit is	'1', Timer2/4 canr	not operate in	Sleep mode.						
3:	CKPOL should r	not be changed w	hile ON = 1.							
4:	Setting this bit e	nsures glitch-free	es glitch-free operation when the ON is enabled or disabled.							
5:	When this bit is s	set then the timer of	operation will	be delayed by t	wo TMRx input	clocks after the	e ON bit is set.			
	Unless otherwise ing the value of	e indicated, all mo TMRx).	des start upo	n ON = 1 and st	top upon ON =	0 (stops occur	without affect-			
7.										

REGISTER 27-3: TxHLT: TIMER2/4 HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

28.7.7 TIME OF FLIGHT MEASURE MODE

Time of Flight Measure mode measures the time interval between a rising edge on the SMTWINx input and a rising edge on the SMTx_signal input, beginning to increment the timer upon observing a rising edge on the SMTWINx input, while updating the SMTxCPR register and resetting the timer upon observing a rising edge on the SMTx_signal input. In the event of two SMTWINx rising edges without an SMTx_signal rising edge, it will update the SMTxCPW register with the current value of the timer and reset the timer value. See Figure 28-14 and Figure 28-15.

32.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE5 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR5 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

32.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

32.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

32.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

32.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 32-2).
- Clear any associated ANSEL bits.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE5 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

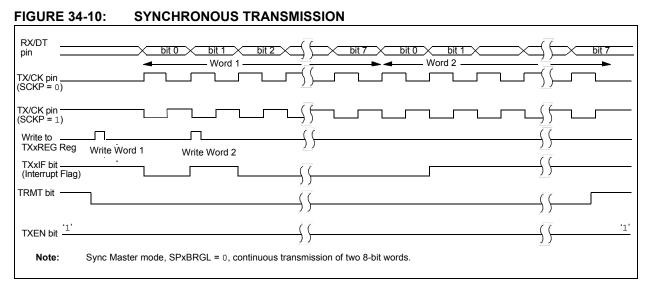
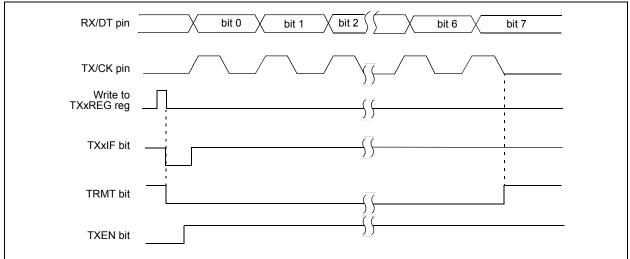
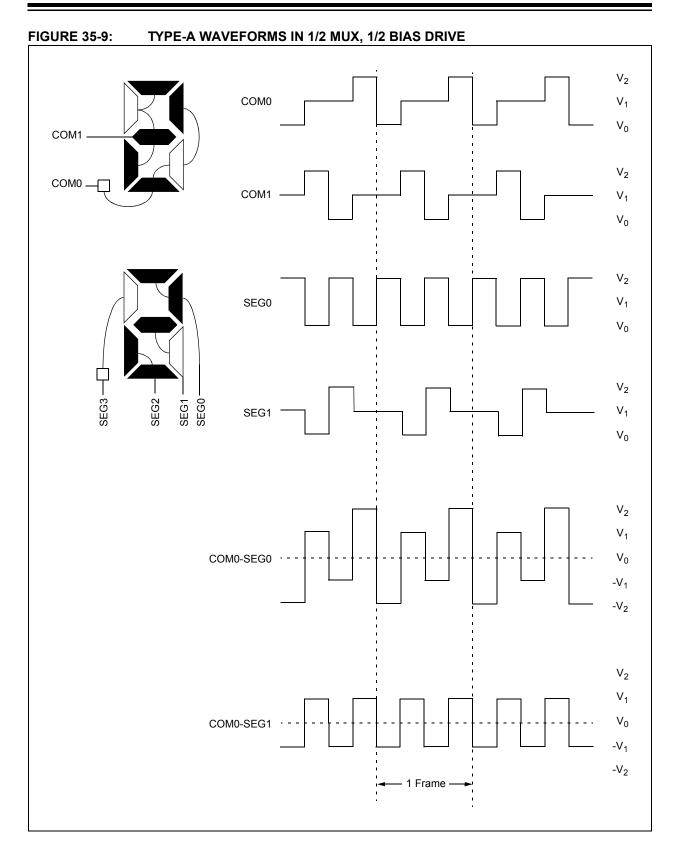
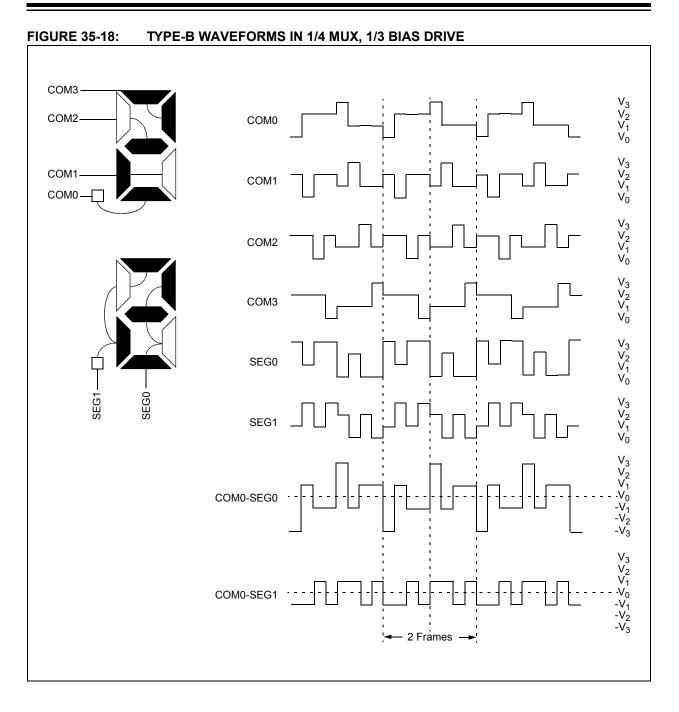



FIGURE 34-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)


34.4.1.5 Synchronous Master Reception


Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCxSTA register) or the Continuous Receive Enable bit (CREN of the RCxSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence. To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RXxIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCxREG. The RXxIF bit remains set as long as there are unread characters in the receive FIFO.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

R/W-0	R/W-0	HS/C-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
LCDEN	SLPEN	WERR	CS	LMUX3	LMUX2	LMUX1	LMUX0			
bit 7							bit 0			
Legend:		C = Clearable	e bit	HS = Bit is se	t by hardware					
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	LCDEN: LCD	Enable bit								
		lule is enabled lule is disabled								
bit 6	SLPEN: LCD	Display Sleep-	Enabled bit							
		vill stop driving								
		vill continue driv								
bit 5	WERR: LCD Write Failed Error bit ⁽¹⁾									
	1 = Write failure to LCDDATA register occurred (must be reset in software)									
	0 = No LCD write error									
bit 4	CS: Clock Source Select bit									
	1 = SOSC Selected 0 = LFINTOSC Selected									
bit 3-0			tion hita Cna	oifice the numb	or of common	_(2)				
DIT 3-0		Common Selec	ction bits. Spe	cifies the numbe	er of commons	5(-)				
	LMUX<3	:0>		Multiplex			Bias			
	0000			All COMs off			_			
	0001			Static (COM0)			Static			
	0010		1/2	MUX (COM<1:0>)		1/2				
	0011		1/3	MUX (COM<2:0>)		1/3				
	0100		1/4	MUX (COM<3:0>)			1/3			
	0101		1/5	MUX (COM<4:	0>)		1/3			
	0110		1/6	MUX (COM<5:0>)			1/3			
	0111		1/7		1/3					
	1000		1/8	MUX (COM<7:	0>)		1/3			

REGISTER 35-1: LCDCON: LCD CONTROL REGISTER

Note 1: Bit can only be set by hardware and only cleared in software by writing to zero.

2: Cannot be changed when LCDEN = 1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
212h	_			•	Unimpl	emented		•				
213h	—		Unimplemented									
214h	—		Unimplemented									
215h	—		Unimplemented									
216h	—		Unimplemented									
217h	—				Unimpl	emented						
218h	_				Unimpl	emented						
219h	—				Unimpl	emented						
21Ah	_				Unimpl	emented						
21Bh	_				Unimpl	emented						
21Ch	_				Unimpl	emented						
21Dh	_				Unimpl	emented						
21Eh	CCPTMRS0	P4TS	EL<1:0>	P3TS	SEL1:0>	C2TSE	EL<1:0>	C1TSE	EL<1:0>	461		
21Fh					Unimpl	emented		•				
28Ch	T2TMR		TMR2									
28Dh	T2PR				P	R2						
28Eh	T2CON	ON		CKPS<2:0>			OUT	PS<3:0>		404		
28Fh	T2HLT	PSYNC	CKPOL	CKSYNC		MODE<4:0>				405		
290h	T2CLKCON	—	_	_	_		CS	6<3:0>		403		
291h	T2RST	_	_	_	_		RSI	EL<3:0>		406		
292h	T4TMR				T	/IR4						
293h	T4PR				P	R4						
294h	T4CON	ON		CKPS<2:0>			OUT	PS<3:0>		404		
295h	T4HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			405		
296h	T4CLKCON	—	_	_	_		CS	6<3:0>		403		
297h	T4RST	_	_	_	_		RSI	EL<3:0>		406		
298h	_				Unimpl	emented						
299h	_				Unimpl	emented						
29Ah	—				Unimpl	emented						
29Bh	—				Unimpl	emented						
29Ch	_				Unimpl	emented						
29Dh	—		Unimplemented									
29Eh	—		Unimplemented									
29Fh	—		Unimplemented									
Leaend:					= unimplementer		0	hadad la settema				

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
 Note 1: Unimplemented data memory locations, read as '0'.