

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19155t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 60											
				CPU	CORE REGISTERS	; see Table 4-3 for	rspecifics				
1E0Ch					Unimpler	mented					
1E0Dh	_				Unimpler	mented					
1E0Eh	—				Unimpler	nented					
1E0Fh	CLCDATA	—	_	_	_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	0000 0000	0000 0000
1E10h	CLC1CON	LC1EN		LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0	>	0-00000	0-000000
1E11h	CLC1POL	LC1POL		—	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
1E12h	CLC1SEL0	—	—		LC1D1S<5:0>						uuuu uuuu
1E13h	CLC1SEL1	—	—		LC1D2S<5:0>					xxxx xxxx	uuuu uuuu
1E14h	CLC1SEL2	—	—		LC1D3S<5:0>						uuuu uuuu
1E15h	CLC1SEL3	—	_		LC1D4S<5:0>						uuuu uuuu
1E16h	CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuuu
1E17h	CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
1E18h	CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
1E19h	CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
1E1Ah	CLC2CON	LC2EN		LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0	>	0-00 0000	0-00 0000
1E1Bh	CLC2POL	LC2POL	_	—	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuuu
1E1Ch	CLC2SEL0	—	_			LC2D18	8<5:0>			xxxx xxxx	uuuu uuuu
1E1Dh	CLC2SEL1	—				LC2D2S	6<5:0>			xxxx xxxx	uuuu uuuu
1E1Eh	CLC2SEL2	_	_			LC2D3S	6<5:0>			xxxx xxxx	uuuu uuuu
1E1Fh	CLC2SEL3	_	_			LC2D48	6<5:0>			xxxx xxxx	uuuu uuuu
1E20h	CLC2GLS0	LC2G1D4T	LC1G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xx xxxx	uuuu uuuu
1E21h	CLC2GLS1	LC2G2D4T	LC1G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	uuuu uuuu

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

REGIST	-R 3-7.	REVIS		. REVIS		REGIS							
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0		MJRREV<5:0>					MNRREV<5:0>					
bit 13													bit 0
Legend:													
	R = Read	able bit											
	'0' = Bit is	cleared				'1' = Bit	is set		x = Bit	is unkno	wn		
bit 13-12	Fixed Val	ue: Read	d-only b	oits									

REGISTER 5-7: REVISIONID: REVISION ID REGISTER

These bits are fixed with value '10' for all devices included in this data sheet.

bit 11-6 MJRREV<5:0>: Major Revision ID bits

These bits are used to identify a major revision. A major revision is indicated by an all layer revision (B0, C0, etc.)

bit 5-0 **MNRREV<5:0>**: Minor Revision ID bits These bits are used to identify a minor revision.

8.2 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

8.3 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- · BOR is off when in Sleep
- BOR is controlled by software
- BOR is always off

Refer to Table 8-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 8-2 for more information.

TABLE 8-1: BOR OPERATING MODES

8.3.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

8.3.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	Х	Х	Active	Wait for release of $BOR^{(1)}$ (BORRDY = 1)
1.0		Awake	Active	Waits for release of BOR (BORRDY = 1)
10	Х	Sleep	Disabled	Waits for BOR Reset release
01	1	Х	Active	Waits for BOR Reset release (BORRDY = 1)
ÛĹ	0	х	Disabled	Paging immediately (POPPDV =)
00	х	х	Disabled	Begins inimediately (BORRDY = x)

Note 1: In this specific case, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

8.4 Register Definitions: Brown-out Reset Control

REGISTER 8-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN ⁽¹⁾	—	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit ⁽¹⁾
	If BOREN <1:0> in Configuration Words ≠ 01:
	SBOREN is read/write, but has no effect on the BOR.
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active

0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

12.6 Operation During Sleep

When the device enters Sleep, the WWDT is cleared. If the WWDT is enabled during Sleep, the WWDT resumes counting. When the device exits Sleep, the WWDT is cleared again.

The WWDT remains clear until the OST, if enabled, completes. See **Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)**" for more information on the OST.

TABLE 12-2: WWDT CLEARING CONDITIONS

When a WWDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See Section 4.3.2.1 "STATUS Register" for more information.

Conditions	WWDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = SOSC, EXTOSC, INTOSC	
Change INTOSC divider (IRCF bits)	Unaffected

WINDOW PERIOD AND DELAY

REGISTER 15-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

RxyPPS<4:0>	
bit /	bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4-0	RxyPPS<4:0>: Pin Rxy Output Source Selection bits ⁽¹⁾ See Table 15-3.

Note 1: TRIS control is overridden by the peripheral as required.

REGISTER 15-3: PPSLOCK: PPS LOCK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	—	—	—	—	—	—	PPSLOCKED
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 Unimplemented: Read as '0'

bit 0 PPSLOCKED: PPS Locked bit

1= PPS is locked. PPS selections can not be changed.

0= PPS is not locked. PPS selections can be changed.

© 2017 Microchip Technology Inc.

19.5.8 CONTINUOUS SAMPLING MODE

Setting the CONT bit in the ADCON0 register automatically retriggers a new conversion cycle after updating the ADACC register. The GO bit remains set and re-triggering occurs automatically.

If ADSOI = 1, a threshold interrupt condition will clear GO and the conversions will stop.

19.5.9 DOUBLE SAMPLE OR CVD CONVERSION MODE

Double sampling is enabled by setting the ADDSEN bit of the ADCON1 register. When this bit is set, two conversions are required before the module will calculate threshold error (each conversion must still be triggered separately). The first conversion will set the ADMATH bit of the ADSTAT register and update ADACC, but will not calculate ERR or trigger ADTIF. When the second conversion completes, the first value is transferred to PREV (depending on the setting of ADPSIS) and the value of the second conversion is placed into ADRES. Only upon the completion of the second conversion is ERR calculated and ADTIF triggered (depending on the value of ADCALC). The ADACC registers will contain the difference of the two samples taken.

26.12 Register Definitions: Timer1 Control

U-0	U-0	R/W-0/u	R/W-0/u	U-0	R/W-0/u	R/W-0/u	R/W-0/u
_	—	CKPS	<1:0>	_	SYNC	RD16	ON
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as 'd)'				
bit 5-4	CKPS<1:0>:	Timer1 Input C	lock Prescale	Select bits			
	11 = 1:8 Pres	cale value					
	10 = 1:4 Pres	cale value					
	01 = 1:2 Prescale value						
bit 3	Unimplemen	ted: Read as ')'				
bit 2	SYNC: Timer1 Synchronization Control bit						
	When TMR1CLK = Fosc or Fosc/4						
	This bit is ignored. The timer uses the internal clock and no additional synchronization is performed				is performed.		
	ELSE						
	0 = Synchronize external clock input with system clock						
b:+ 1	$\perp = Do not synchronize external clock input$						
DIL I RUTO: ID-DIL READ/WITE MODE ENABLE DIL 0 = Enables register read/write of Timer1 in two 8-bit operation							
	1 = Enables	register read/w	rite of Timer1	in one 16-bit o	peration		
bit 0	ON: Timer1 C	Dn bit			-		
	1 = Enables	Timer1					
	0 = Stops Tin	ner1 and clears	Timer1 gate	flip-flop			

REGISTER 26-1: T1CON: TIMER1 CONTROL REGISTER

27.1 Timer2/4 Operation

Timer2 operates in three major modes:

- Free Running Period
- One-shot
- Monostable

Within each mode there are several options for starting, stopping, and reset. Table 27-1 lists the options.

In all modes, the TMR2 count register is incremented on the rising edge of the clock signal from the programmable prescaler. When TMR2 equals T2PR, a high level is output to the postscaler counter. TMR2 is cleared on the next clock input.

An external signal from hardware can also be configured to gate the timer operation or force a TMR2 count Reset. In Gate modes the counter stops when the gate is disabled and resumes when the gate is enabled. In Reset modes the TMR2 count is reset on either the level or edge from the external source.

The TMR2 and T2PR registers are both directly readable and writable. The TMR2 register is cleared and the T2PR register initializes to FFh on any device Reset. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset
- · External Reset Source event that resets the timer.

Note: TMR2 is not cleared when T2CON is written.

27.1.1 FREE RUNNING PERIOD MODE

The value of TMR2 is compared to that of the Period register, T2PR, on each TMR2_clk cycle. When the two values match, the comparator resets the value of TMR2

to 00h on the next rising TMR2_clk edge and increments the output postscaler counter. When the postscaler count equals the value in the OUTPS<4:0> bits of the TMRxCON1 register, a one TMR2_clk period wide pulse occurs on the TMR2_postscaled output, and the postscaler count is cleared.

27.1.2 ONE-SHOT MODE

The One-Shot mode is identical to the Free Running Period mode except that the ON bit is cleared and the timer is stopped when TMR2 matches T2PR and will not restart until the T2ON bit is cycled off and on. Postscaler OUTPS<4:0> values other than 0 are meaningless in this mode because the timer is stopped at the first period event and the postscaler is reset when the timer is restarted.

27.1.3 MONOSTABLE MODE

Monostable modes are similar to One-Shot modes except that the ON bit is not cleared and the timer can be restarted by an external Reset event.

27.2 Timer2/4 Output

The Timer2 module's primary output is TMR2_postscaled, which pulses for a single TMR2_clk period when the postscaler counter matches the value in the OUTPS bits of the TMR2CON register. The T2PR postscaler is incremented each time the TMR2 value matches the T2PR value. This signal can be selected as an input to several other input modules:

- The ADC module, as an Auto-conversion Trigger
- · COG, as an auto-shutdown source

In addition, the Timer2 is also used by the CCP module for pulse generation in PWM mode. Both the actual TMR2 value as well as other internal signals are sent to the CCP module to properly clock both the period and pulse width of the PWM signal. See **Section 29.0 "Capture/Compare/PWM Modules"** for more details on setting up Timer2/4 for use with the CCP, as well as the timing diagrams in **Section 27.5 "Operation Examples"** for examples of how the varying Timer2 modes affect CCP PWM output.

27.3 External Reset Sources

In addition to the clock source, the Timer2 also takes in an external Reset source. This external Reset source is selected for Timer2 with the T2RST register. This source can control starting and stopping of the timer, as well as resetting the timer, depending on which mode the timer is in. The mode of the timer is controlled by the MODE<4:0> bits of the TMRxHLT register. Edge-Triggered modes require six Timer clock periods between external triggers. Level-Triggered modes require the triggering level to be at least three Timer clock periods long. External triggers are ignored while in Debug Freeze mode.

Mada	MODE	<4:0>	Output	Operation	Timer Control		
wode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop
		000		Software gate (Figure 27-4)	ON = 1		ON = 0
		001	Period	Hardware gate, active-high (Figure 27-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0
		010		Hardware gate, active-low	ON = 1 and TMRx_ers = 0	—	ON = 0 or TMRx_ers = 1
Free	0.0	011		Rising or falling edge Reset		TMRx_ers	
Period	00	100	Period	Rising edge Reset (Figure 27-6)		TMRx_ers ↑	ON = 0
		101	Pulse	Falling edge Reset		TMRx_ers ↓	
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0
		111	Resel	High level Reset (Figure 27-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1
		000	One-shot	Software start (Figure 27-8)	ON = 1	_	
		001	Edge	Rising edge start (Figure 27-9)	ON = 1 and TMRx_ers ↑	_	
		010	triggered start (Note 1) Edge triggered start and hardware Reset	Falling edge start	ON = 1 and TMRx_ers ↓	—	
		011		Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or
One-shot	01	100		Rising edge start and Rising edge Reset (Figure 27-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	after TMRx = PRx
		101		Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers \downarrow	(Note 2)
		110		Rising edge start and Low level Reset (Figure 27-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0	
		111	(Note 1)	Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1	
		000		Rese	rved		
		001	Edge	Rising edge start (Figure 27-12)	ON = 1 and TMRx_ers ↑	_	ON = 0 or
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers		TMRx = PRx (Note 3)
Reserved	10	100	Reserved				
Reserved		101		Rese	rved		
		110	Level triggered	High level start and Low level Reset (Figure 27-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or
One-shot	One-shot star 111 hardw Res	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)	
Reserved	11	xxx		Rese	rved		

TABLE 27-1: TIMER2/4 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

DS40001923A-page 436

Preliminary

32.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- · Data selection
- · Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

32.1.1 DATA SELECTION

There are 40 signals available as inputs to the configurable logic. Four 40-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 32-2. Data inputs in the figure are identified by a generic numbered input name.

Table 32-2 correlates the generic input name to the actual signal for each CLC module. The column labeled 'LCxDyS<5:0> Value' indicates the MUX selection code for the selected data input. LCxDyS is an abbreviation to identify specific multiplexers: LCxD1S<5:0> through LCxD4S<5:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 32-3 through Register 32-6).

TABLE 32-2 :	CLCx DATA INPUT	SELECTION
---------------------	-----------------	-----------

LCxDyS<5:0> Value	CLCx Input Source
100101 to 111111	Reserved
100100	EUSART2 (TX/CK) output
100011	EUSART2 (DT) output
100010	CWG1B output
100001	CWG1A output
100000	RTCC seconds
011111	MSSP1 SCK output
011110	MSSP1 SDO output
011101	EUSART1 (TX/CK) output
011100	EUSART1 (DT) output
011011	CLC4 output
011010	CLC3 output
011001	CLC2 output
011000	CLC1 output
010111	IOCIF
010110	ZCD output
010101	C2OUT
010100	C1OUT
010011	PWM4 output
010010	PWM3 output
010001	CCP2 output
010000	CCP1 output
001111	SMT overflow
001110	Timer4 overflow
001101	Timer2 overflow
001100	Timer1 overflow
001011	Timer0 overflow
001010	ADCRC
001001	SOSC
001000	MFINTOSC (32 kHz)
000111	MFINTOSC (500 kHz)
000110	LFINTOSC
000101	HFINTOSC
000100	FOSC
000011	CLCIN3PPS
000010	CLCIN2PPS
000001	CLCIN1PPS
000000	CLCIN0PPS

33.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 33-25).

FIGURE 33-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

33.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,		
	writing to the lower five bits of SSPxCON2		
	is disabled until the Start condition is complete.		

					(
R/W-0/0	R/HS/HC-0	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0	R/S/HC-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:							
HS = Bit is set	by hardware						
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Cleare	d by hardware	S = User set	
bit 7	GCEN: Gene	ral Call Enable	e bit (in I ² C Sla	ve mode only))		
	1 = Enable int 0 = General c	terrupt when a aall address dis	general call a abled	ddress (0x00 d	or 00h) is receiv	ed in the SSPx	(SR
bit 6	ACKSTAT: Ac 1 = Acknowle 0 = Acknowle	cknowledge St dge was not re dge was recei	atus bit (in I ² C eceived ved	mode only)			
bit 5	ACKDT: Ackr	nowledge Data	bit (in I ² C mo	de only)			
Sit o	In Receive mo	ode:		uo oniy)			
	Value transmi	tted when the	user initiates a	an Acknowledg	je sequence at	the end of a rea	ceive
	1 = Not Ackno	owledge					
h:+ 4		age Soudodae Coa	uanaa Frabla	hit (in 120 Mag			
DIL 4	In Master Por	nowieage Sequencia	uence Enable	DIT (IN I-C Mas	ter mode only)		
 In Master Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data Automatically cleared by hardware. 				(DT data bit.			
hit 3	PCEN: Pacei	ve Enable bit (in I ² C Masteri	mode only)			
	1 = Enables F	Receive mode	for I ² C	mode only)			
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode onl	V)		
	1 = Initiate Sto 0 = Stop cond	op condition or lition Idle	n SDA and SC	L pins. Autom	atically cleared	by hardware.	
bit 1	RSEN: Repea	ated Start Con	dition Enable b	oit (in I ² C Mast	er mode only)		
	1 = Initiate R 0 = Repeated	epeated Start of Start	condition on S n Idle	DA and SCL p	ins. Automatica	illy cleared by h	ardware.
bit 0	SEN: Start Co	ondition Enable	e/Stretch Enab	le bit			
	In Master mod 1 = Initiate Sta 0 = Start cond	<u>de:</u> art condition oi lition Idle	n SDA and SC	L pins. Autom	atically cleared	by hardware.	
	In Slave mode 1 = Clock stre 0 = Clock stre	<u>e:</u> etching is enab etching is disat	led for both sla	ave transmit a	nd slave receive	e (stretch enabl	ed)
				0			

REGISTER 33-3: SSPxCON2: SSPx CONTROL REGISTER 2 (I²C MODE ONLY)⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle state, these bits may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

34.1.2.8 Asynchronous Reception Setup:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 34.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RXxIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RXxIE interrupt enable bit was also set.
- 8. Read the RCxSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

ASYNCHRONOUS RECEPTION

34.1.2.9 9-bit Address Detection Mode Setup

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 34.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RXxIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RXxIE interrupt enable bit was also set.
- 9. Read the RCxSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCxREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

RX/DT pin	Start bit bit 0 / bit 1 / 5 / bit 7/8 / Stop bit / bit 0 / 5 / bit 7/8 / Stop bit / bit 7/8 / Stop bit / bit 7/8 / Stop bit
Rcv Shift Reg → Rcv Buffer Reg. RCIDL	Word 1 RCxREG Word 2 RCxREG
Read Rcv Buffer Reg. RCxREG	
RXxIF (Interrupt Flag)	
OERR bit CREN	
Note: This cau	s timing diagram shows three words appearing on the RX input. The RCxREG (receive buffer) is read after the third word, sing the OERR (overrun) bit to be set.

FIGURE 34-5:

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \underline{\text{WDT}} \text{ prescaler,} \\ \text{1} \rightarrow \underline{\text{TO}} \\ \text{1} \rightarrow \overline{\text{PD}} \\ \text{$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits $\overline{\text{TO}}$ and $\overline{\text{PD}}$ are set.

CALLW	Subroutine Call With W	COMF	Complement f
Syntax:	[label] CALLW	Syntax:	[<i>label</i>] COMF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>,$	Operation:	$(\overline{f}) \rightarrow (destination)$
	$(PCLATH<6:0>) \rightarrow PC<14:8>$	Status Affected:	Z
Status Affected:	None	Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.		stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W				
Syntax:	[label] CLRW				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Description:	W register is cleared. Zero bit (Z) is set.				

40ChUnimplemented $40Dh$ HIDRVBHIDB1 $40Eh$ UnimplementedUnimplemented $40Fh$ Unimplemented $40Fh$ Unimplemented $410h$ Unimplemented $410h$ Unimplemented $411h$ Unimplemented $412h$ Unimplemented $413h$ Unimplemented $414h$ Unimplemented $416h$ Unimplemented $418h$ Unimplemented <th>Register on page</th>	Register on page
40Dh HIDRVB	
40EhUnimplemented40FhUnimplemented410hUnimplemented411hUnimplemented412hUnimplemented413hUnimplemented414hUnimplemented415hUnimplemented416hUnimplemented417hUnimplemented418hUnimplemented418hUnimplemented418hUnimplemented418hUnimplemented	232
40FhUnimplemented410hUnimplemented411hUnimplemented412hUnimplemented413hUnimplemented414hUnimplemented415hUnimplemented416hUnimplemented417hUnimplemented418hUnimplemented418hUnimplemented419hUnimplemented	
410hUnimplemented411hUnimplemented412hUnimplemented413hUnimplemented414hUnimplemented415hUnimplemented416hUnimplemented417hUnimplemented418hUnimplemented418hUnimplemented	
411hUnimplemented412hUnimplemented413hUnimplemented414hUnimplemented415hUnimplemented416hUnimplemented417hUnimplemented418hUnimplemented418hUnimplemented419hUnimplemented	
412h — Unimplemented 413h — Unimplemented 414h — Unimplemented 415h — Unimplemented 416h — Unimplemented 417h — Unimplemented 418h — Unimplemented 418h — Unimplemented	
413h — Unimplemented 414h — Unimplemented 415h — Unimplemented 416h — Unimplemented 417h — Unimplemented 418h — Unimplemented 419h — Unimplemented	
414h — Unimplemented 415h — Unimplemented 416h — Unimplemented 417h — Unimplemented 418h — Unimplemented 418h — Unimplemented	
415h Unimplemented 416h Unimplemented 417h Unimplemented 418h Unimplemented 419h Unimplemented	
416h Unimplemented 417h Unimplemented 418h Unimplemented 419h Unimplemented	
417h Unimplemented 418h Unimplemented 419h Unimplemented	
418h — Unimplemented	
419h Linimplemented	
41An — Unimplemented	
41Bh — Onimplemented	
410h Unimplemented	
41Eh Linimplemented	
41Eh — Unimplemented	
48Ch SMT1TMRL SMT1TMR	416
48Dh SMT1TMRH SMT1TMR	416
48Eh SMT1TMRU SMT1TMR	416
48Fh SMT1CPRL CPR	417
490h SMT1CPRH CPR	417
491h SMT1CPRU CPR	417
492h SMT1CPWL CPW	418
493h SMT1CPWH CPW	418
494h SMT1CPWU CPW	418
495h SMT1PRL SMT1PR	419
496h SMT1PRH SMT1PR	419
497h SMT1PRU SMT1PR	419
498h SMT1CON0 EN - STP WPOL SPOL CPOL SMT1PS<1:0>	410
499h SMT1CON1 SMT1GO REPEAT MODE<3:0>	411
49Ah SMT1STAT CPRUP CPWUP RST TS WS AS	412
49Bh SMT1CLK — — — — — CSEL<2:0>	413
49Ch SMT1SIG SSEL<4:0>	415
49Dh SMT1WIN — — — WSEL<4:0>	414

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
 Note 1: Unimplemented data memory locations, read as '0'.

© 2017 Microchip Technology Inc.

DS40001923A-page 672

TABLE 39-16: 5-BIT DAC SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)	
VDD = 3.0V, TA = 25°C	

VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
DSB01	VLSB	Step Size	—	(VDACREF+ -VDACREF-) /32	_/ /	/ y 1			
DSB01	VACC	Absolute Accuracy	_	—	± 0.5	LSb_			
DSB03*	RUNIT	Unit Resistor Value	_	5000	_ `	A A			
DSB04*	TST	Settling Time ⁽¹⁾	_	- ~	10	hs			

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '00000' to '01111