

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19156-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABL	BLE 4: 40/44-PIN ALLOCATION TABLE (PIC16(L)F19175/76)																					
I/O ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	44-Pin QFN	ADC	Reference	Comparator	Zero-Cross Detect	DAC	Timers/SMT	ССР	MWG	CWG	ASSM	EUSART	CLC	RTCC	ГСD	Interrupt-on-Change	High Current	Pull-up	Basic
RA0	2	17	19	19	ANA0	—	C1IN0- C2IN0-	—	—	_	—	_	_	_	—	CLCIN0 ⁽¹⁾	_	SEG0	IOCA0	—	Υ	—
RA1	3	18	20	20	ANA1	—	C1IN1- C2IN1-	—		_	—	—	-		—	CLCIN1 ⁽¹⁾	—	SEG1	IOCA1	-	Y	—
RA2				21	ANA2	_	C1IN0+ C2IN0+	_	DAC1OUT1	_	_	—	_		_	_	—	SEG2	IOCA2		Y	_
RA3	5	20	22	22	ANA3	VREF+	C1IN1+	-	DAC1REF+	—	—	<u> </u>	—	—	—	—	—	SEG3	IOCA3	—	Υ	—
RA4	6	21	23	23	ANA4	—		_	—	тоскі ⁽¹⁾	—	—	-		—	-	_	SEG4 COM3	IOCA4	-	Y	—
RA5	7	22	24	24	—	—	—	—	—	—	—	—	—	SS ⁽¹⁾	—	—	—	—	IOCA5	—	\Box	VBAT
RA6	14	29	31	33	ANA6	—	_	—	—		—	_	-		—	-	-	SEG6	IOCA6	-	Y	CLKOUT OSC2
RA7	13	28	30	32	ANA7	—	-	—	—	_	—	—	-	_	—	_	—	SEG7	IOCA7	—	Y	OSC1 CLKIN
RB0	33	8	8	9	ANB0	—	C2IN1+	ZCD	—	—	—	\square	CWG1IN ⁽¹⁾		—	—	—	SEG8	IOCB0	—	Υ	INTPPS
RB1	34	9	9	10	ANB1	—	C1IN3- C2IN3-	—	—	—	—	—		SCL, SDA ^(1, 3, 4, 5, 6)		_	—	SEG9	IOCB1	HIB1	Y	_
RB2	35	10	10	11	ANB2	—		—	-	—	-	—	-	SCL, SDA ^(1, 3, 4, 5, 6)	—	-	—	SEG10 CFLY1	IOCB2	-	Y	—
RB3	36	11	11	12	ANB3	—	C1IN2- C2IN2-	—	—	_	—	_	_	_	—	_	_	SEG11 CFLY2	IOCB3	—	Y	—
RB4	37	12	14	14	ANB4 ADCACT ⁽¹⁾	_		_	-	_	_	_	_	_	_	_	_	COM0	IOCB4	_	Υ	_
RB5	38	13	15	15	ANB5	_	<u> </u>	_	—	T1G ⁽¹⁾	—	_	_	_	_	_	_	SEG13 COM1	IOCB5	_	Υ	_
RB6	39	14	16	16	ANB6	_		_		—	—	_	-	-	TX2 ⁽¹⁾ CK2 ⁽¹⁾	CLCIN2 ⁽¹⁾	_	SEG14	IOCB6	_	Υ	ICDCLK/ ICSPCLK
RB7	40	15	17	17	ANB7	—	<u> </u>	_	DAC1OUT2	_	—	_	_		RX2 ⁽¹⁾ DT2 ⁽¹⁾	CLCIN3 ⁽¹⁾	—	SEG15	IOCB7	_	Y	ICDDAT/ ICSPDAT

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one or more PORTx pin options.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by INLCVL register, instead of the I²C specific or 4: SMBUS input buffer thresholds.

These are alternative I²C logic levels pins. 5:

In I²C logic levels configuration, these pins can operate as either SCL and SDA pins. 6:

DS40001923A-page 11

4.3.3 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes of the data banks 0-59 and 100 bytes of the data banks 60-63, after the core registers.

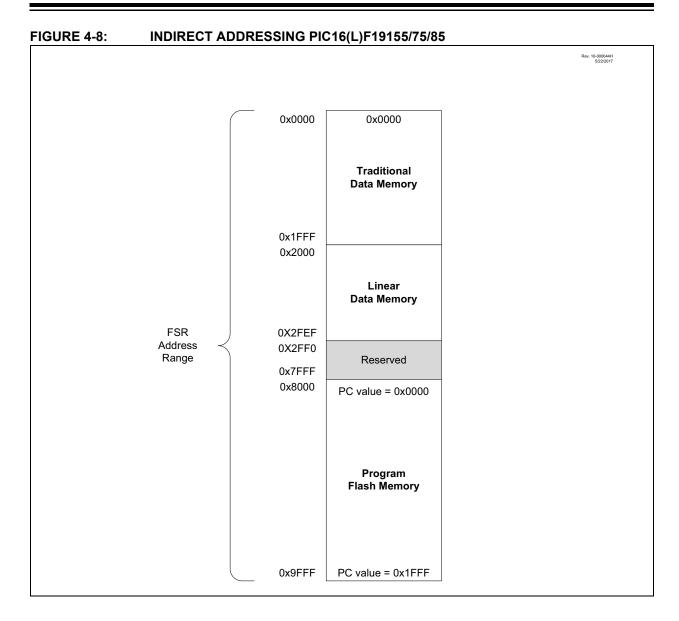
The SFRs associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

4.3.4 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank.

ADLE 4-4:	GENERAL PURPOSE RAM SIZE AND BANK LUCATION											
Bank		, PIC16(L)F19175, _)F19185		PIC16(L)F19176, _)F19186								
	Address	Size (Bytes)	Address	Size (Bytes)								
0	020h-07Fh	96	020h-07Fh	96								
1	0A0h-0EFh	80	0A0h-0EFh	80								
2	120h-16Fh	80	120h-16Fh	80								
3	1A0h-1EFh	80	1A0h-1EFh	80								
4	220h-26Fh	80	220h-26Fh	80								
5	2A0h-2EFh	80	2A0h-2EFh	80								
6	320h-36Fh	80	320h-36Fh	80								
7	3A0h-3EFh	80	3A0h-EFh	80								
8	420h-46Fh	80	420h-46Fh	80								
9	4A0h-4EFh	80	4A0h-4EFh	80								
10	520h-560h	80	520h-560h	80								
11	5A0h-5EFh	80	5A0h-5EFh	80								
12	620h-64Fh	48	620h-64Fh	80								
13			6A0h-6EFh	80								
14			720h-76Fh	80								
15			7A0h-7EFh	80								
16			820h-96Fh	80								
17			8A0h-8EFh	80								
18			920h-96Fh	80								
19			9A0h-9EFh	80								
20			A20h-A6Fh	80								
21			AA0h-AEFh	80								
22			B20h-B6Fh	80								
23			BA0h-BEFh	80								
24			C20h-C6Fh	80								
25			CA0h-CBFh	32								

TABLE 4-4: GENERAL PURPOSE RAM SIZE AND BANK LOCATION


Legend: = Unimplemented GPR locations

IADLE 4	ABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR		
Bank 62 (C	continued)												
1F4Eh	ANSELC	ANSC7	ANSC6		ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	1111 1111	1111 1111		
1F4Fh	WPUC	WPUC7	WPUC6		WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	0000 0000	0000 0000		
1F50h	ODCONC	ODCC7	ODCC6	—	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000 0000	0000 0000		
1F51h	SLRCONC	SLRC7	SLRC6		SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	1111 1111		
1F52h	INLVLC	INLVLC7	INLVLC6	—	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	1111 1111	1111 1111		
1F53h	IOCCP	IOCCP7	IOCCP6	—	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	0000 0000	0000 0000		
1F54h	IOCCN	IOCCN7	IOCCN6		IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	0000 0000	0000 0000		
1F55h	IOCCF	IOCCF7	IOCCF6	—	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	0000 0000	0000 0000		
1F56h	—		Unimplemented										
1F57h	_		Unimplemented										
1F58h	_				Unimple	mented							
1F59h	ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	1111 1111	1111 1111		
1F5Ah	WPUD	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	0000 0000	0000 0000		
1F5Bh	ODCOND	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000 0000	0000 0000		
1F5Ch	SLRCOND	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	1111 1111	1111 1111		
1F5Dh	INLVLD	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	1111 1111	1111 1111		
1F5Eh	—				Unimple	mented							
1F5Fh	—				Unimple	mented							
1F60h					Unimple	mented							
1F61h	—				Unimple	mented							
1F62h	—				Unimple	mented							
1F63h	—				Unimple	mented							

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

REGIST	ER 5-7:	REVISIONID: REVISION ID REGISTER											
R	R	R	R	R	R	R	R	R	R	R	R	R	R
1	0			MJRRE	V<5:0>					MNRRE	V<5:0>		
bit 13													bit 0
Legend:													
	R = Read	able bit											
	'0' = Bit is cleared				'1' = Bit is set			x = Bit is unknown					

REGISTER 5-7: REVISIONID: REVISION ID REGISTER

These bits are fixed with value '10' for all devices included in this data sheet.

bit 11-6 MJRREV<5:0>: Major Revision ID bits

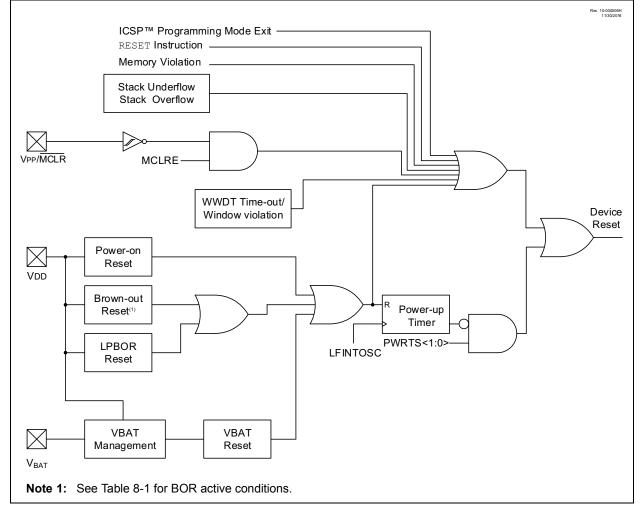
These bits are used to identify a major revision. A major revision is indicated by an all layer revision (B0, C0, etc.)

bit 5-0 **MNRREV<5:0>**: Minor Revision ID bits These bits are used to identify a minor revision.

8.0 RESETS AND VBAT

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Low-Power Brown-out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- · Programming mode exit
- Memory Violation Reset (MEMV)


To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 8-1.

8.1 VBAT

This device is equipped with a VBAT pin that allows the user to connect an external battery or an external supply. In the event of the VDD supply failing, the power source connected to the VBAT pin will keep the SOSC and RTCC modules running.

R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR
bit 7					· · · · · ·		bit
Legend:							
R = Readable b	bit	W = Writable b	t	U = Unimplem	ented bit, read as	'0'	
u = Bit is uncha	inged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	1 = The osci	DSC (external) Os Ilator is ready to Ilator is not enab	be used	bit ready to be used	d.		
bit 6	1 = The osci	OSC Oscillator R llator is ready to llator is not enab	be used	ready to be used	d.		
bit 5	1 = The oscill	OSC Oscillator F ator is ready to b ator is not enable	e used	ready to be used			
bit 4	1 = The osci	DSC Oscillator Re llator is ready to llator is not enabl	be used	ready to be used	d.		
bit 3	1 = The osci	ary (Timer1) Osci llator is ready to llator is not enabl	be used	ready to be used	d.		
bit 2	1 = The osci	C Oscillator Read llator is ready to llator is not enabl	be used	ready to be used	d		
bit 1	Unimplemente	ed: Read as '0'					
bit 0		is ready to be us		ut source is not re	eady, or the PLL is	not locked.	

14.8 PORTD Registers

Note:	PORTD functionality is not available on
	the PIC16(L)F19155/56 family of devices.

14.8.1 DATA REGISTER

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 14-2). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., disable the output driver). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 14.2.8 shows how to initialize PORTD.

Reading the PORTD register (Register 14-1) reads the status of the pins, whereas writing to it will write to the PORT latch.

The PORT data latch LATD (Register 14-3) holds the output port data, and contains the latest value of a LATD or PORTD write.

EXAMPLE 14-3: INITIALIZING PORTD

; initia ; other	<pre>; This code example illustrates ; initializing the PORTD register. The ; other ports are initialized in the same ; manner.</pre>									
BANKSEL	PORTD	;								
CLRF	PORTD	;Init PORTD								
BANKSEL	LATD	;Data Latch								
CLRF	LATD	;								
BANKSEL	ANSELD	;								
CLRF	ANSELD	;digital I/O								
BANKSEL	TRISD	;								
MOVLW	B'00111000'	;Set RD<5:3> as inputs								
MOVWF	TRISD	;and set RD<2:0> as ;outputs								

14.8.2 DIRECTION CONTROL

The TRISD register (Register 14-2) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.8.3 OPEN-DRAIN CONTROL

The ODCOND register (Register 14-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCOND bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCOND bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

14.8.4 SLEW RATE CONTROL

The SLRCOND register (Register 14-7) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCOND bit is set, the corresponding port pin drive is slew rate limited. When an SLRCOND bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.8.5 INPUT THRESHOLD CONTROL

The INLVLD register (Register 14-8) controls the input voltage threshold for each of the available PORTD input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTD register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 39-4 for more information on threshold levels.

Note:	Changing the input threshold selection should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value at POR and BOR/Value at all other Reset					
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 14-43: LATF: PORTF DATA LATCH REGISTER

bit 7-0 LATF<7:0>: RF<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTF are actually written to corresponding LATF register. Reads from PORTF register is return of actual I/O pin values.

REGISTER 14-44: ANSELF: PORTF ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSF7 | ANSF6 | ANSF5 | ANSF4 | ANSF3 | ANSF2 | ANSF1 | ANSF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSF<7:0>**: Analog Select between Analog or Digital Function on pins RF<7:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 14-45: WPUF: WEAK PULL-UP PORTF REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUF7 | WPUF6 | WPUF5 | WPUF4 | WPUF3 | WPUF2 | WPUF1 | WPUF0 |
| bit 7 | • | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

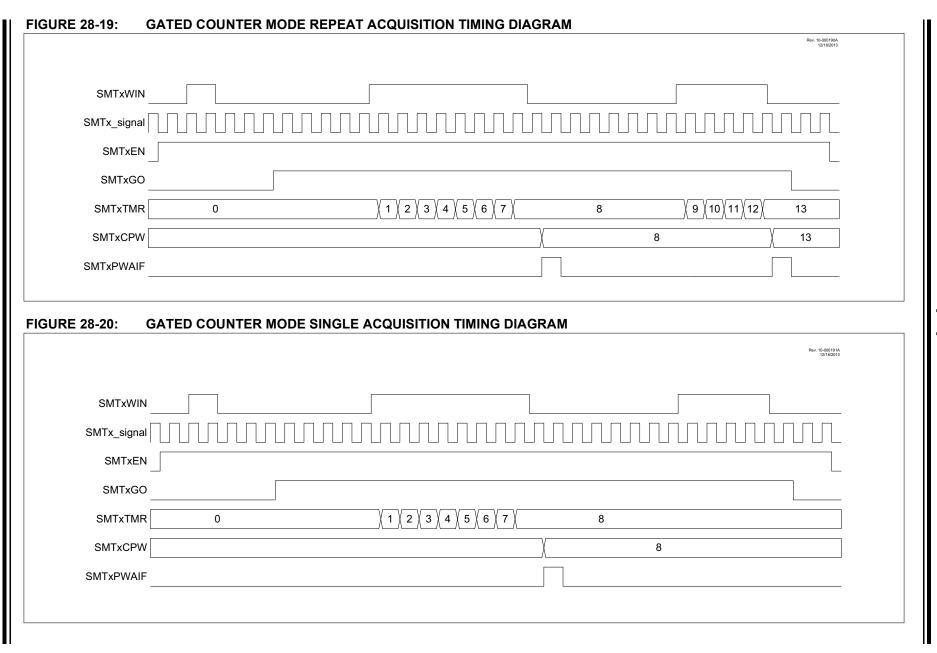
bit 7-0 WPUF<7:0>: Weak Pull-up Register bits⁽¹⁾

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PIE8	LCDIE	RTCCIE	-	_	—	SMT1PWAIE	SMT1PRAIE	SMT1IE	173
PIR8	LCDIF	RTCCIF	_	_	—	SMT1PWAIF	SMT1PRAIF	SMT1IF	182
PMD2	RTCCMD	DACMD	ADCMD	_	—	CMP2MD	CMP1MD	ZCDMD	271
INTCON	GIE	PEIE	_	_	—	—	_	INTEDG	164
PCON1	—	_	_	—	_	_	MEMV	VBATBOR	141
RTCCON	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	—	RTCCLKS	EL<1:0>	357
RTCCAL				CAL<	7:0>				358
ALRMCON	ALRMEN	CHIME		AMASK	<3:0> — —				361
ALRMRPT	ARPT<7:0>							361	
YEAR		YE	ARH<3:0>			358			
MONTH	_	_	_	MONTHH	MONTHL<3:0>				358
WEEKDAY	_	_	_	—	— WDAY<2:0>				359
DAY	_	_	DAY	′H<1:0>		359			
HOURS	_	_	HR	H<1:0>		359			
MINUTES	_		MINH<2:0>			360			
SECONDS	_		SECH<2:0>				360		
ALRMMTH	_	_	_	ALRMHMONTH	ALRMLMONTH <3:0>				362
ALRMWD	_	_	_	—					362
ALRMDAY	_	_	ALRM	HDAY<1:0>		ALRMLD	AY<3:0>		362
ALRMHR	—	_	ALRM	HHR<1:0>		ALRMLH	R<3:0>		363
ALRMMIN			ALRMHMIN<2	:0>		ALRMLM	IN<3:0>		363
ALRMSEC	—		ALRMHSEC<2	:0>		ALRMLS	EC<3:0>		363

TABLE 24-3: SUMMARY OF REGISTERS ASSOCIATED WITH THE RTCC MODULE


27.7 Register Definitions: Timer2/4 Control

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
_		_	_		CS<	:3:0>				
bit 7							bit (
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
u = Bit is ur	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets			
'1' = Bit is s	•	'0' = Bit is cle	ared							
bit 7-4	Unimplem	ented: Read as '	0'							
bit 3-0	CS<3:0>:	CS<3:0>: Timer2/4 Clock Select bits								
	1111 = Re	served								
	-	1110 = Reserved								
	1101 = Re	1101 = Reserved								
	1100 = LC	4_out								
	1011 = LC	3_out								
	1010 = LC	2_out								
	1001 = LC	1_out								
	1000 = ZC	D1_output								
	0111 = SC	DSC								
		FINTOSC (31.25								
		FINTOSC (500 kH	lz)							
	0100 = LF									
		INTOSC (32 MH	z)							
	0010 = F o									
	0001 = F o									
	0000 = T2	CKIPPS								

REGISTER 27-1: TxCLKCON: TIMER2/4 CLOCK SELECTION REGISTER

28.7.5 WINDOWED MEASURE MODE

Windowed Measure mode measures the window duration of the SMTWINx input of the SMT. It begins incrementing the timer on a rising edge of the SMTWINx input and updates the SMTxCPR register with the value of the timer and resets the timer on a second rising edge. See Figure 28-10 and Figure 28-11.

28.8 Interrupts

The SMT can trigger an interrupt under three different conditions:

- PW Acquisition Complete
- PR Acquisition Complete
- Counter Period Match

The interrupts are controlled by the PIR8 and PIE8 registers of the device.

28.8.1 PW AND PR ACQUISITION INTERRUPTS

The SMT can trigger interrupts whenever it updates the SMTxCPW and SMTxCPR registers, the circumstances for which are dependent on the SMT mode, and are discussed in each mode's specific section. The SMTxCPW interrupt is controlled by SMTxPWAIF and SMTxPWAIE bits in registers PIR8 and PIE8, respectively. The SMTxCPR interrupt is controlled by the SMTxPRAIF and SMTxPRAIE bits, also located in registers PIR8 and PIE8, respectively.

In Synchronous SMT modes, the interrupt trigger is synchronized to the SMTxCLK. In Asynchronous modes, the interrupt trigger is asynchronous. In either mode, once triggered, the interrupt will be synchronized to the CPU clock.

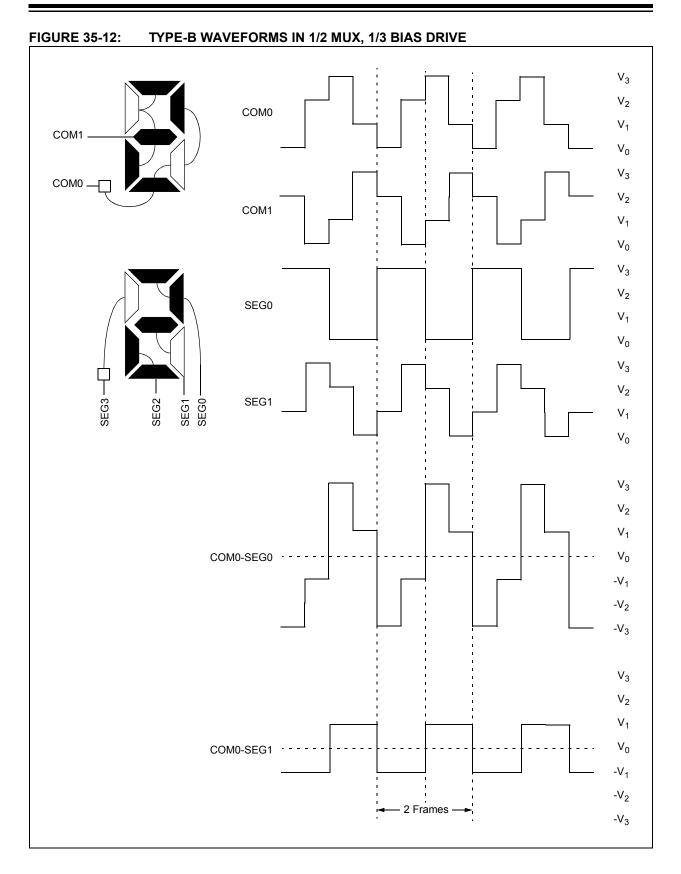
28.8.2 COUNTER PERIOD MATCH INTERRUPT

As described in Section 28.2.2 "Period Match interrupt", the SMT will also interrupt upon SMTxTMR, matching SMTxPR with its period match limit functionality described in Section 28.4 "Halt Operation". The period match interrupt is controlled by SMTxIF and SMTxIE.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PIE8	LCDIE	RTCCIE	—	—	—	SMT1PWAIE	SMT1PRAIE	SMT1IE	173
PIR8	LCDIF	RTCCIF	—	—	—	SMT1PWAIF	SMT1PRAIF	SMT1IF	182
SMT1CLK	_	_	—	_	_		CSEL<2:0>		413
SMT1CON0	EN	_	STP	WPOL	SPOL	CPOL	SMT1P	'S<1:0>	410
SMT1CON1	SMT1GO	REPEAT	—	—		MODE	<3:0>		411
SMT1CPRH				SMT1CF	PR<15:8>				417
SMT1CPRL		SMT1CPR<7:0>							
SMT1CPRU	SMT1CPR<23:16>								417
SMT1CPWH	SMT1CPW<15:8>								418
SMT1CPWL	SMT1CPW<7:0>								418
SMT1CPWU	SMT1CPW<23:16>								418
SMT1PRH				SMT1PI	R<15:8>				419
SMT1PRL				SMT1P	PR<7:0>				419
SMT1PRU				SMT1PF	?<23:16>				419
SMT1SIG	—	_	_			SSEL<4:0>			415
SMT1STAT	CPRUP	CPWUP	RST	—	_	TS	WS	AS	412
SMT1TMRH	SMT1TMR<15:8>								416
SMT1TMRL	SMT1TMR<7:0>								416
SMT1TMRU				SMT1TM	R<23:16>				416
SMT1WIN	_	_	—			WSEL<4:0>			414

TABLE 28-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMTx

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for SMTx module.


34.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 34.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCxREG register. If the RXxIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 34.4.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RXxIE bit of the PIE3 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RXxIF bit will be set when reception is complete. An interrupt will be generated if the RXxIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

© 2017 Microchip Technology Inc.

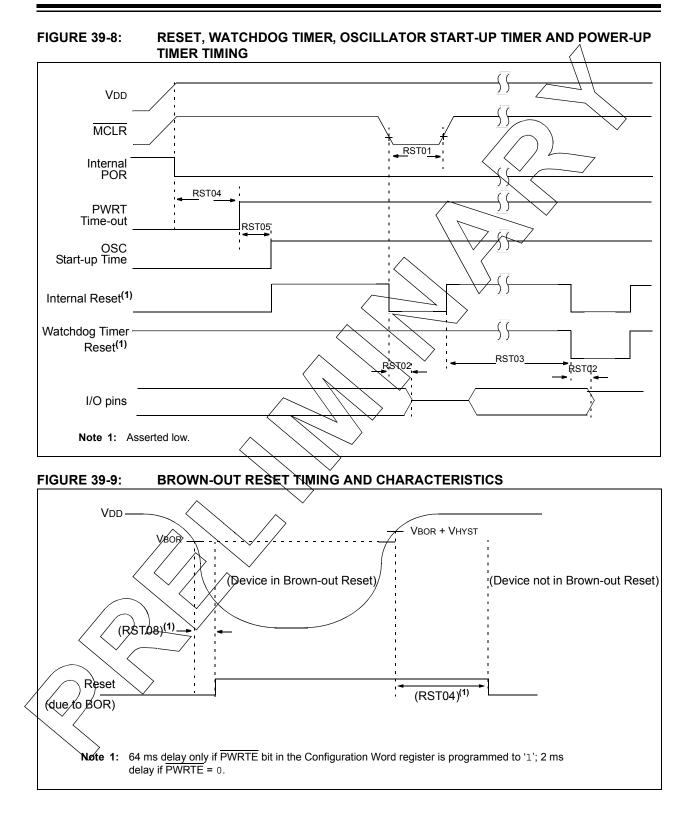
ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	$\begin{array}{l} n \in [0,1] \\ mm \in [00,01,10,11] \\ \textbf{-32} \leq k \leq 31 \end{array}$
Operation:	$\label{eq:W} \begin{split} & W \rightarrow INDFn \\ & \text{Effective address is determined by} \\ & FSR + 1 (\text{preincrement}) \\ & FSR + 1 (\text{predecrement}) \\ & FSR + k (\text{relative offset}) \\ & \text{After the Move, the FSR value will be} \\ & \text{either:} \\ & FSR + 1 (\text{all increments}) \\ & FSR + 1 (\text{all increments}) \\ & \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm	
Preincrement	++FSRn	00	
Predecrement	FSRn	01	
Postincrement	FSRn++	10	
Postdecrement	FSRn	11	

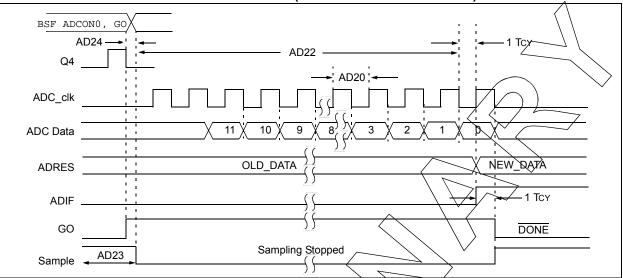
Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.


FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.


NOP **No Operation** [label] NOP Syntax: Operands: None Operation: No operation Status Affected: None Description: No operation. Words: 1 Cycles: 1 Example: NOP

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the \overline{RI} flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by software.

RETFIE	Return from Interrupt
Syntax:	[<i>label</i>] RETFIE k
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

TABLE 39-14: COMPARATOR SPECIFICATIONS

VDD = 3.0V. TA = 25°C	``
	ľ

0.01	, IA 200	~ \						
Param. No.	Sym.	Characteristics	Min.	утур.	Max.	Units	Comments	
CM01	VIOFF	Input Offset Voltage	\searrow	±30		mV	VICM = VDD/2	
CM02	VICM	Input Common Mode Range	ØND	—	Vdd	V		
CM03	CMRR	Common Mode Input Rejection Ratio	_	50	_	dB		
CM04	VHYST	Comparator Hysteresis	_	25	_	mV		
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	_	300	600	ns		
		Response Time, Falling Edge		220	500	ns		
CMOS6	TMCV2VO ⁽²⁾	Mode Charige to Valid Output	_	—	10	μs		
CMOS6	Тмсv2vo ⁽²⁾		—	_	10	μs		

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

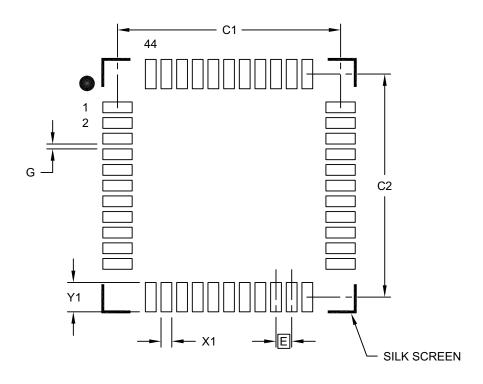
2: A mode change includes changing any of the control register values, including module enable.

TABLE 39-15: LOW-POWERED CLOCKED COMPARATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

$VDD = 3.0V, TA = 25^{\circ}C$										
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments			
CM07	VIOFF	Input Offset Voltage		±30	—	mV	VICM = VDD/2			
CM08	VICM	Input Common Mode Range	GND		Vdd	V				
CM09	CMRR	Common Mode Input Rejection Ratio		50	—	dB				
CM010	VHYST	Comparator Hysteresis		25	—	mV				
CM011	TRESP ⁽¹⁾⁽³⁾	Response Time, Rising Edge	_	300	—	ns				
		Response Time, Falling Edge	_	220	_	ns				

* These parameters are characterized but not tested.


Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

3: Comparator output state change occurs on the rising edge of LFINTOSC.

44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B