

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuns	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19156-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

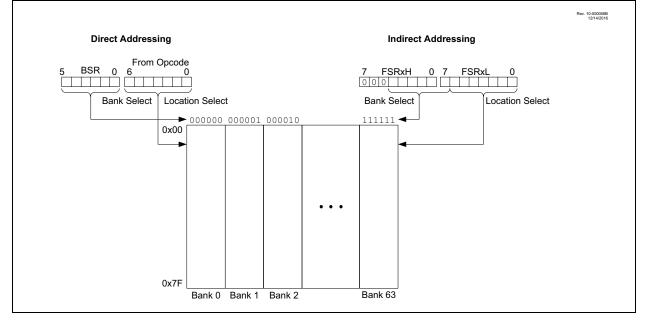
Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.


Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

4.6.1 TRADITIONAL/BANKED DATA MEMORY

The traditional or banked data memory is a region from FSR address 0x000 to FSR address 0x1FFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

NOSC<2:0>/ COSC<2:0>	Clock Source
111	EXTOSC ⁽¹⁾
110	HFINTOSC ⁽²⁾
101	LFINTOSC
100	SOSC
011	Reserved (operates like NOSC = 110)
010	EXTOSC with 4x PLL ⁽¹⁾
001	HFINTOSC with 2x PLL ⁽¹⁾
000	HFINTOSC with OSCFRQ = 32 MHz and CDIV = 1:1

TABLE 9-1: NOSC/COSC BIT SETTINGS

Note 1: EXTOSC configured by the FEXTOSC bits of Configuration Word 1 (Register 5-1).

2: HFINTOSC settings are configured with the HFFRQ bits of the OSCFRQ register (Register 9-6).

TABLE 9-2: NDIV/CDIV BIT SETTINGS

NDIV<3:0>/ CDIV<3:0>	Clock divider		
1111-1010	Reserved		
1001	512		
1000	256		
0111	128		
0110	64		
0101	32		
0100	16		
0011	8		
0010	4		
0001	2		
0000	1		

13.4.5 NVMREG WRITE TO PFM

Program memory is programmed using the following steps:

- 1. Load the address of the row to be programmed into NVMADRH:NVMADRL.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 13-4 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper ten bits of NVMADRH:NVMADRL, (NVMADRH<6:0>:NVMADRL<7:5>) with the lower five bits of NVMADRL, (NVMADRL<7:5>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF.

The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch loaded with data from is the NVMDATH:NVMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

- **Note:** The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.
- 1. Set the WREN bit of the NVMCON1 register.
- Clear the NVMREGS bit of the NVMCON1 register.
- Set the LWLO bit of the NVMCON1 register. When the LWLO bit of the NVMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the NVMADRH:NVMADRL register pair with the address of the location to be written.
- 5. Load the NVMDATH:NVMDATL register pair with the program memory data to be written.

- Execute the unlock sequence (Section 13.4.2 "NVM Unlock Sequence"). The write latch is now loaded.
- 7. Increment the NVMADRH:NVMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the NVMCON1 register. When the LWLO bit of the NVMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the NVMDATH:NVMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 13.4.2 "NVM Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
- Note: The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 13-4. The initial address is loaded into the NVMADRH:NVMADRL register pair; the data is loaded using indirect addressing.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7		•					bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
IX - IXcadabic	bit	W Windbie		e enimpien		40 0	

REGISTER 14-13: WPUB: WEAK PULL-UP PORTB REGISTER

'0' = Bit is cleared

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits⁽¹⁾

1 = Pull-up enabled

'1' = Bit is set

0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

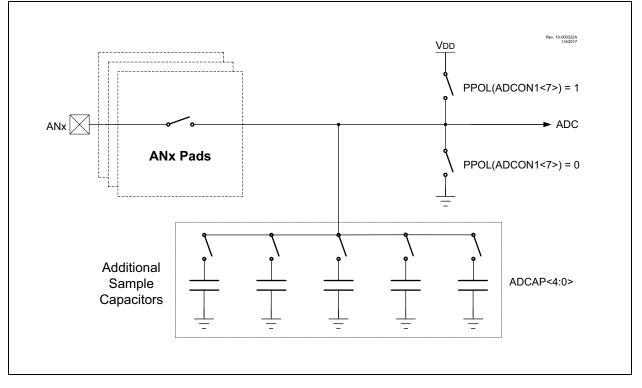
REGISTER 14-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODCB7 | ODCB6 | ODCB5 | ODCB4 | ODCB3 | ODCB2 | ODCB1 | ODCB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ODCB<7:0>:** PORTB Open-Drain Enable bits

For RB<7:0> pins, respectively


1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

19.4 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. Figure 19-6 shows the basic block diagram of the CVD portion of the ADC module.

FIGURE 19-6: HARDWARE CAPACITIVE VOLTAGE DIVIDER BLOCK DIAGRAM

REGISTER 22-3: CMxNSEL: COMPARATOR Cx NEGATIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	_	—	_		NCH<2:0>	
bit 7							bit 0

Legend:

Logonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
bit 2-0	NCH<2:0>: Comparator Negative Input Channel Select bits
	111 = CxVN connects to AVss
	110 = CxVN connects to FVR Buffer 2
	101 = CxVN unconnected
	100 = CxVN connects to CxIN4- pin
	011 = CxVN connects to CxIN3- pin
	010 = CxVN connects to CxIN2- pin
	$0.01 - C_{\rm X}/N$ connects to C_{\rm X}/N1 nin

001 = CxVN connects to CxIN1- pin 000 = CxVN connects to CxIN0- pin

REGISTER 22-4: CMxPSEL: COMPARATOR Cx POSITIVE INPUT SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	—	—	—		PCH<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-2 Unimplemented: Read as '0'
- bit 5-3 PCH<2:0>: Comparator Positive Input Channel Select bits
 - 111 = CxVP connects to AVss
 - 110 = CxVP connects to FVR Buffer 2
 - 101 = CxVP connects to DAC output
 - 100 = CxVP LCD VREF⁽¹⁾
 - 011 = CxVP unconnected
 - 010 = CxVP unconnected
 - 001 = CxVP connects to CxIN1+ pin
 - 000 = CxVP connects to CxIN0+ pin

Note 1: Applies to C2 comparator only.

28.1 Register Definitions: SMT Control

Long bit name prefixes for the SMT peripherals are shown in Table 28-1. Refer to **Section 1.1.2.2 "Long Bit Names"** for more information.

TABLE 28-1:

Peripheral	Bit Name Prefix
SMT1	SMT1

REGISTER 28-1: SMTxCON0: SMT CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
EN ⁽¹⁾	—	STP	WPOL	SPOL	CPOL	SMTxP	ITxPS<1:0>	
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: SMT Enable bit ⁽¹⁾ 1 = SMT is enabled 0 = SMT is disabled; internal states are reset, clock requests are disabled
bit 6	Unimplemented: Read as '0'
bit 5	STP: SMT Counter Halt Enable bit When SMTxTMR = SMTxPR: 1 = Counter remains SMTxPR; period match interrupt occurs when clocked 0 = Counter resets to 24'h000000; period match interrupt occurs when clocked
bit 4	WPOL: SMTxWIN Input Polarity Control bit 1 = SMTxWIN signal is active-low/falling edge enabled 0 = SMTxWIN signal is active-high/rising edge enabled
bit 3	SPOL: SMTxSIG Input Polarity Control bit 1 = SMTx_signal is active-low/falling edge enabled 0 = SMTx_signal is active-high/rising edge enabled
bit 2	CPOL: SMT Clock Input Polarity Control bit 1 = SMTxTMR increments on the falling edge of the selected clock signal 0 = SMTxTMR increments on the rising edge of the selected clock signal
bit 1-0	SMTxPS<1:0>: SMT Prescale Select bits 11 = Prescaler = 1:8 10 = Prescaler = 1:4 01 = Prescaler = 1:2 00 = Prescaler = 1:1

Note 1: Setting EN to '0' does not affect the register contents.

28.7.10 GATED COUNTER MODE

Gated Counter mode counts pulses on the SMTx_signal input, gated by the SMTxWIN input. It begins incrementing the timer upon seeing a rising edge of the SMTxWIN input and updates the SMTxCPW register upon a falling edge on the SMTxWIN input. See Figure 28-19 and Figure 28-20.

30.0 PULSE-WIDTH MODULATION (PWM)

The PWMx modules generate Pulse-Width Modulated (PWM) signals of varying frequency and duty cycle.

In addition to the CCP modules, the PIC16(L)F19155/56/75/76/85/86 devices contain two PWM modules (PWM3 and PWM4). The PWM modules reproduce the PWM capability of the CCP modules.

Note: The PWM3/4 modules are two instances of the same PWM module design. Throughout this section, the lower case 'x' in register and bit names is a generic reference to the PWM module number (which should be substituted with 3, or 4 during code development). For example, the control register is generically described in this chapter as PWMxCON, but the actual device registers are PWM3CON and PWM4CON. Similarly, the PWMxEN bit represents the PWM3EN and PWM4EN bits.

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully ON and fully OFF states. The PWM signal resembles a square wave where the high portion of the signal is considered the 'ON' state (pulse width), and the low portion of the signal is considered the 'OFF' state. The term duty cycle describes the proportion of the 'on' time to the 'off' time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and, in turn, the power that is applied to the load.

Figure 30-1 shows a typical waveform of the PWM signal.

FIGURE 30-1: **PWM OUTPUT** FOSC Q1 Q2 Q3 Q4 Rev. 10.0000000 PWM Pulse Width PWM TMRx = $PWMxDC^{(1)}$ TMRx = $PRx^{(1)}$ Note 1: Timer dependent on PWMTMRS register settings.

30.1.1 PWM CLOCK SELECTION

The PIC16(L)F19155/56/75/76/85/86 allows each individual CCP and PWM module to select the timer source that controls the module. Each module has an independent selection.

30.1.2 USING THE TMR2 WITH THE PWM MODULE

This device has a newer version of the TMR2 module that has many new modes, which allow for greater customization and control of the PWM signals than on older parts. Refer to Section 27.5 "Operation Examples" for examples of PWM signal generation using the different modes of Timer2.

Note:	PWM operation requires that the timer								
	used as the PWM time base has the								
	FOSC/4 clock source selected.								

30.1.3 PWM PERIOD

Referring to Figure 30-1, the PWM output has a period and a pulse width. The frequency of the PWM is the inverse of the period (1/period).

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

EQUATION 30-1: **PWM PERIOD**

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC$ • (TMR2 Prescale Value)

Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- · The PWMx pin is set (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM pulse width is latched from PWMxDC.

Note:	If the pu	ılse-v	vidth value	is great	ter than	the
	period,	the	assigned	PWM	pin(s)	will
	remain	unch	anged.			

30.1.4 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDC register. The PWMxDCH contains the eight MSbs and the PWMxDCL<7:6> bits contain the two LSbs.

The PWMDC register is double-buffered and can be updated at any time. This double buffering is essential for glitch-free PWM operation. New values take effect when TMR2 = PR2. Note that PWMDC is left-justified.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

Equation 30-2 is used to calculate the PWM pulse width.

Equation 30-3 is used to calculate the PWM duty cycle ratio.

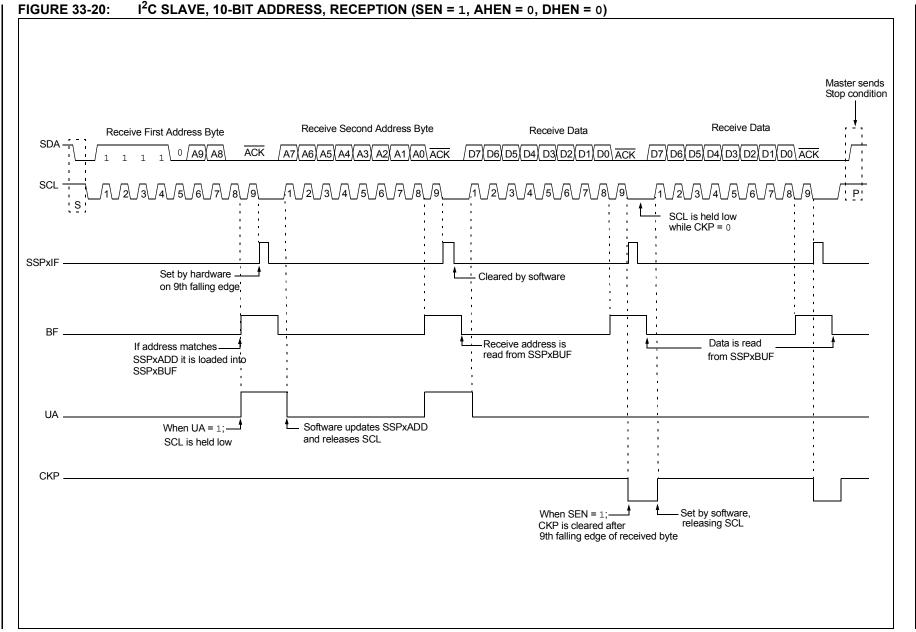
EQUATION 30-2: PULSE WIDTH

 $Pulse Width = (PWMxDC) \cdot TOSC \cdot$ (TMR2 Prescale Value)

EQUATION 30-3: DUTY CYCLE RATIO

(PWMxDC) Duty Cycle Ratio =

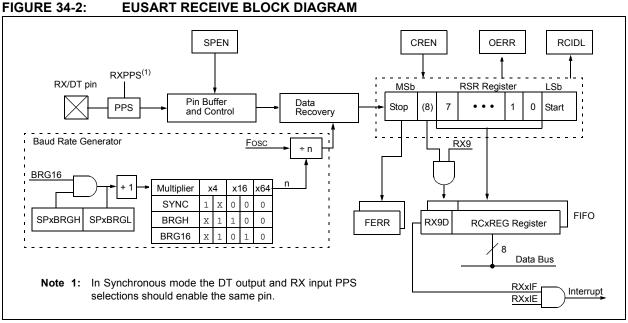
```
4(PR2 + 1)
```


30.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 30-4.

EQUATION 30-4: **PWM RESOLUTION**


Resolution =
$$\frac{\log[4(PR2+1)]}{\log(2)}$$
 bits

Register Definitions: MSSPx Control 33.8

REGISTER 33-1: SSPxSTAT: SSPx STATUS REGISTER

REGISTI R/W-0		R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0
SMP	(4)	D/A	P ⁽²⁾	S ⁽²⁾	R/W	UA	BF
bit 7				_			bit 0
Legend:							
R = Reada	ble bit	W = Writable bit		U = Unimpleme	nted bit, read as '0	2	
u = Bit is u	nchanged	x = Bit is unknow	vn	-n/n = Value at	POR and BOR/Val	ue at all other Res	sets
'1' = Bit is s	set	'0' = Bit is cleare	ed	HS/HC = Hardv	vare set/clear		
bit 7	SPI Master mod	Input Sample bit <u>de:</u> ampled at end of o	data output time				
	SPI Slave mode SMP must be c In I ² C Master of 1 = Slew rate c	control disabled for	s used in Slave r Standard Speed	node d mode (100 kHz	and 1 MHz)		
bit 6		control enabled for Edge Select bit (•	. , ,			
bit o	In SPI Master o 1 = Transmit oc 0 = Transmit oc In I ² C mode onl 1 = Enable inpu	r Slave mode: curs on transition curs on transition	from active to Id from Idle to activ sholds are comp	e clock state e clock state	specification		
bit 5	1 = Indicates th	ess bit (I ² C mode at the last byte rec at the last byte rec	eived or transmi				
bit 4	1 = Indicates th	This bit is cleared at a Stop bit has b s not detected last			led, SSPEN is clea Reset)	red.)	
bit 3	1 = Indicates th	This bit is cleared at a Start bit has b s not detected last			led, SSPEN is clea Reset)	red.)	
bit 2	This bit holds th next Start bit, Sl In I ² C Slave mo 1 = Read 0 = Write	top bit, or not ACK i <u>de:</u>	ion following the	last address mat	ch. This bit is only v	valid from the add	ress match to the
	0 = Transmit is	s in progress s not in progress	SEN, PEN, RCE	N or ACKEN will i	ndicate if the MSS	P is in IDLE mode	
bit 1	1 = Indicates th	dress bit (10-bit I ² at the user needs es not need to be	to update the ad	dress in the SSP	kADD register		
bit 0	0 = Receive not <u>Transmit (I²C m</u> 1 = Data transm	nd I ² C modes): mplete, SSPxBUF t complete, SSPxE lode only): nit in progress (doe	UF is empty es not include the		its), SSPxBUF is fi s), SSPxBUF is em		
Note 1: 2:	Polarity of clock state This bit is cleared on	•		•			

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXxSTA)
- Receive Status and Control (RCxSTA)
- Baud Rate Control (BAUDxCON)

These registers are detailed in Register 34-1, Register 34-2 and Register 34-3, respectively.

The RX input pin is selected with the RXPPS. The CK input is selected with the TXPPS register. TX, CK, and DT output pins are selected with each pin's RxyPPS register. Since the RX input is coupled with the DT output in Synchronous mode, it is the user's responsibility to select the same pin for both of these functions when operating in Synchronous mode. The EUSART control logic will control the data direction drivers automatically.

34.3.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDxCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPxBRGH:SPxBRGL register pair. The overflow condition will set the RXxIF flag. The counter continues to count until the fifth rising edge is detected on the RX pin. The RCIDL bit will remain false ('0') until the fifth rising edge at which time the RCIDL bit will be set. If the RCxREG is read after the overflow occurs but before the fifth rising edge then the fifth rising edge will set the RXxIF again.

Terminating the auto-baud process early to clear an overflow condition will prevent proper detection of the sync character fifth rising edge. If any falling edges of the sync character have not yet occurred when the ABDEN bit is cleared then those will be falsely detected as Start bits. The following steps are recommended to clear the overflow condition:

- 1. Read RCxREG to clear RXxIF.
- 2. If RCIDL is '0' then wait for RDCIF and repeat step 1.
- 3. Clear the ABDOVF bit.

34.3.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDxCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RXxIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 34-7), and asynchronously if the device is in Sleep mode (Figure 34-8). The interrupt condition is cleared by reading the RCxREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in IDLE mode waiting to receive the next character.

34.3.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

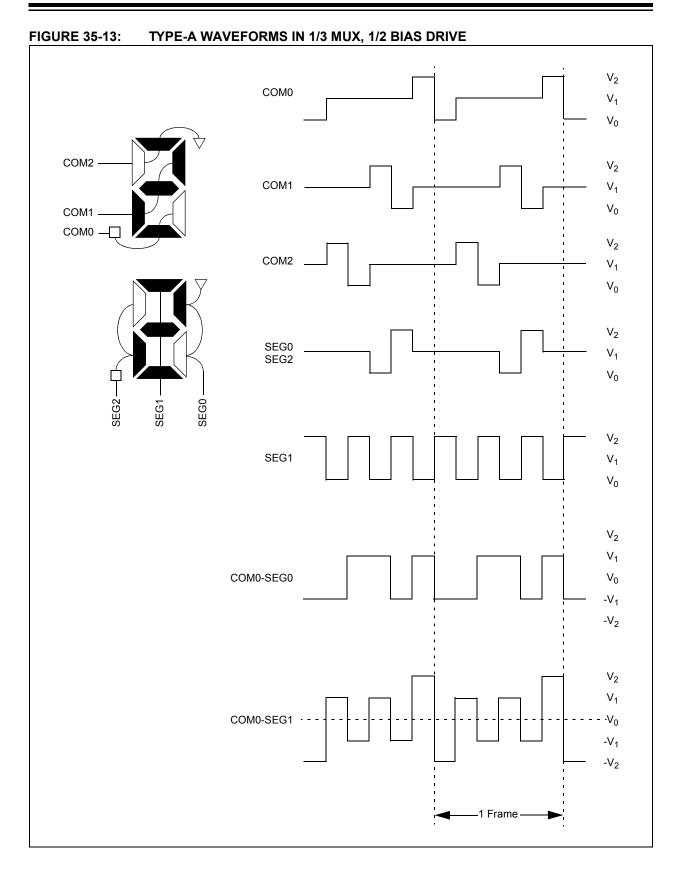
When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit


The wake-up event causes a receive interrupt by setting the RXxIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCxREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

35.7.4 35.6.4 INTERNAL RESISTOR WITH EXTERNAL CAPACITORS

In this configuration, the user can use the internal resistor ladders to generate the LCD bias levels, and use external capacitors to guard again burst currents. It is recommend the user utilize the external capacitors when driving large glass panels with a large pixels and a high pixel count. The external capacitors will help dampen current spikes during segment switching. Contrast is adjusted using the LCDCST<2:0> bits. The CFLYx pins are available as a GPIO. See Figure 35-7 for supported connections.

External capacitors can be used when voltage to the internal resistor ladder is supplied by VDD (LCDVSRC<3:0> = 0101) or an external source (LCDVSRC<3:0> = 0100). When supplying an external voltage to internal resistor ladder the external capacitors should be limited to VLCD2, and VLCD3.

© 2017 Microchip Technology Inc.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
LRLAP1	LRLAP0	LRLBP1	LRLBP0	LCDIRI	LRLAT2	LRLAT1	LRLAT0			
bit 7							bit 0			
Legend:										
-	- h:t		h:+		a anta d hit waar					
R = Readable		W = Writable		-	nented bit, read					
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	lown			
bit 7-6	During Time I 11 = Internal 10 = Internal 01 = Internal	: LCD Reference nterval A: LCD reference LCD reference LCD reference LCD reference	is the High-Po ladder is powe ladder is powe	wer (HP) ladde ered in Medium ered in Low-Pov	r Power mode wer mode					
bit 5-4		: LCD Reference	-							
	11 = Internal 10 = Internal 01 = Internal	During Time Interval B: 11 = Internal LCD reference ladder is powered in High-Power mode 10 = Internal LCD reference ladder is powered in Medium Power mode 01 = Internal LCD reference ladder is powered in Low-Power mode 00 = Internal LCD reference ladder is powered down and unconnected								
bit 3	Allows the Inte mode 'B' 1 = When the is disable	Internal Refere ernal reference LCD Reference d Internal Refere	band gap buffe e Ladder is in p	er to shut down ower mode 'B',	the LCD Interna	al Reference Ba	and Gap buffer			
bit 2-0	LRLAT<2:0>	: LCD Reference	e Ladder A Tir	ne Interval Cor	trol bits					
	Sets the num	ber of 32 clock	counts when t	he A Time Inter	val Power mod	le is active.				
	111 = Interna 110 = Interna 101 = Interna 100 = Interna 010 = Interna 001 = Interna 000 = Interna <u>For Type-B W</u> 111 = Interna 110 = Interna	Aveforms (WF I LCD reference I LCD reference Aveforms (WF I LCD reference I LCD reference	e ladder is in A e ladder is alw T = 1): e ladder is in A e ladder is in A	A Power mode f A Power mode f ays in B Power A Power mode f A Power mode f	or 6 clocks and or 5 clocks and or 4 clocks and or 3 clocks and or 2 clocks and or 1 clock and mode or 7 clocks and or 6 clocks and	I B Power mod B Power mod B Power mod B Power mod B Power mod B Power mode	e for 10 clocks e for 11 clocks e for 12 clocks e for 13 clocks e for 14 clocks e for 15 clocks e for 25 clocks e for 26 clocks			
	100 = Interna 011 = Interna 010 = Interna 001 = Interna	ILCD reference ILCD reference ILCD reference ILCD reference ILCD reference ILCD reference	e ladder is in A e ladder is in A e ladder is in A e ladder is in A	Power mode f Power mode f Power mode f Power mode f	or 4 clocks and or 3 clocks and or 2 clocks and or 1 clock and	I B Power mod I B Power mod I B Power mod	e for 28 clocks e for 29 clocks e for 30 clocks			

REGISTER 35-7: LCDRL: LCD INTERNAL REFERENCE LADDER CONTROL REGISTER

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORLW	Exclusive OR literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

XORWF	Exclusive OR W with f							
Syntax:	[label] XORWF f,d							
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	(W) .XOR. (f) \rightarrow (destination)							
Status Affected:	Z							
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.							

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page			
1EEBh	—				Unimpl	emented							
1EECh	_				Unimpl	emented							
1EEDh	_				Unimpl	emented							
1EEEh	_		Unimplemented										
1EEFh	—		Unimplemented										
1F0Ch					•	emented							
1F0Dh	_				•	emented							
1F0Eh					•	emented							
1F0Fh	—				· · ·	emented				-			
1F10h	RA0PPS	—		—	RA0PPS4	RA0PPS3	RA0PPS2	RA0PPS1	RA0PPS0	265			
1F11h	RA1PPS	_		_	RA1PPS4	RA1PPS3	RA1PPS2	RA1PPS1	RA1PPS0	265			
1F12h	RA2PPS	—		_	RA2PPS4	RA2PPS3	RA2PPS2	RA2PPS1	RA2PPS0	265			
1F13h	RA3PPS	—	—	_	RA3PPS4	RA3PPS3	RA3PPS2	RA3PPS1	RA3PPS0	265			
1F14h	RA4PPS	—	—	—	RA4PPS4	RA4PPS3	RA4PPS2	RA4PPS1	RA4PPS0	265			
1F15h	RA5PPS	—	—	_	RA5PPS4	RA5PPS3	RA5PPS2	RA5PPS1	RA5PPS0	265			
1F16h	RA6PPS	—	_	_	RA6PPS4	RA6PPS3	RA6PPS2	RA6PPS1	RA6PPS0	265			
1F17h	RA7PPS	—	_	—	RA7PPS4	RA7PPS3	RA7PPS2	RA7PPS1	RA7PPS0	265			
1F18h	RB0PPS	_	—	_	RB0PPS4	RB0PPS3	RB0PPS2	RB0PPS1	RB0PPS0	265			
1F19h	RB1PPS	—	—	—	RB1PPS4	RB1PPS3	RB1PPS2	RB1PPS1	RB1PPS0	265			
1F1Ah	RB2PPS	—	—	_	RB2PPS4	RB2PPS3	RB2PPS2	RB2PPS1	RB2PPS0	265			
1F1Bh	RB3PPS	—	—	—	RB3PPS4	RB3PPS3	RB3PPS2	RB3PPS1	RB3PPS0	265			
1F1Ch	RB4PPS	—	—	_	RB4PPS4	RB4PPS3	RB4PPS2	RB4PPS1	RB4PPS0	265			
1F1Dh	RB5PPS	—	—	_	RB5PPS4	RB5PPS3	RB5PPS2	RB5PPS1	RB5PPS0	265			
1F1Eh	RB6PPS	_	_	_	RB6PPS4	RB6PPS3	RB6PPS2	RB6PPS1	RB6PPS0	265			
1F1Fh	RB7PPS	_	_	_	RB7PPS4	RB7PPS3	RB7PPS2	RB7PPS1	RB7PPS0	265			
1F20h	RC0PPS	_	_	_	RC0PPS4	RC0PPS3	RC0PPS2	RC0PPS1	RC0PPS0	265			
1F21h	RC1PPS	_	—	_	RC1PPS4	RC1PPS3	RC1PPS2	RC1PPS1	RC1PPS0	265			
1F22h	RC2PPS	_	—	_	RC2PPS4	RC2PPS3	RC2PPS2	RC2PPS1	RC2PPS0	265			
1F23h	RC3PPS	_	_	_	RC3PPS4	RC3PPS3	RC3PPS2	RC3PPS1	RC3PPS0	265			
1F24h	RC4PPS	_		_	RC4PPS4	RC4PPS3	RC4PPS2	RC4PPS1	RC4PPS0	265			
1F25h	_					emented	110 11 1 02	11011101		200			
1F26h	RC6PPS	_	_	_	RC6PPS4	RC6PPS3	RC6PPS2	RC6PPS1	RC6PPS0	265			
1F27h	RC7PPS	_		_	RC7PPS4	RC7PPS3	RC7PPS2	RC7PPS1	RC7PPS0	265			
1F28h	RD0PPS	_	_	_	RD0PPS4	RD0PPS3	RD0PPS2	RD0PPS1	RD0PPS0	265			
1F29h	RD1PPS	_	_	_	RD1PPS4	RD1PPS3	RD1PPS2	RD1PPS1	RD1PPS0	265			
1F2Ah	RD2PPS	_	_	_	RD1PP34 RD2PPS4	RD2PPS3	RD2PPS2		RD2PPS0	265			
		_	_	_				RD2PPS1					
1F2Bh	RD3PPS			_	RD3PPS4	RD3PPS3	RD3PPS2	RD3PPS1	RD3PPS0	265			
1F2Ch	RD4PPS				RD4PPS4	RD4PPS3	RD4PPS2	RD4PPS1	RD4PPS0	265			
1F2Dh	RD5PPS	_	_	_	RD5PPS4	RD5PPS3	RD5PPS2	RD5PPS1	RD5PPS0	265			
1F2Eh	RD6PPS	_		_	RD6PPS4	RD6PPS3	RD6PPS2	RD6PPS1	RD6PPS0	265			
1F2Fh	RD7PPS	_			RD7PPS4	RD7PPS3	RD7PPS2	RD7PPS1	RD7PPS0	265			
1F30h	RE0PPS	—	_	_	RE0PPS4	RE0PPS3	RE0PPS2	RE0PPS1	RE0PPS0	265			
1F31h	RE1PPS	—	—	—	RE1PPS4	RE1PPS3	RE1PPS2	RE1PPS1	RE1PPS0	265			
1F32h	RE2PPS	—		—	RE2PPS4	RE2PPS3	RE2PPS2	RE2PPS1	RE2PPS0	265			

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

 $Legend: \quad x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.$

Note 1: Unimplemented data memory locations, read as '0'.