

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19156-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1/O ⁽²⁾	28-Pin SPDIP/SSOP/SOIC	28-Pin UQFN	ADC	Reference	Comparator	Zero-Cross Detect	DAC	Timers/SMT	CCP	MWG	CWG	MSSP	EUSART	CLC	RTCC	ГСD	Interrupt-on-Change	High Current	Pull-up	Basic
RB6	27	24	ANB6	I	_	I	—	_	_	_	—	_	TX2 ⁽¹⁾ CK2 ⁽¹⁾	CLCIN2 ⁽¹⁾		SEG14	IOCB6		Υ	ICDCLK/ ICSPCLK
RB7	28	25	ANB7	-	—	-	DAC1OUT2	—	—	—	—	—	RX2 ⁽¹⁾ DT2 ⁽¹⁾	CLCIN3 ⁽¹⁾	_	SEG15	IOCB7	_	Y	ICDDAT/ ICSPDAT
RC0	11	8	_		_	Ι	_	T1CKI ⁽¹⁾ SMTWIN1 ⁽¹⁾	-	—	—	—	-	-			IOCC0		Y	SOSCO
RC1	12	9	_		—	_	—	SMTSIG1 ⁽¹⁾ T4IN ⁽¹⁾	CCP2 ⁽¹⁾	—	—	_	—	—			IOCC1	_	Y	SOSCI
RC2	13	10	ANC2		-	_	—	—	CCP1 ⁽¹⁾	-	_	_	_	_		COM2 SEG18	IOCC2	_	Y	_
RC3	14	11	ANC3	-	_	_	—	T2IN ⁽¹⁾	_	—	_	SCK ⁽¹⁾ SCL ^(1,3,4)	_	_	_	SEG19	IOCC3	_	Y	_
RC4	15	12	ANC4	_	_	_	_	_	_	_	_	SDI ⁽¹⁾ SDA ^(1,3,4)	_	_	_	SEG20	IOCC4	_	Y	_
RC6	17	14	ANC6	_	_	_	_	_	_	_	_	_	TX1 ⁽¹⁾ CK1 ⁽¹⁾	_	_	COM5 SEG22 VLCD2	IOCC6	_	Y	_
RC7	18	15	ANC7	-	_	_	_	-	_		_	_	RX1 ⁽¹⁾ DT1 ⁽¹⁾	_	_	SEG23 COM4 VLCD1	IOCC7	_	Y	-
RE3	1	26	-	-	—	_	—	_	—	—	_	—	_	_		-	IOCE3	_	Υ	MCLR
VLCD3	16	13	—	—	—	—	_	_	_	—	_			_	—	VLCD3	—	_	—	
Vdd	20	17	_	_		_	_	—	_	_	_		_	—	_	_	_	_	-	Vdd
Vss	8 19	5 16	_	_	—	—	—	—	_	—	_	—	—	—	_	_	—	_	_	Vss
OUT ⁽²⁾	_	_	ADGRDA ADGRDB	_	C1OUT C2OUT	_	_	TMR0	CCP1 CCP2	PWM3 PWM4	CWG1A CWG1B CWG1C CWG1D	SDO SCK SCL SDA	TX1 DT1 CK1 TX2 DT2 CK2	CLC1OUT	RTCC	_	_	_	_	_

TABLE 3 28-PIN ALLOCATION TABLE (PIC16(L)E19155/56) (CONTINUED)

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 3:

These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by INLCVL register, instead of the I²C specific or 4: SMBUS input buffer thresholds.

These are alternative I²C logic levels pins. 5:

In I²C logic levels configuration, these pins can operate as either SCL and SDA pins. 6:

© 2017 Microchip Technology Inc.

Preliminary

Name	Function	Input Type	Output Type	Description
RC0/T1CKI ⁽¹⁾ /SMTWIN1 ⁽¹⁾ /IOCC0/SOSCO	RC0	TTL/ST	CMOS/OD	General purpose I/O.
	T1CKI ⁽¹⁾	—	_	Timer1 clock input.
	SMTWIN1 ⁽¹⁾	_	_	SMT window input.
	IOCC0	TTL/ST	_	Interrupt-on-change input.
	SOSCO	#VALUE!	AN	32.768 kHz secondary oscillator crystal driver output.
RC1/T4IN ⁽¹⁾ /SMTSIG1 ⁽¹⁾ /CCP2 ⁽¹⁾ /IOCC1/SOSCI	RC1	TTL/ST	CMOS/OD	General purpose I/O.
	T4IN ⁽¹⁾	-	—	Timer4 external input.
	SMTSIG1 ⁽¹⁾	-	_	SMT signal input.
	CCP2 ⁽¹⁾	_	_	CCP Capture Input.
	IOCC1	TTL/ST	_	Interrupt-on-change input.
	SOSCI		—	32.768 kHz secondary oscillator crystal driver input.
RC2/CCP1 ⁽¹⁾ /IOCC2/ANC2/SEG18/COM2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	CCP1 ⁽¹⁾	—	_	CCP Capture Input.
	IOCC2	TTL/ST	_	Interrupt-on-change input.
	ANC2	AN	_	ADC Channel input.
	SEG18	_	AN	LCD Analog output.
	COM2	_	AN	LCD Driver Common Outputs.
RC3/T2IN/SCL ^(3,4) /SCK ⁽¹⁾ /SEG19	RC3	TTL/ST	CMOS/OD	General purpose I/O.
	T2IN ⁽¹⁾	_	—	Timer2 external input.
	SCL ^(3,4)	l ² C	OD	MSSP I ² Cclock input/output.
	SCK ⁽¹⁾	TTL/ST	_	MSSP SPI clock input/output
	IOCC3	TTL/ST	_	Interrupt-on-change input.
	ANC3	AN	_	ADC Channel input.
	SEG19	_	AN	LCD Analog output.
RC4/SDA ^(3,4) /SDI ⁽¹⁾ /IOCC4/ANC4/SEG20	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	SDA ^(3,4)	TTL/ST	_	MSSP I ² C data input/output.
	SDI ⁽¹⁾	I ² C	OD	MSSP SPI serial data in.
	IOCC4	TTL/ST	_	Interrupt-on-change input.
	ANC4	AN	_	ADC Channel input.
	SEG20	_	AN	LCD Analog output.
RC6/CK1 ⁽³⁾ /TX1 ⁽¹⁾ /IOCC6/ANC6/SEG22/COM5/VLCD2	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	CK1 ⁽³⁾	-	—	EUSART synchronous clock out
	TX1 ⁽¹⁾	_	—	EUSART asynchronous TX data out
	IOCC6	TTL/ST	_	Interrupt-on-change input.
	ANC6	AN	_	ADC Channel input.
	SEG22		AN	LCD Analog output.
	COM5		AN	LCD Driver Common Outputs.
	VLCD2	AN	_	LCD analog input
Legend: AN = Analog input or output CMOS =	CMOS compati	ble input or out	tput OD = O	Dpen-Drain

TABLE 1-2: PIC16(L)F19155/56 PINOUT DESCRIPTION (CONTINUED)

Legend:

CMOS = CMOS compatible input or output OD = Open-Drain

ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C TTL = TTL compatible input HV = High Voltage XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 14-2 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as 2: described in Table 14-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

Name	Function	Input Type	Output Type	Description
RB3/C1IN2-/C2IN2-/IOCB3/ANB3/SEG11/SEGCFLY2	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN2-	AN	_	Comparator negative input.
	C2IN2-	AN	_	Comparator negative input.
	IOCB3	TTL/ST	_	Interrupt-on-change input.
	ANB3	AN	_	ADC Channel input.
	SEG11	_	AN	LCD Analog output.
	SEGCFLY2	AN	_	LCD Drive Charge Pump Capacitor Inputs
RB4/ADCACT ⁽¹⁾ /IOCB4/ANB4/COM0	RB4	TTL/ST	CMOS/OD	General purpose I/O.
	ADCACT ⁽¹⁾	TTL/ST	—	ADC Auto-Conversion Trigger input
	IOCB4	TTL/ST	_	Interrupt-on-change input.
	ANB4	AN	_	ADC Channel input.
	COM0	_	AN	LCD Driver Common Outputs.
RB5/T1G ⁽¹⁾ /IOCB5/ANB5/SEG13/COM1	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	T1G ⁽¹⁾	—	_	Timer1 Gate input.
	IOCB5	TTL/ST	_	Interrupt-on-change input.
	ANB5	AN	_	ADC Channel input.
	SEG13	-	AN	LCD Analog output.
	COM1	-	AN	LCD Driver Common Outputs.
RB6/CK2 ⁽³⁾ /TX2 ⁽¹⁾ /CLCIN2 ⁽¹⁾ /IOCB6/ANB6/SEG14/	RB6	TTL/ST	CMOS/OD	General purpose I/O.
ICSPCLK	CK2 ⁽³⁾	-	_	EUSART synchronous clock out
	TX2 ⁽¹⁾	_	_	EUSART asynchronous TX data out
	CLCIN2 ⁽¹⁾		_	Configurable Logic Cell source input.
	IOCB6	TTL/ST	_	Interrupt-on-change input.
	ANB6	AN	_	ADC Channel input.
	SEG14	_	AN	LCD Analog output.
	ICSPCLK	ST	_	In-Circuit Serial Programming™ and debugging clock input.
RB7/DK2 ⁽³⁾ /RX2 ⁽¹⁾ /CLCIN3 ⁽¹⁾ /IOCB7/ANB7/SEG15/	RB7	TTL/ST	CMOS/OD	General purpose I/O.
DAC10UT2/ICSPDAT	DK2 ⁽³⁾	—	_	EUSART synchronous data output
	RX2 ⁽¹⁾	_	_	EUSART receive input.
	CLCIN3 ⁽¹⁾	_	_	Configurable Logic Cell source input.
	IOCB7	TTL/ST	_	Interrupt-on-change input.
	ANB7	_	AN	ADC Channel input.
	SEG15	_	AN	LCD Analog output.
	DAC10UT2	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	TTL/ST	TTL/ST	In-Circuit Serial Programming™ and debugging data input/output.

TABLE 1-3: PIC16(L)F19175/76 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output TTL = TTL compatible input' HV = High Voltage

CMOS = CMOS compatible input or output OD = Open-Drain

ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C XTAL = Crystal levels

Note This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. 1: Refer to Table 14-2 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as 2: described in Table 14-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS 3: output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

TABLE 1-3: PIC16(L)F19175/76 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RE2/ANE2/SEG34/COM7	RE2	TTL/ST	CMOS/OD	General purpose I/O.
	ANE2	AN	_	ADC Channel input.
	SEG34	_	AN	LCD analog input
	COM7	_	AN	LCD Driver Common Outputs.
RE3/IOCE3/MCLR	RE3	TTL/ST	CMOS/OD	General purpose I/O.
	IOCE3	TTL/ST		Interrupt-on-change input.
	MCLR	ST		Master clear input with internal weak pull up resistor.
VLCD3	VLCD3	AN		LCD analog input
VDD	VDD	Power	Р	Positive supply voltage input.
Vss	VDD	Power	Р	Ground reference.

AN = Analog input or output TTL = TTL compatible input Legend: HV = High Voltage

 $\begin{array}{ll} \mbox{CMOS} = \mbox{CMOS} \mbox{ compatible input or output} & \mbox{OD} = \mbox{Open-Drain} \\ \mbox{ST} = \mbox{Schmitt Trigger input with CMOS levels} & \mbox{I}^2\mbox{C} = \mbox{Schmitt Trigger input with } I^2\mbox{C} \end{array}$

XTAL = Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note 1: Refer to Table 14-2 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as 2: described in Table 14-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS 3: output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assign-4: ments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Name	Function	Input Types	Output Types	Description
RA0/C1IN0-/C2IN0-/ANA0/CLCIN0 ⁽¹⁾ /IOCA0/SEG0	RA0	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN0-	AN	_	Comparator negative input.
	C2IN0-	AN	_	Comparator negative input.
	ANA0	AN	_	ADC Channel input.
	CLCIN0 ⁽¹⁾	_	-	Configurable Logic Cell source input.
	IOCA0	TTL/ST	_	Interrupt-on-change input.
	SEG0	-	AN	LCD Analog output.
RA1/C1IN1-/C2IN1-/ANA1/CLCIN1 ⁽¹⁾ /SEG1	RA1	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN1-	AN	_	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	ANA1	AN	_	ADC Channel input.
	CLCIN1 ⁽¹⁾	_	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	_	Interrupt-on-change input.
	SEG1	—	AN	LCD Analog output.
RA2/C1IN0+/C2IN0+/ANA2/DAC1OUT1/IOCA2/SEG2	RA2	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	ANA2	AN	_	ADC Channel input.
	DAC1OUT1	—	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
	SEG2	_	AN	LCD Analog output.
RA3/C1IN1+/ANA3/SEG3/IOCA3/VREF+ (ADC)/VREF+	RA3	TTL/ST	CMOS/OD	General purpose I/O.
(DAC1)	C1IN1+	AN	_	Comparator positive input.
	ANA3	AN	_	ADC Channel input.
	SEG3	_	AN	LCD Analog output.
	IOCA3	TTL/ST	_	Interrupt-on-change input.
	VREF+ (ADC)	AN	—	ADC positive reference.
	VREF+ (DAC1)	AN		DAC positive reference.
RA4/ANA4/T0CKI ⁽¹⁾ /IOCA4/SEG4/COM3	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	_	ADC Channel input.
	T0CKI ⁽¹⁾	_	-	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
	SEG4	—	AN	LCD Analog output.
	COM3	_	AN	LCD Driver Common Outputs.
RA5/SS ⁽¹⁾ /IOCA5/VBAT	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	SS ⁽¹⁾	TTL/ST	_	MSSP SPI slave select input.
	IOCA5	TTL/ST	_	Interrupt-on-change input.
	VBAT	AN	_	RTCC Back-up Battery.
Legend: AN = Analog input or output CMOS	= CMOS compati	ble input or out	out OD = Op	en-Drain

TABLE 1-4: PIC16(L)F19185/86 PINOUT DESCRIPTION

AN = Analog input or output CMOS = CMOS compatible input or output Legend: TTL = TTL compatible input HV = High Voltage

ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C XTAL = Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note 1: Refer to Table 14-2 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 14-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assign-4: ments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 60											
				CPU	CORE REGISTERS	; see Table 4-3 for	rspecifics				
1E0Ch					Unimpler	mented					
1E0Dh	_				Unimpler	mented					
1E0Eh	—				Unimpler	nented					
1E0Fh	CLCDATA	—	_	_	_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	0000 0000	0000 0000
1E10h	CLC1CON	LC1EN		LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0	>	0-00000	0-000000
1E11h	CLC1POL	LC1POL		—	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
1E12h	CLC1SEL0	—	—			LC1D1S	6<5:0>			xxxx xxxx	uuuu uuuu
1E13h	CLC1SEL1	—	—			LC1D2S	6<5:0>			xxxx xxxx	uuuu uuuu
1E14h	CLC1SEL2	—	—			LC1D38	6<5:0>			xxxx xxxx	uuuu uuuu
1E15h	CLC1SEL3	—	_			LC1D4S	8<5:0>			xxxx xxxx	uuuu uuuu
1E16h	CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuuu
1E17h	CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
1E18h	CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
1E19h	CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
1E1Ah	CLC2CON	LC2EN		LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0	>	0-00 0000	0-00 0000
1E1Bh	CLC2POL	LC2POL	_	—	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuuu
1E1Ch	CLC2SEL0	—	_			LC2D18	8<5:0>			xxxx xxxx	uuuu uuuu
1E1Dh	CLC2SEL1	—				LC2D2S	6<5:0>			xxxx xxxx	uuuu uuuu
1E1Eh	CLC2SEL2	_				LC2D3S	6<5:0>			xxxx xxxx	uuuu uuuu
1E1Fh	CLC2SEL3	_	_			LC2D48	6<5:0>			xxxx xxxx	uuuu uuuu
1E20h	CLC2GLS0	LC2G1D4T	LC1G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xx xxxx	uuuu uuuu
1E21h	CLC2GLS1	LC2G2D4T	LC1G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	uuuu uuuu

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

4.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 4-3 shows the five situations for the loading of the PC.

FIGURE 4-3: LOADING OF PC IN DIFFERENT SITUATIONS

4.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

4.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

4.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

4.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 + the signed value of the operand of the BRA instruction.

REGISTER	10-15: PIR4: I	PERIPHERA		PI REQUES	I REGISTER	4	
U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0
_	_	—	_	TMR4IF	_	TMR2IF	TMR1IF
bit 7							bit 0
r							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	HS = Hardwa	are set		
bit 7-4	Unimplement	ted: Read as '	0'				
bit 3	TRM4IF: Time	er4 Interrupt FI	ag bit				
	1 = The TMR4	postscaler ove	erflowed, or in	1:1 mode, a TI	MR4 to PR4 mat	ch occurred (m	ust be cleared
	0 = No TMR4	event has occ	urred				
bit 2	Unimplement	ted: Read as '	0'				
bit 1	TRM2IF: Time	er2 Interrupt FI	ag bit				
	1 = The TMR2	2 postscaler ov	erflowed, or in	1:1 mode, a TI	MR2 to PR2 mat	ch occurred (m	ust be cleared
	0 = No TMR2	event has occ	urred				
bit 0	TRM1IF: Time	er1 Overflow Ir	nterrupt Flag b	bit			
	1 = Timer1 ov	erflow occurre	d (must be cle	eared in softwa	re)		
	0 = No Timer1	1 overflow occu	urred				
Note: Int co its En Us	errupt flag bits and ndition occurs, re corresponding e able bit, GIE, o er software	re set when an egardless of the enable bit or th f the INTCON should ensu	interrupt e state of e Global register. ure the				

appropriate interrupt flag bit prior to enabling an interrupt.

11.4 Register Definitions: Voltage Regulator and DOZE Control

REGISTER 11-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER ⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	U-0
	—	—	—	—	—	VREGPM	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
<u> </u>							

bit 7-2 Unimplemented: Read as '0'

bit 1

VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾
 - Draws lowest current in Sleep, slower wake-up
- 0 = Normal Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up

bit 0 Unimplemented: Read as '1'. Maintain this bit set

Note 1: PIC16F19155/56/75/76/85/86 only.

2: See Section 39.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON1	—		NOSC<2:0>			NDIV<	3:0>		152
OSCCON2	—		COSC<2:0>			CDIV<	3:0>		152
OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	—	—	—	154
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	140
STATUS	—	—		TO	PD	Z	DC	С	50
WDTCON0	—	—			WDTPS<4:)>		SWDTEN	196
WDTCON1	—	V	VDTCS<2:0>		—	WI	NDOW<2:0>	>	197
WDTPSL				PSCNT<7:0>					198
WDTPSH			PSCNT<15:8>						198
WDTTMR			WDTTM	R<3:0>		STATE	PSCNT	<17:16>	198

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH WINDOWED WATCHDOG TIMER

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	—	CSWEN	LCDPEN	VBATEN	CLKOUTEN	100
CONFIGT	7:0	_	F	RSTOSC<2:0	>	—	I	EXTOSC<2:0	>	120

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

19.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO bit is set by hardware.

The Auto-conversion Trigger source is selected by the ADACT register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Register 19-33 for auto-conversion sources.

19.2.6 ADC CONVERSION PROCEDURE (BASIC MODE)

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRISx register)
 - Configure pin as analog (Refer to the ANSELx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Select voltage reference
 - Select ADC input channel
 - Precharge and acquisition
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable global interrupt (GIE bit)⁽¹⁾
- If ADACQ = 0, software must wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - · Polling the GO bit
 - Polling the ADIF bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

> 2: Refer to Section 19.3 "ADC Acquisition Requirements".

24.1 OPERATION

The RTCC consists of a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1st, 2000 to 23:59:59 on December 31st, 2099.

The hours use the 24-hour time format (military time) with no hardware provisions for regular time format (AM/PM). The clock provides a granularity of one second with additional visibility to the half-second.

The user has visibility to the half second field of the counter. This value is read-only and can be reset only by writing to the lower half of the SECONDS register.

24.1.1 REGISTER INTERFACE

The RTCC register set is divided into the following categories:

Control Registers

- RTCCON
- RTCCAL
- ALRMCON
- ALRMRPT

Clock Value Registers

- YEAR
- MONTH
- DAY
- WEEKDAY
- HOURS
- MINUTES
- SECONDS

Alarm Value Registers

- ALRMMNTH
- ALRMDAY
- ALRMWD
- ALRMHR
- ALRMMIN
- ALRMSEC

Note: The WEEKDAY register is not automatically derived from the date, but it must be correctly set by the user.

The register interface for the RTCC and alarm values is implemented using the Binary Coded Decimal (BCD) format. This simplifies the firmware when using the module, as each of the digits is contained within its own 4-bit value (see **Section 24.1.3 "Clock Sources"** and Figure 24-3).

All timer registers containing a value of seconds or greater are writable. The user can configure the initial start date and time by writing the year, month, day, hour, minutes and seconds into the clock value registers and the timer will then proceed to count from the newly written values.

The RTCC module is enabled by setting the RTCEN bit (RTCCON<7>). Once the RTCC is enabled, the timer will continue incrementing, even while the clock value registers are being re-written. However, any time the SECONDS register is written to, all of the clock value prescalers are reset to '0'. This allows lower granularity of timer adjustments.

The Timer registers are updated in the same cycle as the WRITE instruction's execution by the CPU. The user must ensure that when RTCEN = 1, the updated registers will not be incremented at the same time. This can be accomplished in several ways:

- By checking the RTCSYNC bit (RTCCON<4>)
- By checking the preceding digits from which a carry can occur
- By updating the registers immediately following the seconds pulse (or alarm interrupt)

24.1.2 WRITE LOCK

To perform a write to any of the RTCC timer registers, the RTCWREN bit must be set. To avoid accidental writes to the timer, it is recommended that the RTCWREN bit is kept clear at any other time.

The RTCEN bit can only be written to when RTCWREN = 1. A write attempt to this bit while RTCWREN = 0 will be ignored. The RTCC timer registers can be written with RTCEN = 0 or 1.

R/W/HS-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0
SHUTDOWN ^(1, 2)	REN	LSBE	0<1:0>	LSAC	<1:0>	—	—
bit 7							bit 0
Legend:							
HC = Bit is cleared	by hardware			HS = Bit is se	et by hardware		
R = Readable bit		W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
u = Bit is unchange	ed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	OR/Value at al	I other Resets
'1' = Bit is set		'0' = Bit is cle	eared	q = Value dep	pends on cond	lition	
bit 7	SHUTDOWN 1 = An Auto- 0 = No Auto-	: Auto-Shutdo Shutdown sta shutdown eve	own Event Sta te is in effect ent has occurr	tus bit ^(1, 2) ed			
bit 6	REN: Auto-R	estart Enable	bit				
	1 = Auto-res 0 = Auto-res	tart enabled tart disabled					
bit 5-4	LSBD<1:0>:	CWG1B and	CWG1D Auto	-Shutdown Sta	te Control bits		
	11 =A logic '1 10 =A logic '0 01 =Pin is tri- 00 =The inac band int	L' is placed or O' is placed or -stated on CW tive state of th terval	CWG1B/D w CWG1B/D w G1B/D when e pin, including	hen an auto-sh hen an auto-sh an auto-shutdo g polarity, is pla	utdown event utdown event wn event is pr ced on CWG1	is present is present esent B/D after the r	equired dead-
bit 3-2	LSAC<1:0>:	CWG1A and	CWG1C Auto	-Shutdown Sta	te Control bits		
	11 =A logic '2 10 =A logic '0 01 =Pin is tri- 00 =The inac band in	L' is placed or D' is placed or -stated on CW tive state of th terval	CWG1A/C w CWG1A/C w G1A/C when e pin, including	hen an auto-sh hen an auto-sh an auto-shutdc g polarity, is pla	utdown event utdown event wn event is pr ced on CWG1	is present is present esent A/C after the r	equired dead-
bit 1-0	Unimplemer	ted: Read as	'0'				
Note 1: This b	it may be writ uration.	ten while EN	= 0 (CWG10	CON0 register)	to place the	outputs into	the shutdown

REGISTER 31-5: CWG1AS0: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 0

2: The outputs will remain in auto-shutdown state until the next rising edge of the input signal after this bit is cleared.

33.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an $\overline{\text{ACK}}$ is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, the clock is stretched, allowing the slave time to change the ACK value before it is sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

33.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 33-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCL pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

33.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 33-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 33-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

33.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPxCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

33.5.6.1 Normal Clock Stretching

Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

33.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPxADD.

33.5.6.3 Byte NACKing

When AHEN bit of SSPxCON3 is set; CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When DHEN bit of SSPxCON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

33.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 33-23).

FIGURE 33-23: CLOCK SYNCHRONIZATION TIMING

33.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 33-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 33-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 33-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page			
1FD0h	—		Unimplemented										
1FD1h	—		Unimplemented										
1FD2h	—		Unimplemented										
1FD3h	—		Unimplemented										
1FD4h	—		Unimplemented										
1FD5h	_		Unimplemented										
1FD6h	_		Unimplemented										
1FD7h	_		Unimplemented										
1FD8h	_		Unimplemented										
1FD9h	_		Unimplemented										
1FDAh	_		Unimplemented										
1FDBh	_		Unimplemented										
1FDCh	_		Unimplemented										
1FDDh	_		Unimplemented										
1FDEh	_		Unimplemented										
1FDFh	_	Unimplemented											
1FE0h	_	Unimplemented											
1FE1h	_	Unimplemented											
1FE2h	_	Unimplemented											
1FE3h	_	Unimplemented											
1FE4h	STATUS_SHAD	—	—	—	—	—	Z_SHAD	DC_SHAD	C_SHAD				
1FE5h	WREG_SHAD	WREG_SHAD<7:0>											
1FE6h	BSR_SHAD	_	BSR_SHAD<4:0>										
1FE7h	PCLATH_SHAD	PCLATH_SHAD<6:0>											
1FE8h	FSR0L_SHAD	FSR0L_SHAD<7:0>											
1FE9h	FSR0H_SHAD	FSR0H_SHAD<7:0>											
1FEAh	FSR1L_SHAD	FSR1L_SHAD<7:0>											
1FEBh	FSR1H_SHAD	FSR1H_SHAD<7:0>											
1FECh	—	Unimplemented											
1FEDh	STKPTR	_	— — — STKPTR<4:0>										
1FEEh	TOSL	TOSL<7:0>											
1FEFh	TOSH	— TOSH<6:0>											

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N	48			
Pitch	е	0.40 BSC			
Overall Height	A	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	4.45	4.60	4.75	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	4.45	4.60	4.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	ĸ	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2