



### Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Active                                                                      |
|----------------------------|-----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                         |
| Core Size                  | 8-Bit                                                                       |
| Speed                      | 32MHz                                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                   |
| Peripherals                | Brown-out Detect/Reset, LCD, POR, PWM, WDT                                  |
| Number of I/O              | 24                                                                          |
| Program Memory Size        | 28KB (16K x 14)                                                             |
| Program Memory Type        | FLASH                                                                       |
| EEPROM Size                | 256 x 8                                                                     |
| RAM Size                   | 2K x 8                                                                      |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                                 |
| Data Converters            | A/D 20x12b; D/A 1x5b                                                        |
| Oscillator Type            | Internal                                                                    |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                           |
| Mounting Type              | Surface Mount                                                               |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                              |
| Supplier Device Package    | 28-SSOP                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f19156t-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# PIC16(L)F19155/56/75/76/85/86

### **PIN ALLOCATION TABLES**

### TABLE 3: 28-PIN ALLOCATION TABLE (PIC16(L)F19155/56)

| I/O(2) | 28-Pin SPDIP/SSOP/SOIC | 28-Pin UQFN | ADC                           | Reference | Comparator       | Zero-Cross Detect | DAC      | Timers/SMT           | CCP | PWM | CWG                   | MSSP                                   | EUSART | כרכ                   | RTCC | LCD                    | Interrupt-on-Change | High Current | dn-llud | Basic          |
|--------|------------------------|-------------|-------------------------------|-----------|------------------|-------------------|----------|----------------------|-----|-----|-----------------------|----------------------------------------|--------|-----------------------|------|------------------------|---------------------|--------------|---------|----------------|
| RA0    | 2                      | 27          | ANA0                          | I         | C1IN0-<br>C2IN0- | I                 | —        | _                    | _   | _   | -                     | —                                      | _      | CLCIN0 <sup>(1)</sup> | _    | SEG0                   | IOCA0               |              | Y       | —              |
| RA1    | 3                      | 28          | ANA1                          | -         | C1IN1-<br>C2IN1- | _                 | —        | Ι                    | —   | _   | -                     | —                                      | _      | CLCIN1 <sup>(1)</sup> | Ι    | SEG1                   | IOCA1               | _            | -       | —              |
| RA2    | 4                      | 1           | ANA2                          |           | C1IN0+<br>C2IN0+ | _                 | DAC1OUT1 |                      | -   | _   | -                     | _                                      | _      | —                     | Ι    | SEG2                   | IOCA2               | _            | Y       | —              |
| RA3    | 5                      | 2           | ANA3                          | VREF+     | C1IN1+           |                   | DAC1REF+ | _                    | _   | _   | _                     | _                                      | _      | _                     | —    | SEG3                   | IOCA3               |              | Y       | _              |
| RA4    | 6                      | 3           | ANA4                          | -         | _                | _                 | —        | T0CKI <sup>(1)</sup> | _   | _   | _                     | —                                      | _      | _                     |      | SEG4<br>COM3           | IOCA4               | _            | Y       | —              |
| RA5    | 7                      | 4           | _                             | _         | _                | _                 | _        | _                    | _   | _   | _                     | SS <sup>(1)</sup>                      | _      | —                     | _    | _                      | IOCA5               | _            | Υ       | VBAT           |
| RA6    | 10                     | 7           | ANA6                          | _         |                  | _                 | —        |                      | -   | _   | _                     | —                                      | _      | _                     | Ι    | SEG6                   | IOCA6               | _            | Y       | CLKOUT<br>OSC2 |
| RA7    | 9                      | 6           | ANA7                          | _         | -                | _                 | —        |                      | —   | _   | -                     | _                                      | _      | _                     | Ι    | SEG7                   | IOCA7               | _            | Y       | OSC1<br>CLKIN  |
| RB0    | 21                     | 18          | ANB0                          | _         | C2IN1+           | ZCD               | _        | _                    | —   | —   | CWG1IN <sup>(1)</sup> | —                                      | —      | _                     | _    | SEG8                   | IOCB0               |              | Y       | INTPPS         |
| RB1    | 22                     | 19          | ANB1                          | I         | C1IN3-<br>C2IN3- | _                 | —        |                      | _   | —   | -                     | SCL,<br>SDA <sup>(1, 3, 4, 5, 6)</sup> | _      | _                     | Ι    | SEG9                   | IOCB1               | HIB1         | Y       | —              |
| RB2    | 23                     | 20          | ANB2                          | Ι         | Ι                | -                 | —        | -                    | -   | _   |                       | SCL,<br>SDA <sup>(1, 3, 4, 5, 6)</sup> | _      | —                     | Ι    | SEG10<br>COM7<br>CFLY1 | IOCB2               | -            | Y       | -              |
| RB3    | 24                     | 21          | ANB3                          | Ι         | C1IN2-<br>C2IN2- | -                 | —        | Ι                    | —   | _   |                       | _                                      | _      | —                     | Ι    | SEG11<br>COM6<br>CFLY2 | IOCB3               |              | Y       | -              |
| RB4    | 25                     | 22          | ANB4<br>ADCACT <sup>(1)</sup> | _         | _                | _                 | _        | _                    | —   | _   | _                     | _                                      | _      | —                     | _    | COM0                   | IOCB4               | _            | Y       | —              |
| RB5    | 26                     | 23          | ANB5                          | —         | _                | —                 | —        | T1G <sup>(1)</sup>   | _   | _   | —                     | _                                      | -      | —                     | —    | SEG13<br>COM1          | IOCB5               | —            | Y       | —              |

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one or more PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I<sup>2</sup>C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by INLCVL register, instead of the I<sup>2</sup>C specific or SMBUS input buffer thresholds.

**5**: These are alternative  $I^2C$  logic levels pins.

6: In I<sup>2</sup>C logic levels configuration, these pins can operate as either SCL and SDA pins.

### 3.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 48 instructions. Interrupt capability includes automatic context saving.

The hardware stack is 16-levels deep and has Overflow and Underflow Reset capability. Direct, Indirect, and Relative Addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

### FIGURE 3-1: CORE DATA PATH DIAGRAM



# 4.1.1 READING PROGRAM MEMORY AS DATA

There are three methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory. The third method is to use the NVMREG interface to access the program memory. Refer to **Section 13.4 "NVMREG Access"**.

### 4.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 4-1.

EXAMPLE 4-1: RETLW INSTRUCTION

| constants         |                     |
|-------------------|---------------------|
| BRW               | ;Add Index in W to  |
|                   | ;program counter to |
|                   | ;select data        |
| RETLW DATA0       | ;Index0 data        |
| RETLW DATA1       | ;Index1 data        |
| RETLW DATA2       |                     |
| RETLW DATA3       |                     |
|                   |                     |
|                   |                     |
| my_function       |                     |
| ; LOTS OF CODE    |                     |
| MOVLW DATA_IN     | DEX                 |
| call constants    |                     |
| ; THE CONSTANT IS | IN W                |
|                   |                     |

The BRW instruction makes this type of table very simple to implement.

### 4.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of an FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that read the program memory via the FSR require one extra instruction cycle to complete. Example 4-2 demonstrates reading the program memory via an FSR.

The HIGH directive will set bit 7 if a label points to a location in the program memory. This applies to the assembly code Example 4-2 shown below.

### EXAMPLE 4-2: ACCESSING PROGRAM MEMORY VIA FSR

| constants   |               |         |      |
|-------------|---------------|---------|------|
| RETLW       | DATA0         | ;Index0 | data |
| RETLW       | DATA1         | ;Index1 | data |
| RETLW       | DATA2         |         |      |
| RETLW       | DATA3         |         |      |
| my_function | on            |         |      |
| ; LOI       | S OF CODE     |         |      |
| MOVLW       | LOW constant  | ts      |      |
| MOVWF       | FSR1L         |         |      |
| MOVLW       | HIGH constan  | nts     |      |
| MOVWF       | FSR1H         |         |      |
| MOVIW       | 0[FSR1]       |         |      |
| ; THE PROGE | RAM MEMORY IS | IN W    |      |

| REGIST    | -R 3-7.      | REVIS    |          | . REVIS |        | REGIS     |        |   |         |          |        |   |       |
|-----------|--------------|----------|----------|---------|--------|-----------|--------|---|---------|----------|--------|---|-------|
| R         | R            | R        | R        | R       | R      | R         | R      | R | R       | R        | R      | R | R     |
| 1         | 0            |          |          | MJRRE   | V<5:0> |           |        |   |         | MNRRE    | V<5:0> |   |       |
| bit 13    |              |          |          |         |        |           |        |   |         |          |        |   | bit 0 |
|           |              |          |          |         |        |           |        |   |         |          |        |   |       |
| Legend:   |              |          |          |         |        |           |        |   |         |          |        |   |       |
|           | R = Read     | able bit |          |         |        |           |        |   |         |          |        |   |       |
|           | '0' = Bit is | cleared  |          |         |        | '1' = Bit | is set |   | x = Bit | is unkno | wn     |   |       |
|           |              |          |          |         |        |           |        |   |         |          |        |   |       |
| bit 13-12 | Fixed Val    | ue: Read | d-only b | oits    |        |           |        |   |         |          |        |   |       |

### REGISTER 5-7: REVISIONID: REVISION ID REGISTER

These bits are fixed with value '10' for all devices included in this data sheet.

### bit 11-6 MJRREV<5:0>: Major Revision ID bits

These bits are used to identify a major revision. A major revision is indicated by an all layer revision (B0, C0, etc.)

### bit 5-0 **MNRREV<5:0>**: Minor Revision ID bits These bits are used to identify a minor revision.



PIC16(L)F19155/56/75/76/85/86

### FIGURE 27-12: RISING EDGE-TRIGGERED MONOSTABLE MODE TIMING DIAGRAM (MODE = 10001)

### FIGURE 28-3: TIMER MODE TIMING DIAGRAM



|                |                |                   | Rev. 10-000188A<br>4/22/2016      |
|----------------|----------------|-------------------|-----------------------------------|
| SMTxWIN        |                |                   |                                   |
| SMTxWIN_sync   |                |                   |                                   |
| SMTx_signal    |                |                   |                                   |
| MTx_signalsync |                |                   |                                   |
| SMTx Clock     |                |                   |                                   |
| SMTxEN         |                |                   |                                   |
| SMTxGO         |                |                   |                                   |
| SMTxGO_sync    |                |                   |                                   |
| SMTxTMR        | 0 (1)(2)(3)(4) | 5 (1)(2)(3)(4)(5) | 5 ( 6 ) 7 ( 8 ) 9 10 11 12 13 1 2 |
| SMTxCPW        |                |                   | 13                                |
| SMTxCPR        |                | 4                 |                                   |
| SMTxPWAIF      |                |                   |                                   |
| SMTxPRAIF      |                |                   |                                   |

### 30.0 PULSE-WIDTH MODULATION (PWM)

The PWMx modules generate Pulse-Width Modulated (PWM) signals of varying frequency and duty cycle.

In addition to the CCP modules, the PIC16(L)F19155/56/75/76/85/86 devices contain two PWM modules (PWM3 and PWM4). The PWM modules reproduce the PWM capability of the CCP modules.

Note: The PWM3/4 modules are two instances of the same PWM module design. Throughout this section, the lower case 'x' in register and bit names is a generic reference to the PWM module number (which should be substituted with 3, or 4 during code development). For example, the control register is generically described in this chapter as PWMxCON, but the actual device registers are PWM3CON and PWM4CON. Similarly, the PWMxEN bit represents the PWM3EN and PWM4EN bits.

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully ON and fully OFF states. The PWM signal resembles a square wave where the high portion of the signal is considered the 'ON' state (pulse width), and the low portion of the signal is considered the 'OFF' state. The term duty cycle describes the proportion of the 'on' time to the 'off' time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and, in turn, the power that is applied to the load.

Figure 30-1 shows a typical waveform of the PWM signal.

# FIGURE 30-1: **PWM OUTPUT** FOSC Q1 Q2 Q3 Q4 Rev. 10.0000000 FOSC PWM Pulse Width PWM TMRx = $PWMxDC^{(1)}$ TMRx = $PRx^{(1)}$ Note 1: Timer dependent on PWMTMRS register settings.

| U-1              | U-1                          | U-1                    | R/W-0/0            | R/W-0/0                            | R/W-0/0       | R/W-0/0          | R/W-0/0     |  |  |  |  |
|------------------|------------------------------|------------------------|--------------------|------------------------------------|---------------|------------------|-------------|--|--|--|--|
|                  | _                            | _                      | AS4E               | AS3E                               | AS2E          | AS1E             | AS0E        |  |  |  |  |
| bit 7            |                              |                        |                    | ÷                                  |               | ·                | bit 0       |  |  |  |  |
|                  |                              |                        |                    |                                    |               |                  |             |  |  |  |  |
| Legend:          |                              |                        |                    |                                    |               |                  |             |  |  |  |  |
| R = Readable     | bit                          | W = Writable           | bit                | U = Unimplemented bit, read as '0' |               |                  |             |  |  |  |  |
| u = Bit is unch  | anged                        | x = Bit is unkr        | nown               | -n/n = Value a                     | at POR and BO | R/Value at all c | ther Resets |  |  |  |  |
| '1' = Bit is set |                              | '0' = Bit is clea      | ared               | q = Value depends on condition     |               |                  |             |  |  |  |  |
|                  |                              |                        |                    |                                    |               |                  |             |  |  |  |  |
| bit 7-5          | Unimplemen                   | ted: Read as '         | o'                 |                                    |               |                  |             |  |  |  |  |
| bit 4            | AS4E: CLC2                   | Output bit             |                    |                                    |               |                  |             |  |  |  |  |
|                  | 1 = LC2_out                  | shut-down is e         | nabled             |                                    |               |                  |             |  |  |  |  |
|                  | $0 = LC2_out$                | shut-down is d         | isabled            |                                    |               |                  |             |  |  |  |  |
| bit 3            | AS3E: Comp                   | arator C2 Outp         | ut bit             |                                    |               |                  |             |  |  |  |  |
|                  | 1 = C2 output                | t shut-down is enabled |                    |                                    |               |                  |             |  |  |  |  |
| hit 0            |                              | aratar C1 Outa         |                    |                                    |               |                  |             |  |  |  |  |
| DIL 2            | ASZE. Complete 1 = C1 output | arator Cir Outp        | anablad            |                                    |               |                  |             |  |  |  |  |
|                  | 0 = C1 output                | it shut-down is        | disabled           |                                    |               |                  |             |  |  |  |  |
| bit 2            | <b>AS1E:</b> TMR2            | Postscale Out          | put bit            |                                    |               |                  |             |  |  |  |  |
|                  | 1 = TMR2 Po                  | ostscale shut-de       | ,<br>own is enable | d                                  |               |                  |             |  |  |  |  |
|                  | 0 = TMR2 Po                  | ostscale shut-de       | own is disable     | ed                                 |               |                  |             |  |  |  |  |
| bit 0            | AS0E: CWG1                   | 1 Input Pin bit        |                    |                                    |               |                  |             |  |  |  |  |
|                  | 1 = Input pin                | selected by CV         | VG1PPS shut        | -down is enabl                     | ed            |                  |             |  |  |  |  |
|                  | 0 = Input pin                | selected by CV         | VG1PPS shut        | t-down is disab                    | led           |                  |             |  |  |  |  |

### REGISTER 31-6: CWG1AS1: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 1

# PIC16(L)F19155/56/75/76/85/86



| R/W-x/u          | R/W-x/u                                     | R/W-x/u                                                   | R/W-x/u                                            | R/W-x/u                           | R/W-x/u          | R/W-x/u  | R/W-x/u  |
|------------------|---------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|-----------------------------------|------------------|----------|----------|
| LCxG1D4T         | LCxG1D4N                                    | LCxG1D3T                                                  | LCxG1D3N                                           | LCxG1D2T                          | LCxG1D2N         | LCxG1D1T | LCxG1D1N |
| bit 7            |                                             |                                                           |                                                    |                                   |                  |          | bit 0    |
|                  |                                             |                                                           |                                                    |                                   |                  |          |          |
| Legend:          |                                             |                                                           |                                                    |                                   |                  |          |          |
| R = Readable I   | bit                                         | W = Writable                                              | bit                                                | U = Unimpler                      | nented bit, read | 1 as '0' |          |
| u = Bit is uncha | anged                                       | x = Bit is unkr                                           | R/Value at all c                                   | ue at all other Resets            |                  |          |          |
| '1' = Bit is set |                                             | '0' = Bit is clea                                         | ared                                               |                                   |                  |          |          |
| bit 7            | LCxG1D4T: 0<br>1 = CLCIN3 (                 | Gate 0 Data 4 T<br>(true) is gated i                      | rue (non-inve<br>nto CLCx Gate                     | rted) bit<br>e 0                  |                  |          |          |
|                  | 0 = CLCIN3 (                                | true) is not gat                                          | ed into CLCx                                       | Gate 0                            |                  |          |          |
| bit 6            | LCxG1D4N:                                   | Gate 0 Data 4 I                                           | Negated (inver                                     | rted) bit                         |                  |          |          |
|                  | 1 = CLCIN3 (0 = CLCIN3 (                    | inverted) is ga<br>inverted) is no                        | ted into CLCx<br>t gated into CL                   | Gate 0<br>_Cx Gate 0              |                  |          |          |
| bit 5            | LCxG1D3T: 0<br>1 = CLCIN2 (                 | Gate 0 Data 3 T<br>[true) is gated i                      | rue (non-inve<br>nto CLCx Gate                     | rted) bit<br>e 0                  |                  |          |          |
|                  | 0 = CLCIN2 (                                | true) is not gat                                          | ed into CLCx                                       | Gate 0                            |                  |          |          |
| bit 4            | LCxG1D3N: (<br>1 = CLCIN2 (<br>0 = CLCIN2 ( | Gate 0 Data 3 I<br>(inverted) is gat<br>(inverted) is not | Negated (inver<br>ted into CLCx<br>t gated into CL | rted) bit<br>Gate 0<br>Cx Gate 0  |                  |          |          |
| bit 3            |                                             | ate 0 Data 2 T                                            | rue (non-inve                                      | rted) hit                         |                  |          |          |
| 5.0              | 1 = CLCIN1 (                                | true) is gated i                                          | nto CLCx Gat                                       | e 0                               |                  |          |          |
| 1.11.0           | 0 = CLCIN1 (                                | true) is not gat                                          | ed into I CLCx                                     | Gate 0                            |                  |          |          |
| bit 2            | LCxG1D2N: (<br>1 = CLCIN1 (<br>0 = CLCIN1 ( | Gate 0 Data 2 I<br>(inverted) is gai<br>(inverted) is no  | Negated (invei<br>ted into CLCx<br>t gated into CL | rted) bit<br>Gate 0<br>_Cx Gate 0 |                  |          |          |
| bit 1            | LCxG1D1T: O                                 | Gate 0 Data 1 T                                           | rue (non-inve                                      | rted) bit                         |                  |          |          |
|                  | 1 = CLCIN0 (<br>0 = CLCIN0 (                | (true) is gated i<br>(true) is not gat                    | nto CLCx Gate                                      | e 0<br>Gate 0                     |                  |          |          |
| bit 0            | LCxG1D1N: (                                 | Gate 0 Data 1 I                                           | Negated (inver                                     | rted) bit                         |                  |          |          |
|                  | 1 = CLCIN0 (0 = CLCIN0 (                    | inverted) is ga<br>inverted) is no                        | ted into CLCx<br>t gated into CL                   | Gate 0<br>_Cx Gate 0              |                  |          |          |

### REGISTER 32-7: CLCxGLS0: GATE 0 LOGIC SELECT REGISTER



PIC16(L)F19155/56/75/76/85/8



Р 1/2

PIC16(L)F19155/56/75/76/85/86

# 33.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 33-36). If SDA is sampled high, the BRG is reloaded and begins

counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 33-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.





### FIGURE 33-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)



### 34.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 34-3 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

### 34.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 34-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

### 34.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

**Note:** The TXxIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

### 34.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one TcY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

### 34.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 34.4.1.2 "Clock Polarity"**.

### 34.1.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXxIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXxIF flag bit is not cleared immediately upon writing TXxREG. TXxIF becomes valid in the second instruction cycle following the write execution. Polling TXxIF immediately following the TXxREG write will return invalid results. The TXxIF bit is read-only, it cannot be set or cleared by software.

The TXxIF interrupt can be enabled by setting the TXxIE interrupt enable bit of the PIE3 register. However, the TXxIF flag bit will be set whenever the TXxREG is empty, regardless of the state of TXxIE enable bit.

To use interrupts when transmitting data, set the TXxIE bit only when there is more data to send. Clear the TXxIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

## **REGISTER 34-7:** SPxBRGH<sup>(1, 2)</sup>: BAUD RATE GENERATOR HIGH REGISTER

| R/W-0        | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |  |  |  |  |  |
|--------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|
| SPxBRG<15:8> |       |       |       |       |       |       |       |  |  |  |  |  |
| bit 7        |       |       |       |       |       |       | bit 0 |  |  |  |  |  |
|              |       |       |       |       |       |       |       |  |  |  |  |  |
| l egend.     |       |       |       |       |       |       |       |  |  |  |  |  |

| Legena.              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7 SPxBRG<15:8>: Upper eight bits of the Baud Rate Generator

**Note 1:** SPxBRGH value is ignored for all modes unless BAUDxCON<BRG16> is active.

2: Writing to SPxBRGH resets the BRG counter.

| R-0          | R-0            | R-0                                                                 | R-0             | R-0                                | R/W-0/0        | R/W-0/0         | R/W-0/0 |  |  |  |  |  |
|--------------|----------------|---------------------------------------------------------------------|-----------------|------------------------------------|----------------|-----------------|---------|--|--|--|--|--|
| —            |                | —                                                                   | —               | —                                  | LCDCST2        | LCDCST1         | LCDCST0 |  |  |  |  |  |
| bit 7        |                |                                                                     | •               |                                    |                |                 | bit 0   |  |  |  |  |  |
|              |                |                                                                     |                 |                                    |                |                 |         |  |  |  |  |  |
| Legend:      |                |                                                                     |                 |                                    |                |                 |         |  |  |  |  |  |
| R = Readab   | ole bit        | W = Writable                                                        | bit             | U = Unimplemented bit, read as '0' |                |                 |         |  |  |  |  |  |
| -n = Value a | at POR         | '1' = Bit is set                                                    |                 | '0' = Bit is clea                  | ared           | x = Bit is unkr | iown    |  |  |  |  |  |
|              |                |                                                                     |                 |                                    |                |                 |         |  |  |  |  |  |
| bit 7-3      | Unimplen       | nented: Read as '                                                   | ס'.             |                                    |                |                 |         |  |  |  |  |  |
| bit 2-0      | LCDCST         | <b>_CDCST&lt;2:0&gt;</b> : LCD Contrast Control bits <sup>(1)</sup> |                 |                                    |                |                 |         |  |  |  |  |  |
|              | Selects th     | e resistance of the                                                 | LCD contrast    | control resistor                   | ladder         |                 |         |  |  |  |  |  |
|              | Bit Value      | Resistor ladder                                                     |                 |                                    |                |                 |         |  |  |  |  |  |
|              | 000 =          | Contrast Control E                                                  | Bypassed (Max   | kimum contrast                     | ).             |                 |         |  |  |  |  |  |
|              | 001 =          | Contrast Control F                                                  | Resistor ladder | is at 1/7th of n                   | naximum resist | ance            |         |  |  |  |  |  |
|              | 010 =          | Contrast Control F                                                  | Resistor ladder | is at 2/7th of n                   | naximum resist | ance            |         |  |  |  |  |  |
|              | 011 =          | Contrast Control F                                                  | Resistor ladder | is at 3/7th of n                   | naximum resist | ance            |         |  |  |  |  |  |
|              | 100 =          | Contrast Control F                                                  | Resistor ladder | is at 4/7th of n                   | naximum resist | ance            |         |  |  |  |  |  |
|              | 101 =          | Contrast Control F                                                  | Resistor ladder | is at 5/7th of n                   | naximum resist | ance            |         |  |  |  |  |  |
|              | 110 =          | Contrast Control F                                                  | Resistor ladder | is at 6/7th of n                   | naximum resist | ance            |         |  |  |  |  |  |
|              | 111 =          | Contrast Control F                                                  | Resistor ladder | is at maximum                      | resistance (M  | inimum contras  | st)     |  |  |  |  |  |
| Note 1:      | This setting i | s only valid in Inter                                               | nal Resistance  | e Ladder Only r                    | nodes.         |                 |         |  |  |  |  |  |

# REGISTER 35-8: LCDREF: LCD REFERENCE VOLTAGE/CONTRAST CONTROL REGISTER

| Address             | Name     | Bit 7    | Bit 6    | Bit 5       | Bit 4                                   | Bit 3    | Bit 2    | Bit 1       | Bit 0    | Register<br>on page |  |  |
|---------------------|----------|----------|----------|-------------|-----------------------------------------|----------|----------|-------------|----------|---------------------|--|--|
| 1D8Ch<br>—<br>1D9Eh | -        |          |          |             | Unimpl                                  | emented  |          |             |          |                     |  |  |
| 1E0Ch               | _        |          |          |             | Unimpl                                  | emented  |          |             |          |                     |  |  |
| 1E0Dh               |          |          |          |             | Unimpl                                  | emented  |          |             |          |                     |  |  |
| 1E0Eh               | _        |          |          |             | Unimpl                                  | emented  |          |             |          |                     |  |  |
| 1E0Fh               | CLCDATA  | —        | _        | _           | —                                       | MLC4OUT  | MLC3OUT  | MLC2OUT     | MLC1OUT  | 509                 |  |  |
| 1E10h               | CLC1CON  | LC1EN    | —        | LC10UT      | LC1INTP                                 | LC1INTN  |          | LC1MODE<2:0 | >        | 501                 |  |  |
| 1E11h               | CLC1POL  | LC1POL   | —        | —           | - – LC1G4POL LC1G3POL LC1G2POL LC1G1POL |          |          |             |          |                     |  |  |
| 1E12h               | CLC1SEL0 | —        | —        |             | LC1D1S<5:0>                             |          |          |             |          |                     |  |  |
| 1E13h               | CLC1SEL1 | —        | —        |             | LC1D2S<5:0>                             |          |          |             |          |                     |  |  |
| 1E14h               | CLC1SEL2 | —        | _        |             | LC1D3S<5:0>                             |          |          |             |          |                     |  |  |
| 1E15h               | CLC1SEL3 | —        | —        |             | LC1D4S<5:0>                             |          |          |             |          |                     |  |  |
| 1E16h               | CLC1GLS0 | LC1G1D4T | LC1G1D4N | LC1G1D3T    | LC1G1D3N                                | LC1G1D2T | LC1G1D2N | LC1G1D1T    | LC1G1D1N | 505                 |  |  |
| 1E17h               | CLC1GLS1 | LC1G2D4T | LC1G2D4N | LC1G2D3T    | LC1G2D3N                                | LC1G2D2T | LC1G2D2N | LC1G2D1T    | LC1G2D1N | 503                 |  |  |
| 1E18h               | CLC1GLS2 | LC1G3D4T | LC1G3D4N | LC1G3D3T    | LC1G3D3N                                | LC1G3D2T | LC1G3D2N | LC1G3D1T    | LC1G3D1N | 507                 |  |  |
| 1E19h               | CLC1GLS3 | LC1G4D4T | LC1G4D4N | LC1G4D3T    | LC1G4D3N                                | LC1G4D2T | LC1G4D2N | LC1G4D1T    | LC1G4D1N | 508                 |  |  |
| 1E1Ah               | CLC2CON  | LC2EN    | —        | LC2OUT      | LC2INTP                                 | LC2INTN  |          | LC2MODE<2:0 | >        | 501                 |  |  |
| 1E1Bh               | CLC2POL  | LC2POL   | —        | —           | —                                       | LC2G4POL | LC2G3POL | LC2G2POL    | LC2G1POL | 502                 |  |  |
| 1E1Ch               | CLC2SEL0 | _        | _        |             |                                         | LC2D     | 1S<5:0>  |             |          | 503                 |  |  |
| 1E1Dh               | CLC2SEL1 | —        | _        |             |                                         | LC2D     | 2S<5:0>  |             |          | 503                 |  |  |
| 1E1Eh               | CLC2SEL2 | —        | _        |             |                                         | LC2D     | 3S<5:0>  |             |          | 503                 |  |  |
| 1E1Fh               | CLC2SEL3 | —        | —        |             |                                         | LC2D     | 4S<5:0>  |             |          | 504                 |  |  |
| 1E20h               | CLC2GLS0 | LC2G1D4T | LC1G1D4N | LC2G1D3T    | LC2G1D3N                                | LC2G1D2T | LC2G1D2N | LC2G1D1T    | LC2G1D1N | 505                 |  |  |
| 1E21h               | CLC2GLS1 | LC2G2D4T | LC1G2D4N | LC2G2D3T    | LC2G2D3N                                | LC2G2D2T | LC2G2D2N | LC2G2D1T    | LC2G2D1N | 506                 |  |  |
| 1E22h               | CLC2GLS2 | LC2G3D4T | LC1G3D4N | LC2G3D3T    | LC2G3D3N                                | LC2G3D2T | LC2G3D2N | LC2G3D1T    | LC2G3D1N | 507                 |  |  |
| 1E23h               | CLC2GLS3 | LC2G4D4T | LC1G4D4N | LC2G4D3T    | LC2G4D3N                                | LC2G4D2T | LC2G4D2N | LC2G4D1T    | LC2G4D1N | 508                 |  |  |
| 1E24h               | CLC3CON  | LC3EN    | _        | LC3OUT      | LC3INTP                                 | LC3INTN  |          | LC3MODE<2:0 | >        | 501                 |  |  |
| 1E25h               | CLC3POL  | LC3POL   | _        | _           | _                                       | LC3G4POL | LC3G3POL | LC3G2POL    | LC3G1POL | 502                 |  |  |
| 1E26h               | CLC3SEL0 | _        | _        |             |                                         | LC       | 3D1S     |             |          | 503                 |  |  |
| 1E27h               | CLC3SEL1 | _        | _        |             |                                         | LC       | 3D2S     |             |          | 503                 |  |  |
| 1E28h               | CLC3SEL2 | —        | —        |             |                                         | LC       | 3D3S     |             |          | 503                 |  |  |
| 1E29h               | CLC3SEL3 | _        | _        |             |                                         | LC       | 3D4S     |             |          | 503                 |  |  |
| 1E2Ah               | CLC3GLS0 | LC3G1D4T | LC3G1D4N | LC3G1D3T    | LC3G1D3N                                | LC3G1D2T | LC3G1D2N | LC3G1D1T    | LC3G1D1N | 505                 |  |  |
| 1E2Bh               | CLC3GLS1 | LC3G2D4T | LC3G2D4N | LC3G2D3T    | LC3G2D3N                                | LC3G2D2T | LC3G2D2N | LC3G2D1T    | LC3G2D1N | 506                 |  |  |
| 1E2Ch               | CLC3GLS2 | LC3G3D4T | LC3G3D4N | LC3G3D3T    | LC3G3D3N                                | LC3G3D2T | LC3G3D2N | LC3G3D1T    | LC3G3D1N | 507                 |  |  |
| 1E2Dh               | CLC3GLS3 | LC3G4D4T | LC3G4D4N | LC3G4D3T    | LC3G4D3N                                | LC3G4D2T | LC3G4D2N | LC3G4D1T    | LC3G4D1N | 508                 |  |  |
| 1E2Eh               | CLC4CON  | LC4EN    | _        | LC4OUT      | LC4INTP                                 | LC4INTN  |          | LC4MODE<2:0 | >        | 501                 |  |  |
| 1E2Fh               | CLC4POL  | LC4POL   | —        | _           | —                                       | LC4G4POL | LC4G3POL | LC4G2POL    | LC4G1POL | 502                 |  |  |
| 1E30h               | CLC4SEL0 | —        | _        |             |                                         | LC4D     | 1S<5:0>  |             |          | 503                 |  |  |
| 1E31h               | CLC4SEL1 | _        | _        | LC4D2S<5:0> |                                         |          |          |             |          | 503                 |  |  |
| 1E32h               | CLC4SEL2 | _        | _        | LC4D3S<5:0> |                                         |          |          |             |          | 503                 |  |  |
| 1E33h               | CLC4SEL3 | _        | _        | LC4D4S<5:0> |                                         |          |          |             |          |                     |  |  |
| 1E34h               | CLC4GLS0 | LC4G1D4T | LC4G1D4N | LC4G1D3T    | LC4G1D3N                                | LC4G1D2T | LC4G1D2N | LC4G1D1T    | LC4G1D1N | 505                 |  |  |
| 1E35h               | CLC4GLS1 | LC4G2D4T | LC4G2D4N | LC4G2D3T    | LC4G2D3N                                | LC4G2D2T | LC4G2D2N | LC4G2D1T    | LC4G2D1N | 506                 |  |  |

### TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
 Note 1: Unimplemented data memory locations, read as '0'.

| TABLE 39-8: | INTERNAL OSCILLATOR PARAMETERS <sup>(1)</sup> |
|-------------|-----------------------------------------------|
|             |                                               |

| Standard Operating Conditions (unless otherwise stated) |          |                                                 |             |                          |            |            |                          |  |  |
|---------------------------------------------------------|----------|-------------------------------------------------|-------------|--------------------------|------------|------------|--------------------------|--|--|
| Param.<br>No.                                           | Sym.     | Characteristic                                  | Min.        | Тур†                     | Max.       | Units      | Conditions               |  |  |
| OS50                                                    | FHFOSC   | Precision Calibrated HFINTOSC<br>Frequency      |             | 4<br>8<br>12<br>16<br>32 |            | MHz        | (Note 2)                 |  |  |
| OS51                                                    | FHFOSCLP | Low-Power Optimized HFINTOSC<br>Frequency       |             | 1<br>2                   |            | MHz<br>MHz |                          |  |  |
| OS52                                                    | FMFOSC   | Internal Calibrated MFINTOSC<br>Frequency       | _           | 500                      | _          | кня        | 7/~                      |  |  |
| OS53                                                    | FLFOSC   | Internal LFINTOSC Frequency                     |             | 31                       | $\searrow$ | kHž        |                          |  |  |
| OS54                                                    | THFOSCST | HFINTOSC<br>Wake-up from Sleep Start-up<br>Time | _           | 11<br>50                 | 20         | μs<br>μs   | VREGPM = 0<br>VREGPM = 1 |  |  |
| OS56                                                    | TLFOSCST | LFINTOSC<br>Wake-up from Sleep Start-up Time    | $\bigwedge$ | 0.2                      | X          | ms         |                          |  |  |

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** To ensure these oscillator frequency tolerances, Vop and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

2: See Figure 39-6: Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature.





© 2017 Microchip Technology Inc.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length





|                            | MILLIMETERS |          |      |      |  |
|----------------------------|-------------|----------|------|------|--|
| Dimensior                  | MIN         | NOM      | MAX  |      |  |
| Contact Pitch              | E           | 0.40 BSC |      |      |  |
| Optional Center Pad Width  | W2          |          |      | 4.45 |  |
| Optional Center Pad Length | T2          |          |      | 4.45 |  |
| Contact Pad Spacing        | C1          |          | 6.00 |      |  |
| Contact Pad Spacing        | C2          |          | 6.00 |      |  |
| Contact Pad Width (X28)    | X1          |          |      | 0.20 |  |
| Contact Pad Length (X28)   | Y1          |          |      | 0.80 |  |
| Distance Between Pads      | G           | 0.20     |      |      |  |

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A