

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19175-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Types	Output Types	Description
RC6/CK1 ⁽³⁾ /TX1 ⁽¹⁾ /IOCC6/ANC6/SEG22/VLCD2	RC6	TTL/ST	CMOS/OD	General purpose I/O.
	CK1 ⁽³⁾	_	_	EUSART synchronous clock out
	TX1 ⁽¹⁾	_	_	EUSART asynchronous TX data out
	IOCC6	TTL/ST	_	Interrupt-on-change input.
	ANC6	AN	_	ADC Channel input.
	SEG22	_	AN	LCD Analog output.
	VLCD2	AN	_	LCD analog input
RC7/DT1 ⁽³⁾ /RX1 ⁽¹⁾ /IOCC7/ANC7/SEG23/VLCD1	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	DT1 ⁽³⁾	_	_	EUSART synchronous data output
	RX1 ⁽¹⁾	_	_	EUSART receive input.
	IOCC7	TTL/ST	_	Interrupt-on-change input.
	ANC7	AN	_	ADC Channel input.
	SEG23	_	AN	LCD Analog output.
	VLCD1	AN	_	LCD analog input
RD0/AND0/SEG24	RD0	TTL/ST	CMOS/OD	General purpose I/O.
	AND0	AN	_	ADC Channel input.
	SEG24	AN	_	LCD Analog output.
RD1/AND1/SEG25	RD1	TTL/ST	CMOS/OD	General purpose I/O.
	AND1	AN	_	ADC Channel input.
	SEG25	—	AN	LCD Analog output.
RD2/AND2/COM5	RD2	TTL/ST	CMOS/OD	General purpose I/O.
	AND2	AN	—	ADC Channel input.
	SEG26	_	AN	LCD Analog output.
	COM5	_	AN	LCD Driver Common Outputs.
RD3/AND3/SEG27/COM4	RD3	TTL/ST	CMOS/OD	General purpose I/O.
	AND3	AN	_	ADC Channel input.
	SEG27	_	AN	LCD Analog output.
	COM4	_	AN	LCD Driver Common Outputs.
RD4/AND4/SEG28	RD4	TTL/ST	CMOS/OD	General purpose I/O.
	AND4	AN		ADC Channel input.
	SEG28	_	AN	LCD Analog output.
RD5/AND5/SEG29	RD5	TTL/ST	CMOS/OD	General purpose I/O.
	AND5	AN		ADC Channel input.
	SEG29	AN		LCD Analog output.
RD6/AND6/SEG30	RD6	TTL/ST	CMOS/OD	General purpose I/O.
	AND6	AN	_	ADC Channel input.
	SEG30	_	AN	LCD Analog output

TABLE 1-4. PIC16(I) E19185/86 PINOUT DESCRIPTION (CONTINUED)

HV = High Voltage

Note

ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C XTAL = Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

1: Refer to Table 14-2 for details on which PORT pins may be used for this signal. 2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as

described in Table 14-3. 3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and

PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assign-4: ments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

	Bank 58		Bank 59		Bank 60		Bank 61		Bank 62		Bank 63
1D00h	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 4-3)	1D80h	(Table 4-3)	1E00h	(Table 4-3)	1E80h	(Table 4-3)	1F00h	(Table 4-3)	1F80h	(Table 4-3)
1D0Ch	LCDCON	1D8Ch	—	1E0Ch	—	1E8Ch	—	1F0Ch	_	1F8Ch	_
1D0Dh	LCDPS	1D8Dh	—	1E0Dh	—	1E8Dh	—	1F0Dh	_	1F8Dh	_
1D0Eh	LCDSE0	1D8Eh		1E0Eh		1E8Eh	_	1F0Eh	_	1F8Eh	_
1D0Fh	LCDSE1	1D8Fh		1E0Fh	CLCDATA	1E8Fh	PPSLOCK	1F0Fh	_	1F8Fh	_
1D10h	LCDSE2	1D90h	_	1E10h	CLC1CON	1E90h	INTPPS	1F10h	RA0PPS	1F90h	
1D11h	LCDSE3	1D91h	—	1E11h	CLC1POL	1E91h	T0CKIPPS	1F11h	RA1PPS	1F91h	_
1D12h	LCDSE4	1D92h	—	1E12h	CLC1SEL0	1E92h	T1CKIPPS	1F12h	RA2PPS	1F92h	_
1D13h	LCDSE5	1D93h	—	1E13h	CLC1SEL1	1E93h	T1GPPS	1F13h	RA3PPS	1F93h	_
1D14h	LCDVCON1	1D94h	_	1E14h	CLC1SEL2	1E94h	_	1F14h	RA4PPS	1F94h	_
1D15h	LCDVCON2	1D95h	—	1E15h	CLC1SEL3	1E95h	—	1F15h	RA5PPS	1F95h	_
1D16h	LCDREF	1D96h	—	1E16h	CLC1GLS0	1E96h	—	1F16h	RA6PPS	1F96h	_
1D17h	LCDRL	1D97h	—	1E17h	CLC1GLS1	1E97h	_	1F17h	RA7PPS	1F97h	_
1D18h	LCDDATA0	1D98h	—	1E18h	CLC1GLS2	1E98h	_	1F18h	RB0PPS	1F98h	_
1D19h	LCDDATA1	1D99h	—	1E19h	CLC1GLS3	1E99h	—	1F19h	RB1PPS	1F99h	—
1D1Ah	LCDDATA2	1D9Ah	_	1E1Ah	CLC2CON	1E9Ah	—	1F1Ah	RB2PPS	1F9Ah	—
1D1Bh	LCDDATA3	1D9Bh	—	1E1Bh	CLC2POL	1E9Bh	_	1F1Bh	RB3PPS	1F9Bh	—
1D1Ch	LCDDATA4	1D9Ch	_	1E1Ch	CLC2SEL0	1E9Ch	T2AINPPS	1F1Ch	RB4PPS	1F9Ch	—
1D1Dh	LCDDATA5	1D9Dh	—	1E1Dh	CLC2SEL1	1E9Dh	T4AINPPS	1F1Dh	RB5PPS	1F9Dh	—
1D1Eh	LCDDATA6	1D9Eh	_	1E1Eh	CLC2SEL2	1E9Eh	_	1F1Eh	RB6PPS	1F9Eh	_
1D1Fh	LCDDATA7	1D9Fh	_	1E1Fh	CLC2SEL3	1E9Fh	_	1F1Fh	RB7PPS	1F9Fh	_
1D20h	LCDDATA8	1DA0h	_	1E20h	CLC2GLS0	1EA0h	_	1F20h	RC0PPS	1FA0h	_
1D21h	LCDDATA9	1DA1h	_	1E21h	CLC2GLS1	1EA1h	CCP1PPS	1F21h	RC1PPS	1FA1h	_
1D22h	LCDDATA10	1DA2h	_	1E22h	CLC2GLS2	1EA2h	CCP2PPS	1F22h	RC2PPS	1FA2h	_
1D23h	LCDDATA11	1DA3h	—	1E23h	CLC2GLS3	1EA3h	_	1F23h	RC3PPS	1FA3h	_
1D24h	LCDDATA12	1DA4h		1E24h	CLC3CON	1EA4h	_	1F24h	RC4PPS	1FA4h	—
1D25h	LCDDATA13	1DA5h	_	1E25h	CLC3POL	1EA5h	—	1F25h	_	1FA5h	—
1D26h	LCDDATA14	1DA6h	_	1E26h	CLC3SEL0	1EA6h	_	1F26h	RC6PPS	1FA6h	_
1D27h	LCDDATA15	1DA7h	_	1E27h	CLC3SEL1	1EA7h	_	1F27h	RC7PPS	1FA7h	_
1D28h	LCDDATA16	1DA8h	_	1E28h	CLC3SEL2	1EA8h	_	1F28h	RD0PPS ⁽²⁾	1FA8h	_
1D29h	LCDDATA17	1DA9h	_	1E29h	CLC3SEL3	1EA9h	SMT1WINPPS	1F29h	RD1PPS ⁽²⁾	1FA9h	_
1D2Ah	LCDDATA18	1DAAh		1E2Ah	CLC3GLS0	1EAAh	SMT1SIGPPS	1F2Ah	RD2PPS ⁽²⁾	1FAAh	_
1D2Bh	LCDDATA19	1DABh		1E2Bh	CLC3GLS1	1EABh	_	1F2Bh	RD3PPS ⁽²⁾	1FABh	
1D2Ch	LCDDATA20	1DACh		1E2Ch	CLC3GLS2	1EACh	_	1F2Ch	RD4PPS ⁽²⁾	1FACh	
1D2Dh	LCDDATA21	1DADh		1E2Dh	CLC3GLS3	1EADh	_	1F2Dh	RD5PPS ⁽²⁾	1FADh	_
1D2Eh	LCDDATA22	1DAEh		1E2Eh	CLC4CON	1EAEh	_	1F2Eh	RD6PPS ⁽²⁾	1FAEh	_
1D2Fh	LCDDATA23	1DAFh		1E2Fh	CLC4POL	1EAFh	_	1F2Fh	RD7PPS ⁽²⁾	1FAFh	
1D30h	LCDDATA24	1DB0h		1E30h	CLC4SEL0	1EB0h	_	1F30h	RE0PPS ⁽²⁾	1FB0h	_
1D31h	LCDDATA25	1DB1h		1E31h	CLC4SEL1	1EB1h	CWG1PPS	1F31h	RE1PPS ⁽²⁾	1FB1h	
1D32h	LCDDATA26	1DB2h	_	1E32h	CLC4SEL2	1EB2h	_	1F32h	RE2PPS ⁽²⁾	1FB2h	_
1D33h	LCDDATA27	1DB3h		1E33h	CLC4SEL3	1EB3h	_	1F33h	RE3PPS	1FB3h	_
1D34h	LCDDATA28	1DB4h	_	1E34h	CLC4GLS0	1EB4h	_	1F34h	RE4PPS	1FB4h	
1D35h	LCDDATA29	1DB5h		1E35h	CLC4GLS1	1EB5h	_	1F35h	RE5PPS	1FB5h	_
1D36h	LCDDATA30	1DB6h	_	1E36h	CLC4GLS2	1EB6h	_	1F36h	RE6PPS	1FB6h	_
1D37h	LCDDATA31	1DB7h	_	1E37h	CLC4GLS3	1EB7h	_	1F37h	RE7PPS	1FB7h	_
1D38h	LCDDATA32	1DB8h		1E38h	RF0PPS ⁽³⁾	1EB8h	_	1F38h	ANSELA	1FB8h	
1D39h	LCDDATA33	1DB9h		1E39h	RF1PPS(3)	1FB9h	_	1F39h	WPUA	1FB9h	
1D3Ah	LCDDATA34	1DBAh		1E3Ah	RF2PPS ⁽³⁾	1EBAh	_	1F3Ah	ODCONA	1FBAh	

TABLE 4-10: PIC16(L)F19155/56/75/76/85/86 MEMORY MAP, BANKS 58-63

Note 1: Unimplemented locations read as '0'.

2: Present only on PIC16(L)F19156/76/86.

3: Present only on PIC16(L)F19185/86.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 16											
				CPU	CORE REGISTERS	; see Table 4-3 fo	r specifics				
80Ch	WDTCON0	—	-			WDTPS<4:0>			SWDTEN	dd ddd0	dd ddd0
80Dh	WDTCON1	—		WDTCS<2:0>		—		WINDOW<2:0>	>	-বর্বর -বর্বর	-ddd -ddd
80Eh	WDTPSL		I		PSC	NT				0000 0000	0000 0000
80Fh	WDTPSH				PSC	NT				0000 0000	0000 0000
810h	WDTTMR	_		WDTT	MR<3:0>		STATE	PSCNT17	PSCNT16	-xxx x000	-xxx x000
811h	BORCON	SBOREN	_	_	_	-	_	_	BORRDY	1 q	uu
812h	VREGCON	_	—	_	_	—	—	VREGPM	—	x-	x-
813h	PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	0011 110q	qqqq qquu
814h	PCON1	_	—	—	_	—	—	MEMV	VBATBOR	1x	qu
815h	—				Unimpler	nented					
816h	—				Unimpler	nented					
817h	—				Unimpler	nented					
818h	—				Unimpler	nented					
819h	—				Unimpler	nented					
81Ah	NVMADRL	NVMADR7	NVMADR6	NVMADR5	NVMADR4	NVMADR3	NVMADR2	NVMADR1	NVMADR0	xxxx xxxx	uuuu uuuu
81Bh	NVMADRH	_	NVMADR14	NVMADR13	NVMADR12	NVMADR11	NVMADR10	NVMADR9	NVMADR8	1xxx xxxx	luuu uuuu
81Ch	NVMDATL	NVMDAT7	NVMDAT6	NVMDAT5	NVMDAT4	NVMDAT3	NVMDAT2	NVMDAT1	NVMDAT0	0000 0000	0000 0000
81Dh	NVMDATH	—	—	NVMDAT13	NVMDAT12	NVMDAT11	NVMDAT10	NVMDAT9	NVMDAT8	0000 0000	0000 0000
81Eh	NVMCON1	-	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	0000 0000	0000 0000
81Fh	NVMCON2				NVMCON	12<7:0>					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

RE 4-5:	ACCE				
					Rev. 10.0000138 7750/2013
			0x0F]
			0x0E		
			0x0D		
			0x0C		
			0x0B		
			0x0A		
			0x09		This figure shows the stack configuration
			0x08		after the first CALL or a single interrupt.
			0x07		return address will be placed in the
			0x06		 Program Counter and the Stack Pointer decremented to the empty state (0x1F).
			0x05		
			0x04		
			0x03		
			0x02		
		1	0x01		
	rosl		0x00	Return Address	STKPTR = 0x00
TOSH:1	ACCE	ESSING TI	HE STA	CK EXAMPLE	3
TOSH:1	ACCE	ESSING TI	HE STA	CK EXAMPLE	3 Rev. 10.00043C 7007013
TOSH:1	ACCE	ESSING TI	HE STA	CK EXAMPLE	3 Rev. 10.000043C 700/2013
TOSH:1	ACCE	<u>ESSING T</u> I	HE STA		3 Rev. 10.000043C 700/2013
TOSH:1	ACCE	ESSING TI	HE STA 0x0F 0x0E	CK EXAMPLE	3 Rev. 10-000043C 730/2013
TOSH:1	ACCE	ESSING TI	OxOF 0x0E 0x0D		3 Rev. 10-000043C 73902013
TOSH:1	ACCE	ESSING TI	HE STA 0x0F 0x0E 0x0D 0x0C	CK EXAMPLE	3 Rev. 10-000043C 73982013 After seven CALLS or six CALLS and an
TOSH:1	ACCE	ESSING TI	0x0F 0x0E 0x0D 0x0D 0x0C 0x0B		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left A series of DETUDN instructions will
TOSH:1	ACCE	ESSING TI	Dx0F 0x0E 0x0D 0x0C 0x0C 0x0B 0x0A		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into
TOSH:1	ACCE	ESSING TI	0x0F 0x0E 0x0D 0x0D 0x0C 0x0B 0x0A 0x09		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:1	ACCE	<u>ESSING T</u> I	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09 0x08		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:1	ACCE	ESSING TI	Dx0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07		3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:1	ACCE	<u>=SSING T</u> I	HE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 _ 0x06	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:1	ACCE	<u>=SSING T</u> I	HE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x07 0x06 0x05	CK EXAMPLE	3 Re: 10:000420 7002013 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
TOSH:1	ACCE	<u>=SSING T</u> i	HE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 ☐ 0x06 0x05 0x04	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
TOSH:1	ACCE	<u>=SSING Ti</u>	HE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x08 0x07 □ 0x06 0x05 0x04 0x03	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
TOSH:1	ACCE	<u>ESSING T</u>	HE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 ☐ 0x06 0x05 0x04 0x03 0x02	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06
TOSH:1	ACCE	<u>ESSING T</u>	HE STA 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 □ 0x06 0x05 0x04 0x03 0x02 0x01	CK EXAMPLE	3 After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack. STKPTR = 0x06

8.15 Power Control (PCON) Registers

The Power Control (PCON) registers contain flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Timer Window Violation Reset
 (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)
- Memory Violation Reset (MEMV)
- VBAT Reset (VBATBOR)

The PCON0 register bits are shown in Register 8-2.

The PCON1 register bits are shown in Register 8-3.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-4).

Software should reset the bit to the inactive state after the restart (hardware will not reset the bit).

Software may also set any PCON bit to the active state, so that user code may be tested, but no reset action will be generated.

All bits in PCON1 and PCON0 will maintain their state when either VDD or VBAT is powered.

9.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the New Oscillator Source (NOSC) and New Divider selection request (NDIV) bits of the OSCCON1 register.

9.3.1 NEW OSCILLATOR SOURCE (NOSC) AND NEW DIVIDER SELECTION REQUEST (NDIV) BITS

The New Oscillator Source (NOSC) and New Divider selection request (NDIV) bits of the OSCCON1 register select the system clock source and the frequency that are used for the CPU and peripherals.

When new values of NOSC and NDIV are written to OSCCON1, the current oscillator selection will continue to operate while waiting for the new clock source to indicate that it is stable and ready. In some cases, the newly requested source may already be in use, and is ready immediately. In the case of a divider-only change, the new and old sources are the same, and will be immediately ready. The device may enter Sleep while waiting for the switch as described in **Section 9.3.3 "Clock Switch and Sleep"**.

When the new oscillator is ready, the New Oscillator is Ready (NOSCR) bit of OSCCON3 and the Clock Switch Interrupt Flag (CSWIF) bit of PIR1 become set (CSWIF = 1). If Clock Switch Interrupts are enabled (CSWIE = 1), an interrupt will be generated at that time. The Oscillator Ready (ORDY) bit of OSCCON3 can also be polled to determine when the oscillator is ready in lieu of an interrupt.

If the Clock Switch Hold (CSWHOLD) bit of OSCCON3 is clear, the oscillator switch will occur when the new Oscillator's READY bit (NOSCR) is set, and the interrupt (if enabled) will be serviced at the new oscillator setting.

If CSWHOLD is set, the oscillator switch is suspended, while execution continues using the current (old) clock source. When the NOSCR bit is set, software should:

- set CSWHOLD = 0 so the switch can complete, or
- copy COSC into NOSC to abandon the switch.

If DOZE is in effect, the switch occurs on the next clock cycle, whether or not the CPU is operating during that cycle.

Changing the clock post-divider without changing the clock source (e.g., changing Fosc from 1 MHz to 2 MHz) is handled in the same manner as a clock source change, as described previously. The clock source will already be active, so the switch is relatively quick. CSWHOLD must be clear (CSWHOLD = 0) for the switch to complete.

The current COSC and CDIV are indicated in the OSCCON2 register up to the moment when the switch actually occurs, at which time OSCCON2 is updated and ORDY is set. NOSCR is cleared by hardware to indicate that the switch is complete.

9.3.2 PLL INPUT SWITCH

Switching between the PLL and any non-PLL source is managed as described above. The input to the PLL is established when NOSC selects the PLL, and maintained by the COSC setting.

When NOSC and COSC select the PLL with different input sources, the system continues to run using the COSC setting, and the new source is enabled per NOSC. When the new oscillator is ready (and CSWHOLD = 0), system operation is suspended while the PLL input is switched and the PLL acquires lock.

Note: If the PLL fails to lock, the FSCM will trigger.

9.3.3 CLOCK SWITCH AND SLEEP

If OSCCON1 is written with a new value and the device is put to Sleep before the switch completes, the switch will not take place and the device will enter Sleep mode.

When the device wakes from Sleep and the CSWHOLD bit is clear, the device will wake with the 'new' clock active, and the clock switch interrupt flag bit (CSWIF) will be set.

When the device wakes from Sleep and the CSWHOLD bit is set, the device will wake with the 'old' clock active and the new clock will be requested again.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN		—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	EXTOEN: Ex 1 = EXTOS 0 = EXTOS	ternal Oscillato C is explicitly e C could be ena	r Manual Requ nabled, operati bled by anothe	lest Enable bit ing as specifie er module	d by FEXTOSC	;	
bit 6	HFOEN: HFII 1 = HFINTC 0 = HFINTC	NTOSC Oscilla SC is explicitly SC could be e	tor Manual Rev enabled, oper nabled by anot	quest Enable b rating as specif ther module	bit fied by OSCFR	Q	
bit 5	MFOEN: MFI 1 = MFINTC 0 = MFINTC	NTOSC Oscilla SC is explicitly SC could be e	ator Manual Re / enabled nabled by anot	equest Enable I	bit		
bit 4	LFOEN: LFIN 1 = LFINTO 0 = LFINTO	TOSC (31 kHz SC is explicitly SC could be er	z) Oscillator Ma enabled nabled by anoth	anual Request her module	Enable bit		
bit 3	SOSCEN: Set 1 = Seconda 0 = Seconda	econdary (Time ary oscillator is ary oscillator co	r1) Oscillator M explicitly enab ould be enabled	lanual Reques led, operating d by another m	st bit as specified by nodule	SOSCPWR	
bit 2	ADOEN: FRC 1 = FRC is e 0 = FRC cou	C Oscillator Ma explicitly enable uld be enabled	nual Request E ed by another mo	Enable bit dule			
bit 1-0	Unimplemen	ted: Read as '	0'				

REGISTER 9-5: OSCEN: OSCILLATOR MANUAL ENABLE REGISTER

11.0 POWER-SAVING OPERATION MODES

The purpose of the Power-Down modes is to reduce power consumption. There are three Power-Down modes: DOZE mode, IDLE mode and SLEEP mode.

11.1 DOZE Mode

DOZE mode saves power by reducing CPU execution and program memory (PFM) access, without affecting peripheral operation.

11.1.1 DOZE OPERATION

When the Doze Enable bit is set (DOZEN = 1), the CPU executes one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. FOSC and FOSC/4 clock sources are unaffected in Doze mode and peripherals can continue using these sources.

11.1.2 SYSTEM BEHAVIOR FOR INTERRUPTS DURING DOZE

If an interrupt occurs during Doze, it can be configured using the Recover-On-Interrupt bit (ROI) and the Doze-On-Exit bit (DOE). Refer to Table 11-1 for details about system behavior in all cases for a transition from <u>Main \rightarrow ISR \rightarrow Main.</u>

DOZEN	BOI		Code flow							
DOZEN	RUI	Main	ISR (1)	Return to Main						
0	0	Normal operation	Normal operation and DOE = DOZEN (in hardware) DOZEN = 0 (unchanged)							
0	1	Normal operation	Normal operation and DOE = DOZEN (in hardware) DOZEN = 0 (in hardware)	If DOE = 1 when return from interrupt;	If DOE = 0 when return from					
1	0	Doze operation	Doze operation and DOE = DOZEN (in hardware) DOZEN = 1 (unchanged)	DOZE operation and DOZEN = 1 (in hard- ware)	DOZEN = 0 (in hardware)					
1	1	Doze operation	Normal operation and DOE = DOZEN (in hardware) DOZEN = 0 (in hardware)							

TABLE 11-1: SYSTEM BEHAVIOR FOR INTERRUPT DURING DOZE

Note 1: User software can change the DOE bit in ISR.

For example, if ROI = 1 and DOZE<2:0> = 001, the instruction cycle ratio is 1:4. The CPU and memory operate for one instruction cycle and stay idle for the next three instruction cycles. The Doze operation is illustrated in Figure 11-1.

14.7 Register Definitions: PORTC

REGISTER 14-18: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7	RC6	—	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	RC<7:6>: PORTC General Purpose I/O Pin bits ⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL
bit 5	Unimplemented: Read as '0'.
bit 4-0	RC<4:0> : PORTC General Purpose I/O Pin bits ⁽¹⁾ 1 = Port pin is \geq VIH 0 = Port pin is $<$ VII

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 14-19: TRISC: PORTC TRI-STATE REGISTER

R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISC7	TRISC6	—	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	TRISC<7:6>: PORTC Tri-State Control bits						
	1 = PORTC pin configured as an input (tri-stated)						
	0 = PORTC pin configured as an output						
bit 5	Unimplemented: Read as '0'.						
bit 4-0	TRISC<4:0>: PORTC Tri-State Control bits						
	1 = PORTC pin configured as an input (tri-stated)						
	0 = PORTC pin configured as an output						

14.8 PORTD Registers

Note:	PORTD functionality is not available on
	the PIC16(L)F19155/56 family of devices.

14.8.1 DATA REGISTER

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 14-2). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., disable the output driver). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 14.2.8 shows how to initialize PORTD.

Reading the PORTD register (Register 14-1) reads the status of the pins, whereas writing to it will write to the PORT latch.

The PORT data latch LATD (Register 14-3) holds the output port data, and contains the latest value of a LATD or PORTD write.

EXAMPLE 14-3: INITIALIZING PORTD

<pre>; This code example illustrates ; initializing the PORTD register. The ; other ports are initialized in the same ; manner.</pre>								
BANKSEL	PORTD	;						
CLRF	PORTD	;Init PORTD						
BANKSEL	LATD	;Data Latch						
CLRF	LATD	;						
BANKSEL	ANSELD	;						
CLRF	ANSELD	;digital I/O						
BANKSEL	TRISD	;						
MOVLW	B'00111000'	;Set RD<5:3> as inputs						
MOVWF	TRISD	;and set RD<2:0> as						
		;outputs						

14.8.2 DIRECTION CONTROL

The TRISD register (Register 14-2) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.8.3 OPEN-DRAIN CONTROL

The ODCOND register (Register 14-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCOND bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCOND bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

14.8.4 SLEW RATE CONTROL

The SLRCOND register (Register 14-7) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCOND bit is set, the corresponding port pin drive is slew rate limited. When an SLRCOND bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.8.5 INPUT THRESHOLD CONTROL

The INLVLD register (Register 14-8) controls the input voltage threshold for each of the available PORTD input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTD register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 39-4 for more information on threshold levels.

Note:	Changing the input threshold selection should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

REGISTER 19-15: ADCNT: ADC REPEAT COUNTER REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
CNT<7:0>										
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
u = Bit is uncha	is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							

bit 7-0 **CNT<7:0>**: ADC Repeat Count bits Counts the number of times that the ADC has been triggered and is used along with RPT to determine when the error threshold is checked when the computation is Low-pass Filter, Burst Average, or Average modes. See Table 19-2 for more details.

REGISTER 19-16: ADFLTRH: ADC FILTER HIGH BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
FLTR<15:8>										
bit 7 bit 0										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **FLTR<15:8**>: ADC Filter Output Most Significant bits

In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

REGISTER 19-17: ADFLTRL: ADC FILTER LOW BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x			
FLTR<7:0>										
bit 7							bit 0			
Legend:										

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **FLTR<7:0>**: ADC Filter Output Least Significant bits In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

33.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

33.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit (I^2C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- · Serial Clock (SCL)
- Serial Data (SDA)

Figure 33-2 and Figure 33-3 shows the block diagram of the MSSP module when operating in I^2C mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Note: When using designated I²C pins, the associated pin values in INLVLx will be ignored.

Figure 33-11 shows a typical connection between two processors configured as master and slave devices.

The I²C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

- Master Transmit mode
 (master is transmitting data to a slave)
- Master Receive mode (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, the master device sends out a Start condition followed by the address byte of the slave it intends to communicate with.

This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues to either transmit or receive data from the slave.

FIGURE 33-11: I²C MASTER/ SLAVE CONNECTION

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop condition in place of the last ACK bit. A Stop condition is indicated by a low-to-high transition of the SDA line while the SCL line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send Restart condition in place of the Stop condition.

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc	= 32.00	0 MHz	Fosc	= 20.00	0 MHz	Foso	: = 18.43	2 MHz	Fosc	= 11.059	92 MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—									_	_	
1200	—	—	—	—	—	—	—	—		—	—	—
2400	—	—	—	—	—	_	—		—	—	_	_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

TABLE 34-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Foso	: = 3.686	4 MHz	Fos	c = 1.000) MHz
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_		_			_	_	_	300	0.16	207
1200	—	—	_	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	—	57.60k	0.00	3	—	_	_
115.2k	—	_	_	—	_	_	115.2k	0.00	1	—	_	—

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD RATE	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

R/W-0/0	R/W-0/0	R-0	R-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0			
LPEN	EN5V	—	—	—	BIAS2	BIAS1	BIAS0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7	LPEN: LCD C 1 = LCD Cha 0 = LCD Cha	charge Pump Lo rge Pump is op rge Pump is op	ow Power Ena perating in Low perating in Nor	ble (Low-Curre /-Current mode mal-Current mo	nt (LC) mode	enable)				
bit 6	it 6 EN5V: 5V Range Enable bit 1 = The pump generates 5.0V voltage range 0 = The pump generates 3.5V voltage range									
bit 5-3	Reserved: Read as '0'									
bit 2-0	Reserved: Read as 0 BIAS<2:0>: Boost Pump Voltage Output Control bits (Only valid when LCDVSRC<2:0> = 100, 101, 110) When EN5V = 0 111 = Set boost pump output to 3.50V 110 = Set boost pump output to 3.40V 101 = Set boost pump output to 3.30V 100 = Set boost pump output to 3.20V 011 = Set boost pump output to 3.10V 010 = Set boost pump output to 3.00V 001 = Set boost pump output to 2.90V 000 = Set boost pump output to 2.80V When EN5V = 1 111 = Set boost pump output to 5.01V 110 = Set boost pump output to 4.83V 101 = Set boost pump output to 4.66V 100 = Set boost pump output to 4.31V 011 = Set boost pump output to 4.31V 012 = Set boost pump output to 4.33V 013 = Set boost pump output to 4.33V 014 = Set boost pump output to 4.33V 015 = Set boost pump output to 4.33V 016 = Set boost pump output to 4.33V 017 = Set boost pump output to 4.33V 018 = Set boost pump output to 4.33V 019 = Set boost pump output to 4.33V 010 = Set boost pump output to 4.33V 011 = Set boost pump output to 4.33V 012 = Set boost pump output to 4.33V 013 = Set boost pump output to 4.33V 014 = Set boost pump output to 4.33V 015 = Set boost pump output to 3.78V									

REGISTER 35-5: LCDVCON1: LCD VOLTAGE CONTROL 1 BITS

39.0 ELECTRICAL SPECIFICATIONS

39.1 Absolute Maximum Ratings ^(†)	$\langle \rangle$
Ambient temperature under bias44	0°C to +125°C
Storage temperature68	5°C to +150°C
Voltage on pins with respect to Vss	\sim
on VDD pin)
PIC16F19155/56/75/76/85/86	-0.3V to +6.5V
PIC16(L)F19155/56/75/76/85/86	-0.3V to +4.0V
on MCLR pin	-0,3V to +9.0V
on all other pins	o (Vdd + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
-40°C ≤ TA ≤ +85°C	350 mA
85°C < TA ≤ +125°C	120 mA
on VDD pin for 28-Pin devices ⁽¹⁾	
$-40^{\circ}C \le TA \le +85^{\circ}C$	250 mA
85°C < TA ≤ +125°C	85 mA
on VDD pin for 40-Pin devices ⁽¹⁾	
$-40^{\circ}C \le TA \le +85^{\circ}C$	350 mA
85°C < TA ≤ +125°C	120 mA
on any standard I/O pin	±50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device backage power dissipation characterizations, see Table 39-6 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD $x \{Ipb - \sum Ioh\} + \sum \{(VDD - VOH) \times IOH\} + \sum (VOI \times IOL)$

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

TABLE 39-26: I²C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characte	Min.	Max.	Units	Conditions			
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz		
			SSP module	1.5Tcy	_				
SP101*	TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz		
			SSP module	1.5Tcy	—				
SP102*	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns			
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF		
SP103*	TF	SDA and SCL fall time	100 kHz mode	—	250	ns			
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF		
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns			
			400 kHz mode	0	0.9	μS			
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)		
			400 kHz mode	100		ns			
SP109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)		
			400 kHz mode	—		ns			
SP110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free		
			400 kHz mode	1.3	—	μS	before a new transmission can start		
SP111	11 CB Bus capacitive loading				400	pF			

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

41.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] X IDE Software
 - MPLAB® XPRESS IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

41.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (6/2017)

This is the initial release of the document.