

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19176t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 10.5 "Automatic Context Saving"** for more information.

3.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 4.5 "Stack"** for more details.

3.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers, program memory, and data EEPROM, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. See **Section 4.6 "Indirect Addressing"** for more details.

3.4 Instruction Set

There are 48 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 37.0 "Instruction Set Summary"** for more details.

4.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Program Flash Memory
 - Device Information Area (DIA)
 - Device Configuration Information (DCI)
 - Revision ID
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM (GPR)
 - Common RAM
- Data EEPROM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing
- NVMREG access

TABLE 4-1: DEVICE SIZES AND ADDRESSES

Device	Program Flash Memory Size (Words)	Last Program Memory Address		
PIC16(L)F19155	8k	1FFFh		
PIC16(L)F19175	8k	1FFFh		
PIC16(L)F19185	8k	1FFFh		
PIC16(L)F19156	16k	3FFFh		
PIC16(L)F19176	16k	3FFFh		
PIC16(L)F19186	16k	3FFFh		

4.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing $32K \times 14$ program memory space. Table 4-1 shows the memory sizes implemented. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 4-1).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 0					•	•	•	•	•	•	•
				CPU	CORE REGISTERS	; see Table 4-3 for	specifics				
	[, 					Γ
0Ch	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX XXXX	uuuu uuuu
0Dh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
0Eh	PORTC	RC7	RC6	_	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
0Fh	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
010h	PORTE	RE7	RE6	RE5	RE4	RE3	—	RE1	RE0	xxxx xxxx	uuuu uuuu
011h	PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx xxxx	uuuu uuuu
012h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
013h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
014h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
015h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
016h	TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	_	TRISE1	TRISE0	1111 1111	1111 1111
017h	TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	1111 1111	1111 1111
018h	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx xxxx	uuuu uuuu
019h	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx	uuuu uuuu
01Ah	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
01Bh	LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx xxxx	uuuu uuuu
01Ch	LATE	LATE7	LATE6	LATE5	LATE4	LATE3	_	LATE1	LATE0	xxxx xxxx	uuuu uuuu
01Dh	LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx xxxx	uuuu uuuu
01Eh	_				Unimpler	nented		•			
01Fh	ADCPCON0	ADCPON	_	_	—	—	—	—	ADCPRDY	xx	uu

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 2										•	
				CPU	CORE REGISTERS	S; see Table 4-3 for	specifics				
10Ch	ADACQL				ACQ<	:7:0>				0000 0000	0000 0000
10Dh	ADACQH	_	_	_			ACQ<4:0>			0000 0000	0000 0000
10Eh	ADCAP	_	_	_			ADCAP<4:0>			0000 0000	0000 000
10Fh	ADPREL				PRE<	7:0>				0000 0000	0000 000
110h	ADPREH		_				PRE<4:0>			0000 0000	0000 000
111h	ADCON0	ON	CONT	_	CS	_	FM	_	GO	00-0 -x-0	00-0 -0-
112h	ADCON1	PPOL	IPEN	GPOL		_	_	_	DSEN	0000	000
113h	ADCON2	PSIS		CRS<2:0> ACLR MD<2:0>					0000 0000	0000 000	
114h	ADCON3	_		CALC<2:0>		SOI		TMD<2:0>		0000 0000	0000 000
115h	ADSTAT	OV	UTHR	LTHR	MATH			STAT<2:0>		0000 -000	0000 -00
116h	ADREF	_	_	_	_	_	_	PRE	F<1:0>	0000 0000	0000 000
117h	ADACT	—	_	_			ACT<4:0>			0000 0000	0000 000
118h	ADCLK	—	—			CS<5	:0>			0000 0000	0000 000
119h	RC1REG				RC1F	REG				0000 0000	0000 000
11Ah	TX1REG				TX1F	REG				0000 0000	0000 000
11Bh	SP1BRGL		SP1BRGL 0000 0000						0000 000		
11Ch	SP1BRGH				SP1B	RGH				0000 0000	0000 000
11Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 000
11Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 001
11Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	01-0 0-00	01-0 0-0

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

6.0 DEVICE INFORMATION AREA

The Device Information Area (DIA) is a dedicated region in the program memory space, it is a new feature in the PIC16(L)F19155/56/75/76/85/86 family of devices. The DIA contains the calibration data for the internal temperature indicator module, stores the Microchip Unique Identifier words and the Fixed Voltage Reference voltage readings measured in mV.

The complete DIA table is shown in Table 6-1, followed by a description of each region and its functionality. The data is mapped from 8100h to 811Fh in the PIC16(L)F19155/56/75/76/85/86 family. These locations are read-only and cannot be erased or modified. The data is programmed into the device during manufacturing.

TABLE 6-1: DEVICE INFORMATION AREA

Address Range	Name of Region	Standard Device Information				
	MUI0					
	MUI1					
	MUI2					
	MUI3					
8100h-8108h	MUI4	Microchip Unique Identifier (9 Words)				
	MUI5					
	MUI6					
	MUI7					
	MUI8					
8109h	MUI9	1 Word Reserved				
	EUI0					
810Ah-8111h	EUI1					
	EUI2					
	EUI3					
	EUI4	Unassigned (8 Words)				
	EUI5					
	EUI6	7				
	EUI7					
8112h	TSLR1	Unassigned (1 word)				
8113h	TSLR2	Temperature indicator ADC reading at 90°C (low-range setting)				
8114h	TSLR3	Unassigned(1 word)				
8115h	TSHR1	Unassigned (1 word)				
8116h	TSHR2	Temperature indicator ADC reading at 90°C (high-range setting)				
8117h	TSHR3	Unassigned (1 Word)				
8118h	FVRA1X	ADC FVR1 Output voltage for 1x setting (in mV)				
8119h	FVRA2X	ADC FVR1 Output Voltage for 2x setting (in mV)				
811Ah	FVRA4X ⁽¹⁾	ADC FVR1 Output Voltage for 4x setting (in mV)				
811Bh	FVRC1X	Comparator FVR2 output voltage for 1x setting (in mV)				
811Ch	FVRC2X	Comparator FVR2 output voltage for 2x setting (in mV)				
811Dh	FVRC4X ⁽¹⁾	Comparator FVR2 output voltage for 4x setting (in mV)				
811Eh-811Fh		Unassigned (1 Word)				

Note 1: Value not present on LF devices.

			-				
R/W-1/1							
SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
bit 7							bit 0

REGISTER 14-15: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRB<7:0>: PORTB Slew Rate Enable bits For RB<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 14-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7 | | | | | | | bit 0 |

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 INLVLB<7:0>: PORTB Input Level Select bits

For RB<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

REGISTER 14-17: HIDRVB: PORTB HIGH DRIVE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	U-0
—	—	—	—	—	—	HIDB1	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'.
bit 1	HIDB1: PORTB High Drive Enable bit
	For RB1 pin
	1 = High current source and sink enabled
	0 = Standard current source and sink
bit 0	Unimplemented: Read as '0'.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BOI	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 14-31: SLRCOND: PORTD SLEW RATE CONTROL REGISTER⁽¹⁾

bit 7-0 SLRD<7:0>: PORTD Slew Rate Enable bits For RD<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

Note 1: Not available on the PIC16(L)F19155/56 family of devices.

REGISTER 14-32: INLVLD: PORTD INPUT LEVEL CONTROL REGISTER⁽¹⁾

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLD7 | INLVLD6 | INLVLD5 | INLVLD4 | INLVLD3 | INLVLD2 | INLVLD1 | INLVLD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLD<7:0>: PORTD Input Level Select bits

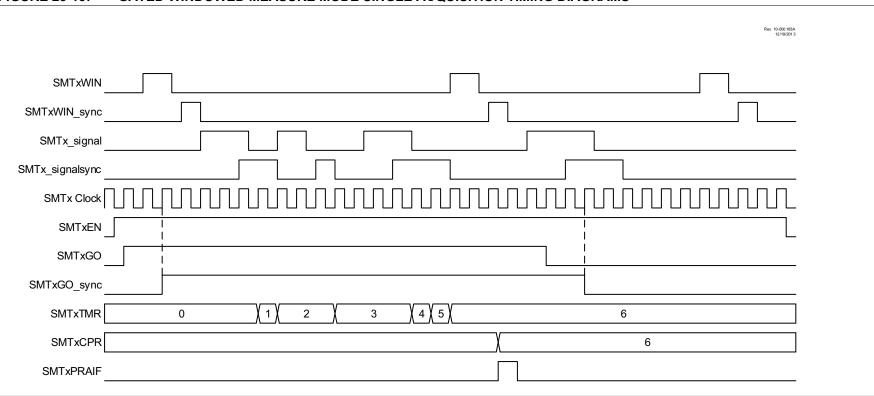
For RD<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

Note 1: Not available on the PIC16(L)F19155/56 family of devices.

27.5.2 HARDWARE GATE MODE


The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal gates the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 27-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

FIGURE 27-5:	HARDWARE GATE MODE TIMING DIAGRAM ((MODE = 00001)	

	Rev. 10.001988 500/2014	
MODE	0b00001	
TMRx_clk		
TMRx_ers_		
PRx	5	
TMRx	$0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1$	
TMRx_postscaled_		
PWM Duty Cycle PWM Output	3	

FIGURE 28-13: GATED WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAMS

PIC16(L)F19155/56/75/76/85/86

29.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 26.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

29.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIE6 register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIR6 register following any change in Operating mode.

Note:	Clocking Timer1 from the system clock
	(Fosc) should not be used in Capture
	mode. In order for Capture mode to
	recognize the trigger event on the CCPx
	pin, Timer1 must be clocked from the
	instruction clock (Fosc/4) or from an
	external clock source.

29.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxMODE<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 29-1 demonstrates the code to perform this function.

EXAMPLE 29-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	CCPxCON	;Set Bank bits to point ;to CCPxCON
CLRF	CCPxCON	;Turn CCP module off
CLRF	CCPXCON	, TUTH CCP MODULE OIL
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCPxCON	;Load CCPxCON with this
		;value
1		

29.1.5 CAPTURE DURING SLEEP

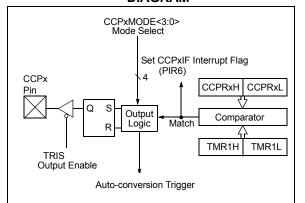
Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

29.2 Compare Mode

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:


- Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- · Generate an Auto-conversion Trigger
- · Generate a Software Interrupt

The action on the pin is based on the value of the CCPxMODE<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set, and an ADC conversion can be triggered, if selected.

All Compare modes can generate an interrupt and trigger and ADC conversion.

Figure 29-2 shows a simplified diagram of the compare operation.

30.2 Register Definitions: PWM Control

REGISTER 30-1: PWMxCON: PWM CONTROL REGISTER

R/W-0/0	U-0	R-0	R/W-0/0	U-0	U-0	U-0	U-0		
PWMxEN	—	PWMxOUT	PWMxPOL	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	PWMxEN: P\	WM Module En	able bit						
		odule is enable	÷.						
	0 = PWM mc	odule is disable	d						
bit 6	Unimplemen	ted: Read as '	0'						

- bit 5 PWMxOUT: PWM Module Output Level when Bit is Read
- bit 4 **PWMxPOL:** PWMx Output Polarity Select bit
 - 1 = PWM output is active-low
 - 0 = PWM output is active-high
- bit 3-0 Unimplemented: Read as '0'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T2CON	ON		CKPS<2:0>	CKPS<2:0> OUTPS<3:0>					404
T2TMR			Holding	Register for the	8-bit TMR2 R	egister			384*
T2PR				TMR2 Period	d Register				384*
RxyPPS	—	—	—		F	RxyPPS<4:0>			265
CWG1ISM	—	_	_	— — IS<3:0>					492
CLCxSELy	—	_			LCxDyS	<5:0>			503
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	222
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	235
PWM3CON	PWM3EN	_	PWM3OUT	PWM3POL	—	—	_	—	
PWM4CON	PWM4EN	_	PWM4OUT	PWM4POL	—	—	_	—	
PWM3DCL	PWM3DC1	PWM3DC0	_	_	_	_	_	_	
PWM3DCH	PWM3DC9	PWM3DC8	PWM3DC7	PWM3DC6	PWM3DC5	PWM3DC4	PWM3DC3	PWM3DC2	
PWM4DCL	PWM4DC1	PWM4DC0	—	—	—	—	—	—	
PWM4DCH	PWM4DC9	PWM4DC8	PWM4DC7	PWM4DC6	PWM4DC5	PWM4DC4	PWM4DC3	PWM4DC2	

TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWMx module.

*Page provides register information.

REGISTER 32-6: CLCxSEL3: GENERIC CLCx DATA 3 SELECT REGISTER											
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
	_			LCxD4	4S<5:0>						
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7-6	Unimpleme	ented: Read as '	0'								

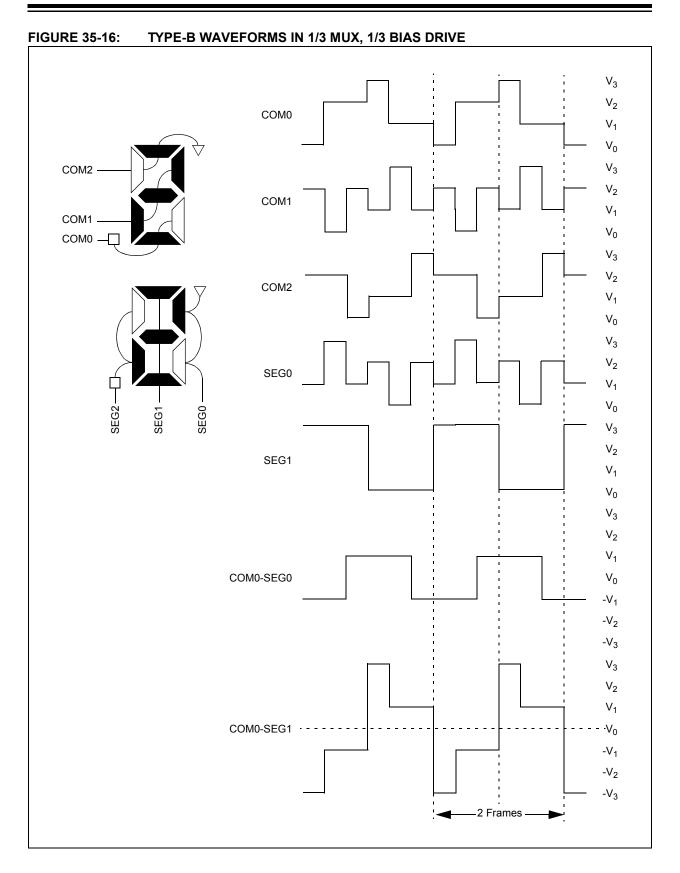
bit 5-0 **LCxD4S<5:0>:** CLCx Data 4 Input Selection bits See Table 32-2.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
LCxG1D4T	LCxG1D4N	LCxG1D3T	LCxG1D3N	LCxG1D2T	LCxG1D2N	LCxG1D1T	LCxG1D1N			
bit 7							bit (
Legend: R = Readable	hit	W = Writable	hit	II – Unimplor	nented bit, read	ac 'O'				
				•			than Decete			
u = Bit is uncha	angeo	x = Bit is unkr		-n/n = value a	at POR and BO	R/value at all o	iner Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7		Gate 0 Data 4 1	rue (non-inve	rted) hit						
		(true) is gated i	· ·							
		(true) is not gat								
bit 6		Gate 0 Data 4								
		inverted) is ga	•							
		inverted) is no								
bit 5	LCxG1D3T: @	Gate 0 Data 3 1	rue (non-inve	rted) bit						
		CLCIN2 (true) is gated into CLCx Gate 0								
	0 = CLCIN2 (true) is not gat	ed into CLCx	Gate 0						
bit 4	LCxG1D3N:	Gate 0 Data 3 I	Negated (inver	rted) bit						
		(inverted) is gated into CLCx Gate 0								
		inverted) is no	•							
bit 3		Gate 0 Data 2 1		,						
		true) is gated i								
		true) is not gat								
bit 2		Gate 0 Data 2	•							
		inverted) is ga inverted) is no								
b :4 4		. ,	•							
bit 1		Bate 0 Data 1 1	•	,						
		(true) is gated i (true) is not gat								
bit 0		Gate 0 Data 1								
		inverted) is ga	•	,						
		inverted) is ga								

REGISTER 32-7: CLCxGLS0: GATE 0 LOGIC SELECT REGISTER

REGISTER 33-7: SSPxBUF: MSSPx BUFFER REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SSPxBl	JF<7:0>			
bit 7							bit 0
Legend:							


Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SSPxBUF<7:0>: MSSP Buffer bits

TABLE 33-3: SUMMARY OF REGISTERS ASSOCIATED WITH MSSPx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
INTCON	GIE	PEIE		—	—	—	_	INTEDG	164		
PIR1	OSFIF	CSWIF	_	—	—	—	ADTIF	ADIF	175		
PIE1	OSFIE	CSWIE	_	—	—	—	ADTIE	ADIE	166		
SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	557		
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		558		
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	559		
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	560		
SSP1MSK	SSPMSK<7:0>										
SSP1ADD	SSPADD<7:0>								561		
SSP1BUF				SSPBU	562						
SSP2STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	557		
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		558					
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	559		
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	560		
SSP2MSK				SSPMS	K<7:0>				561		
SSP2ADD				SSPAD	D<7:0>				561		
SSP2BUF				SSPBU	F<7:0>				562		
SSP1CLKPPS		_			SSP1CLKPPS<4:0>						
SSP1DATPPS	—	—			264						
SSP1SSPPS	_	—			264						
SSP2CLKPPS		—	_	SSP2CLKPPS<4:0>							
SSP2DATPPS	—	—		SSP2DATPPS<4:0>							
SSP2SSPPS	—	—	_			2SSPPS<4			264		
RxyPPS	—	_	_	RxyPPS<4:0>							

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSPx module.

© 2017 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
1D20h	LCDDATA8	S23C1	S22C1	_	S20C1	S19C1	S18C1	—	—	624	
1D21h	LCDDATA9	S31C1	S30C1	S29C1	S28C1	S27C1	S26C1	S25C1	S24C1	624	
1D22h	LCDDATA10	—	—	—	—	—	S34C1	S33C1	S32C1	624	
1D23h	LCDDATA11	S47C1	S46C1	S45C1	S44C1	S43C1	S42C1	S41C1	S40C1	624	
1D24h	LCDDATA12	S07C2	S06C2	—	S04C2	S3C2	S2C2	S01C2	S00C2	624	
1D25h	LCDDATA13	S15C2	S14C2	S13C2	—	S11C2	S10C2	S09C2	S08C2	624	
1D26h	LCDDATA14	S23C2	S22C2	—	S20C2	S19C2	S18C2	—	—	624	
1D27h	LCDDATA15	S31C2	S30C2	S29C2	S28C2	S27C2	S26C2	S25C2	S24C2	624	
1D28h	LCDDATA16	_	_	_	—	—	S34C2	S33C2	S32C2	624	
1D29h	LCDDATA17	S47C2	S46C2	S45C2	S44C2	S43C2	S42C2	S41C2	S40C2	624	
1D2Ah	LCDDATA18	S15C3	S14C3	S13C3	—	SE11C3	S10C3	S09C3	S08C3	624	
1D2Bh	LCDDATA19	S23C3	S22C3	—	S20C3	S19C3	S18C3	—	_	624	
1D2Ch	LCDDATA20	S31C3	S30C3	S29C3	S28C3	S27C3	S26C3	S25C3	S24C3	624	
1D2Dh	LCDDATA21	—	—	—	—	—	S34C3	S33C3	S32C3	624	
1D2Eh	LCDDATA22	S47C3	S46C3	S45C3	S44C3	S43C3	S42C3	S41C3	S40C3	624	
1D2Fh	LCDDATA23	S07C4	S06C4	_	S04C4	S03C4	S02C4	S01C4	S00C4	624	
1D30h	LCDDATA24	S15C4	S14C4	S13C4	—	S11C4	S10C4	S09C4	S08C4	624	
1D31h	LCDDATA25	S23C4	S22C4	_	S20C4	S19C4	S18C4	_	_	624	
1D32h	LCDDATA26	S31C4	S30C4	S29C4	S28C4	S27C4	S26C4	S25C4	S24C4	624	
1D33h	LCDDATA27	—	—	—	—	—	S34C4	S33C4	S32C4	624	
1D34h	LCDDATA28	S47C4	S46C4	S45C4	S44C4	S43C4	S42C4	S41C4	S40C4	624	
1D35h	LCDDATA29	S07C5	S06C5	_	S04C5	S03C5	S02C5	S01C5	S00C5	624	
1D36h	LCDDATA30	S15C5	S14C5	S13C5	—	S11C5	S10C5	S09C5	S08C5	624	
1D37h	LCDDATA31	S23C5	S22C5	—	S20C5	S19C5	S18C5	—	—	624	
1D38h	LCDDATA32	S31C5	S30C5	S29C5	S28C5	S27C5	S26C5	S25C5	S24C5	624	
1D39h	LCDDATA33	—	—	_	—	_	S34C5	S33C5	S32C5	624	
1D3Ah	LCDDATA34	S47C5	S46C5	S45C5	S44C5	S43C5	S42C5	S41C5	S40C5	624	
1D3Bh	LCDDATA35	S07C6	S06C6	_	S04C6	S03C6	S02C6	S01C6	S00C6	624	
1D3Ch	LCDDATA36	S15C6	S14C6	S13C6	—	S11C6	S10C6	S09C6	S08C6	624	
1D3Dh	LCDDATA37	S23C6	S22C6	_	S20C6	S19C6	S18C6	_	—	624	
1D3Eh	LCDDATA38	S31C6	S30C6	S29C6	S28C6	S27C6	S26C6	S25C6	S24C6	624	
1D3Fh	LCDDATA39	—	—	_	—	_	S34C6	S33C6	S32C6	624	
1D40h	LCDDATA40	S47C6	S46C6	S45C6	S44C6	S43C6	S42C6	S41C6	S40C6	624	
1D41h	LCDDATA41	S07C7	S06C7	_	S04C7	S03C7	S02C7	S01C7	S00C7	624	
1D42h	LCDDATA42	S15C7	S14C7	S13C7	—	S11C7	S10C7	S09C7	S08C7	624	
1D43h	LCDDATA43	S23C7	S22C7	—	S20C7	S19C7	S18C7	—	—	624	
1D44h	LCDDATA44	S31C7	S30C7	S29C7	S28C7	S27C7	S26C7	S25C7	S24C7	624	
1D45h	LCDDATA45	_	_	_	_	—	S34C7	S33C7	S32C7	624	
1D46h	LCDDATA46	S47C7	S46C7	S45C7	S44C7	S43C7	S42C7	S41C7	S40C7	624	
1D47h	LCDDATA47	S07C0	S06C0	_	S04COM0	S03C0	S02C0	S01C0	S00C0	624	
1D48h —	_	- Unimplemented									
1D6Fh	x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0										

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
Note 1: Unimplemented data memory locations, read as '0'.

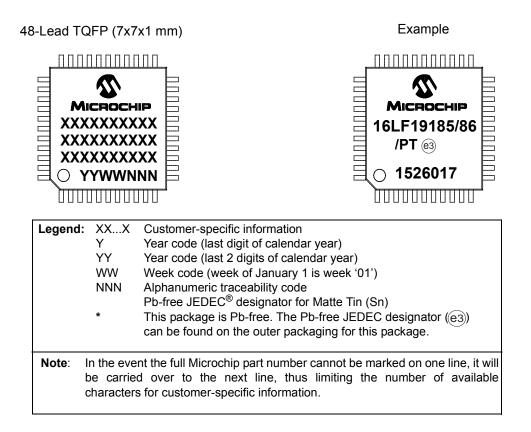
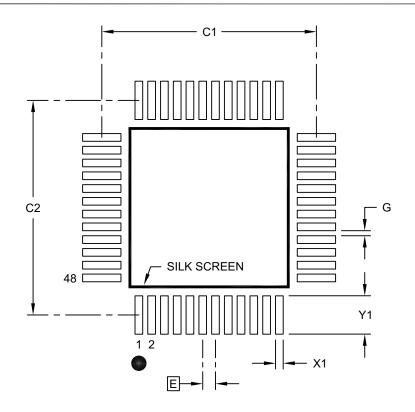

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
1EEBh	—	Unimplemented										
1EECh	_	Unimplemented										
1EEDh	_	Unimplemented										
1EEEh	_		Unimplemented									
1EEFh	_		Unimplemented									
1F0Ch	_		Unimplemented									
1F0Dh	_		Unimplemented									
1F0Eh			Unimplemented									
1F0Fh	_					emented						
1F10h	RA0PPS				RA0PPS4	RA0PPS3	RA0PPS2	RA0PPS1	RA0PPS0	265		
1F11h	RA1PPS				RA1PPS4	RA1PPS3	RA1PPS2	RA1PPS1	RA1PPS0	265		
1F12h	RA2PPS	_			RA2PPS4	RA2PPS3	RA2PPS2	RA2PPS1	RA2PPS0	265		
1F13h	RA3PPS	—	_	_	RA3PPS4	RA3PPS3	RA3PPS2	RA3PPS1	RA3PPS0	265		
1F14h	RA4PPS	—	—	—	RA4PPS4	RA4PPS3	RA4PPS2	RA4PPS1	RA4PPS0	265		
1F15h	RA5PPS	_		_	RA5PPS4	RA5PPS3	RA5PPS2	RA5PPS1	RA5PPS0	265		
1F16h	RA6PPS	_	—	_	RA6PPS4	RA6PPS3	RA6PPS2	RA6PPS1	RA6PPS0	265		
1F17h	RA7PPS	_		_	RA7PPS4	RA7PPS3	RA7PPS2	RA7PPS1	RA7PPS0	265		
1F18h	RB0PPS	—	—	_	RB0PPS4	RB0PPS3	RB0PPS2	RB0PPS1	RB0PPS0	265		
1F19h	RB1PPS	_	_	—	RB1PPS4	RB1PPS3	RB1PPS2	RB1PPS1	RB1PPS0	265		
1F1Ah	RB2PPS	-	—	-	RB2PPS4	RB2PPS3	RB2PPS2	RB2PPS1	RB2PPS0	265		
1F1Bh	RB3PPS	_	—	_	RB3PPS4	RB3PPS3	RB3PPS2	RB3PPS1	RB3PPS0	265		
1F1Ch	RB4PPS	—	_	—	RB4PPS4	RB4PPS3	RB4PPS2	RB4PPS1	RB4PPS0	265		
1F1Dh	RB5PPS	_	_	_	RB5PPS4	RB5PPS3	RB5PPS2	RB5PPS1	RB5PPS0	265		
1F1Eh	RB6PPS	_	_	_	RB6PPS4	RB6PPS3	RB6PPS2	RB6PPS1	RB6PPS0	265		
1F1Fh	RB7PPS	_	_	_	RB7PPS4	RB7PPS3	RB7PPS2	RB7PPS1	RB7PPS0	265		
1F20h	RC0PPS	_		_	RC0PPS4	RC0PPS3	RC0PPS2	RC0PPS1	RC0PPS0	265		
1F21h	RC1PPS	_	_	_	RC1PPS4	RC1PPS3	RC1PPS2	RC1PPS1	RC1PPS0	265		
1F22h	RC2PPS	_		_	RC2PPS4	RC2PPS3	RC2PPS2	RC2PPS1	RC2PPS0	265		
1F23h	RC3PPS	_			RC3PPS4	RC3PPS3	RC3PPS2	RC3PPS1	RC3PPS0	265		
1F24h	RC4PPS	_		_	RC4PPS4	RC4PPS3	RC4PPS2	RC4PPS1	RC4PPS0	265		
1F25h	—					emented	11041102	11041101	11041100	200		
1F26h	RC6PPS	_	_	_	RC6PPS4	RC6PPS3	RC6PPS2	RC6PPS1	RC6PPS0	265		
1F27h	RC7PPS	_			RC7PPS4	RC7PPS3	RC7PPS2	RC7PPS1	RC7PPS0	265		
	RD0PPS	_	_	_	RD0PPS4	RD0PPS3	RD0PPS2	RD0PPS1		265		
1F28h		_	_	_					RD0PPS0	265		
1F29h	RD1PPS				RD1PPS4	RD1PPS3	RD1PPS2	RD1PPS1	RD1PPS0			
1F2Ah	RD2PPS				RD2PPS4	RD2PPS3	RD2PPS2	RD2PPS1	RD2PPS0	265		
1F2Bh	RD3PPS	_	_		RD3PPS4	RD3PPS3	RD3PPS2	RD3PPS1	RD3PPS0	265		
1F2Ch	RD4PPS				RD4PPS4	RD4PPS3	RD4PPS2	RD4PPS1	RD4PPS0	265		
1F2Dh	RD5PPS				RD5PPS4	RD5PPS3	RD5PPS2	RD5PPS1	RD5PPS0	265		
1F2Eh	RD6PPS		_	_	RD6PPS4	RD6PPS3	RD6PPS2	RD6PPS1	RD6PPS0	265		
1F2Fh	RD7PPS				RD7PPS4	RD7PPS3	RD7PPS2	RD7PPS1	RD7PPS0	265		
1F30h	RE0PPS	_	_	_	RE0PPS4	RE0PPS3	RE0PPS2	RE0PPS1	RE0PPS0	265		
1F31h	RE1PPS			_	RE1PPS4	RE1PPS3	RE1PPS2	RE1PPS1	RE1PPS0	265		
1F32h	RE2PPS	—	_	_	RE2PPS4	RE2PPS3	RE2PPS2	RE2PPS1	RE2PPS0	265		

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

 $Legend: \quad x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.$


Note 1: Unimplemented data memory locations, read as '0'.

42.1 Package Marking Information (Continued)

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	E 0.50 BSC				
Contact Pad Spacing	C1		8.40		
Contact Pad Spacing	C2		8.40		
Contact Pad Width (X48)	X1			0.30	
Contact Pad Length (X48)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2300-PT Rev A