

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19176t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started With PIC16(L)F19155/56/75/76/85/86 Microcontrollers	
3.0	Enhanced Mid-Range CPU	
4.0	Memory Organization	
5.0	Device Configuration	
6.0	Device Information Area	
7.0	Device Configuration Information	
8.0	Resets and Vbat	
9.0	Oscillator Module (with Fail-Safe Clock Monitor)	
10.0	Interrupts	
11.0	Power-Saving Operation Modes	
12.0	Windowed Watchdog Timer (WWDT)	193
13.0	Nonvolatile Memory (NVM) Control	
14.0	I/O Ports	
15.0	Peripheral Pin Select (PPS) Module	
16.0	Peripheral Module Disable (PMD)	
17.0	Interrupt-On-Change (IOC)	
18.0	Fixed Voltage Reference (FVR)	
19.0	Analog-to-Digital Converter with Computation (ADC2) Module	
20.0	Temperature Indicator Module (TIM)	
21.0	5-Bit Digital-to-Analog Converter (DAC1) Module	
22.0	Comparator Module	
23.0	Zero-Cross Detection (ZCD) Module	
24.0	Real-Time Clock and Calendar (RTCC)	
25.0	Timer0 Module	
26.0	Timer1 Module with Gate Control	
27.0	Timer2/4 Module With Hardware Limit Timer (HLT)	
28.0	Signal Measurement Timer (SMT)	
29.0	Capture/Compare/PWM Modules	
30.0	Pulse-Width Modulation (PWM)	
31.0	Complementary Waveform Generator (CWG) Module	
32.0	Configurable Logic Cell (CLC)	
33.0	Master Synchronous Serial Port (MSSP) Modules	
34.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART1/2)	
35.0	Liquid Crystal Display (LCD) Controller	
36.0	In-Circuit Serial Programming™ (ICSP™)	
37.0	Instruction Set Summary	633
38.0	Register Summary	
39.0	Electrical Specifications	
40.0	DC and AC Characteristics Graphs and Charts	
41.0	Development Support	
42.0	Packaging Information	
Appe	ndix A: Data Sheet Revision History	

4.3 Data Memory Organization

The data memory is partitioned into 64 memory banks with 128 bytes in each bank. Each bank consists of (Section 4.3.6 "Device Memory Maps"):

FIGURE 4-2:	BANKED MEMORY
	PARTITIONING

- 12 core registers
- Up to 100 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

4.3.1 BANK SELECTION

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 4.6** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

4.3.2 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 4-3. For detailed information, see Table 4-3.

ABLE 4-3:	CORE REGISTERS

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
x0Bh or x8Bh	INTCON

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 0					1				1		
				CPU	CORE REGISTERS	; see Table 4-3 fo	r specifics				
0Ch	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	uuuu uuuu
0Dh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
0Eh	PORTC	RC7	RC6	—	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
0Fh	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
010h	PORTE	RE7	RE6	RE5	RE4	RE3	—	RE1	RE0	xxxx xxxx	uuuu uuuu
011h	PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx xxxx	uuuu uuuu
012h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
013h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
014h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
015h	TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
016h	TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	_	TRISE1	TRISE0	1111 1111	1111 1111
017h	TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	1111 1111	1111 1111
018h	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx xxxx	uuuu uuuu
019h	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx	uuuu uuuu
01Ah	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
01Bh	LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx xxxx	uuuu uuuu
01Ch	LATE	LATE7	LATE6	LATE5	LATE4	LATE3	—	LATE1	LATE0	xxxx xxxx	uuuu uuuu
01Dh	LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx xxxx	uuuu uuuu
01Eh	_				Unimpler	nented					
01Fh	ADCPCON0	ADCPON	_	_		_	_	_	ADCPRDY	xx	uu

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 5	nk 5										
				CPU	CORE REGISTERS	s; see Table 4-3 for	specifics				
28Ch	T2TMR				TMI	72				0000 0000	0000 0000
28Dh	T2PR				PR	2				1111 1111	1111 1111
28Eh	T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		0000 0000	0000 0000
28Fh	T2HLT	PSYNC	CKPOL	CKSYNC			MODE<4:0>			0000 0000	0000 0000
290h	T2CLKCON		_	—	_		CS<	<3:0>		0000 0000	0000 0000
291h	T2RST		_	—	_		RSEL	_<3:0>		0000 0000	0000 0000
292h	T4TMR		TMR4							0000 0000	0000 0000
293h	T4PR				PR	4				1111 1111	1111 1111
294h	T4CON	ON		CKPS<2:0>		OUTPS<3:0>			0000 0000	0000 0000	
295h	T4HLT	PSYNC	CKPOL	CKSYNC		MODE<4:0>			0000 0000	0000 0000	
296h	T4CLKCON		_	—	_		CS<	<3:0>		0000 0000	0000 0000
297h	T4RST		_	—	_		RSEL	_<3:0>		0000 0000	0000 0000
298h	—				Unimple	mented					
299h	_		Unimplemented								
29Ah	—		Unimplemented								
29Bh	_	Unimplemented									
29Ch	_	Unimplemented									
29Dh	_		Unimplemented								
29Eh	_				Unimple	mented					
29Fh					Unimple	mented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

REGISTER 17-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER	REGISTER 17-9:	IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER
---	----------------	--

R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	
IOCCF7	IOCCF6	—	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit i		'0' = Bit is clea	ared	HS - Bit is se	t in hardware			
bit 7-6 IOCCF<7:6>: Interrupt-on-Change PORTC Flag bits								
 1 = An enabled change was detected on the associated pin Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling 								

	edge was detected on RCx.
	0 = No change was detected, or the user cleared the detected change
bit 5	Unimplemented: Read as '0'
bit 4-0	 IOCCF<4:0>: Interrupt-on-Change PORTC Flag bits 1 = An enabled change was detected on the associated pin Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.

^{0 =} No change was detected, or the user cleared the detected change

REGISTER 17-10: IOCEP: INTERRUPT-ON-CHANGE PORTE POSITIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	U-0	U-0
—	—	—	—	IOCEP3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	Unimplemented: Read as '0'	
---------	----------------------------	--

bit 3 IOCEP3: Interrupt-on-Change PORTE Positive Edge Enable bit

1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCEFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

bit 2-0 Unimplemented: Read as '0'

Note 1: If MCLRE = 1 or LVP = 1, RC port functionality is disabled and IOC is not available on RE3.

19.4.5 ADDITIONAL SAMPLE AND HOLD CAPACITANCE

Additional capacitance can be added in parallel with the internal sample and hold capacitor (CHOLD) by using the ADCAP register. This register selects a digitally programmable capacitance which is added to the ADC conversion bus, increasing the effective internal capacitance of the sample and hold capacitor in the ADC module. This is used to improve the match between internal and external capacitance for a better sensing performance. The additional capacitance does not affect analog performance of the ADC because it is not connected during conversion. See Figure 19-10.

REGISTER 19-30: ADERRL: ADC SETPOINT ERROR LOW BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
			ERR<	<7:0>					
bit 7 bit									
Legend:									

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ERR<7:0>**: ADC Setpoint Error LSB. Lower byte of ADC Setpoint Error calculation is determined by ADCALC bits of ADCON3, see Register 19-4 for more details.

REGISTER 19-31: ADLTHH: ADC LOWER THRESHOLD HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
LTH<15:8>										
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **LTH<15:8>**: ADC Lower Threshold MSB. LTH and UTH are compared with ERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 19-32: ADLTHL: ADC LOWER THRESHOLD LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
LTH<7:0>										
bit 7 bit										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **LTH<7:0>**: ADC Lower Threshold LSB. LTH and UTH are compared with ERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

© 2017 Microchip Technology Inc.

22.13 Register Definitions: Comparator Control

REGISTER 22-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
ON	OUT	—	POL	_	_	HYS	SYNC	
bit 7					•		bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other R				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	ON: Compara 1 = Compara 0 = Compara	ator Enable bit tor is enabled tor is disabled a	and consumes	s no active pow	er			
bit 6	OUT: Compare If CxPOL = 1 1 = CxVP < 0	rator Output bit (inverted polar CxVN CxVN (noninverted p CxVN CxVN	: <u>ity):</u> olarity):					
bit 5	Unimplemen	ted: Read as '	0'					
bit 4	POL: Compare 1 = Compare 0 = Compare	rator Output Po tor output is inv tor output is no	plarity Select b verted t inverted	it				
bit 3-2	Unimplemen	ted: Read as '	0'					
bit 1	HYS: Compare 1 = Compare 0 = Compare	rator Hysteresi Itor hysteresis Itor hysteresis	s Enable bit enabled disabled					
bit 0	SYNC: Comp 1 = Compara Output up 0 = Compara	arator Output s itor output to T pdated on the f itor output to T	Synchronous M Timer1 and I/C Falling edge of Imer1 and I/O	Mode bit) pin is synchro Timer1 clock s pin is asynchro	onous to chan ource. onous	iges on Timer1	clock source.	

PIC16(L)F19155/56/75/76/85/86

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	—	—			WSEL<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	tion	
bit 7-5	Unimplemen	ted: Read as ')'				
bit 4-0	WSEL<4:0>:	SMTx Window	Selection bits	i			
	11111 = Res	erved					
	•						
	•						
	10011 = Res	erved					
	10010 = RTC	CC_Seconds					
	10001 = CLC	C4OUT					
	10000 = CLC						
	01111 = CLC	2001 2001					
	01101 = ZCE	DOUT					
	01100 = C2C	DUT					
	01011 = C1C	DUT					
	01010 = PWI	M4_out					
	01001 = PWI	M3_out					
	01000 = CCF	21001					
	00110 = TMF	R4 postscaler					
	00101 = TMF	R2_postscaler					
	00100 = TMF	R0_overflow					
	00011 = SOS	SC					
	00010 = MFI	NTOSC (31 kH	z)				
	$00001 = \mathbf{LFI}$	NTUSU (31 KHZ FW/INy nin	<u>(</u>)				

REGISTER 28-5: SMTxWIN: SMTx WINDOW INPUT SELECT REGISTER

28.7.5 WINDOWED MEASURE MODE

Windowed Measure mode measures the window duration of the SMTWINx input of the SMT. It begins incrementing the timer on a rising edge of the SMTWINx input and updates the SMTxCPR register with the value of the timer and resets the timer on a second rising edge. See Figure 28-10 and Figure 28-11.

FIGURE 28-17: CAPTURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC16(L)F19155/56/75/76/85/86

REGISTER 32	2-6: CLCx	SEL3: GENEI	RIC CLCx D	DATA 3 SELE		R				
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
—	_		LCxD4S<5:0>							
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is cle	ared							
bit 7-6	Unimplemen	ted: Read as '	0'							

bit 5-0 **LCxD4S<5:0>:** CLCx Data 4 Input Selection bits See Table 32-2.

33.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<3:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- · Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- · Data Input Sample Phase (middle or end of data output time)
- · Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPxCONx registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRISx register) appropriately programmed as follows:

- SDI must have corresponding TRIS bit set
- SDO must have corresponding TRIS bit cleared
- · SCK (Master mode) must have corresponding TRIS bit cleared
- · SCK (Slave mode) must have corresponding TRIS bit set
- SS must have corresponding TRIS bit set

FIGURE 33-5:

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

SPI MASTER/SLAVE CONNECTION

The MSSP consists of a transmit/receive shift register (SSPxSR) and a buffer register (SSPxBUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF, of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. Any write to the SSPxBUF register during transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPxCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF, of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read. the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPxSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register.

SPI Master SSPM<3:0> = 00xx SPI Slave SSPM<3:0> = 010x = 1010 SDO SDI Serial Input Buffer Serial Input Buffer (SSPxBUF) (SSPxBUF) SDI SDO Shift Register Shift Register (SSPxSR) (SSPxSR) LSb MSb MSb LSb Serial Clock SCK SCK Slave Select SS General I/O (optional) Processor 2 Processor 1

33.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

33.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

33.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCL1IF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

33.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCL1IF and reset the I²C port to its Idle state (Figure 33-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 33-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

34.1.2.3 Receive Interrupts

The RXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RXxIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RXxIF interrupts are enabled by setting all of the following bits:

- RXxIE, Interrupt Enable bit of the PIE3 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RXxIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

34.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCxSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCxREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCxSTA register which resets the EUSART. Clearing the CREN bit of the RCxSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note: If all receive characters in the receive FIFO have framing errors, repeated reads of the RCxREG will not clear the FERR bit.

34.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCxSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCxSTA register or by resetting the EUSART by clearing the SPEN bit of the RCxSTA register.

34.1.2.6 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.

34.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCxSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RXxIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

35.7.4 35.6.4 INTERNAL RESISTOR WITH EXTERNAL CAPACITORS

In this configuration, the user can use the internal resistor ladders to generate the LCD bias levels, and use external capacitors to guard again burst currents. It is recommend the user utilize the external capacitors when driving large glass panels with a large pixels and a high pixel count. The external capacitors will help dampen current spikes during segment switching. Contrast is adjusted using the LCDCST<2:0> bits. The CFLYx pins are available as a GPIO. See Figure 35-7 for supported connections.

External capacitors can be used when voltage to the internal resistor ladder is supplied by VDD (LCDVSRC<3:0> = 0101) or an external source (LCDVSRC<3:0> = 0100). When supplying an external voltage to internal resistor ladder the external capacitors should be limited to VLCD2, and VLCD3.

PIC16(L)F19155/56/75/76/85/86

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
C0Ch	RTCCON	RTCEN	RTCEN - RTCWREN RTCSYNC HALFSEC - RTCCLKSEL<1:0>						357			
C0Dh	RTCCAL	CAL							358			
C0Eh	ALRMCON	ALRMEN	CHIME		AMASK	<3:0>		_	_	361		
C0Fh	ALRMRPT				AF	RPT				361		
C10h	YEAR		YEAR	H<3:0>			YEAI	RL<3:0>		358		
C11h	MONTH	—	—	—	MONTHH	MONTHL<3:0>				358		
C12h	WEEKDAY	—	—	—	—	_	— WDAY<2:0>			359		
C13h	DAY	—		DAY	H<1:0>		DAY	′L<3:0>		359		
C14h	HOURS	_	—	HRI	H<1:0>		HR	_<3:0>		359		
C15h	MINUTES	—		MINH<2:0>			MIN	L<3:0>		360		
C16h	SECONDS	_		SECH<2:0>	1		SEC	L<3:0>		360		
C17h	ALRMMTH	—	—	—	ALRMH- MONTH		ALRMLM	ONTH <3:0>		362		
C18h	ALRMWD	—	_	—		—	A	LRMLWDAY<2:	0>	362		
C19h	ALRMDAY	—	_	ALRMH	IDAY<1:0>		ALRML	DAY<3:0>		362		
C1Ah	ALRMHR	—	—	ALRM	HR<1:0>		ALRM	_HR<3:0>		363		
C1Bh	ALRMMIN	—	A	LRMHMIN<2:0)>		ALRML	.MIN<3:0>		363		
C1Ch	ALRMSEC	- ALRMHSEC<2:0> ALRML						SEC<3:0>		363		
C1Dh	_	Unimplemented										
C1Eh	_		Unimplemented									
C1Fh	_	Unimplemented										
C8Ch	_	Unimplemented										
C8Dh			Unimplemented									
C8Eh	—		Unimplemented									
C8Fh	_				Unimple	emented				_		
C90h	—				Unimple	lemented						
C91h					Unimple	lemented						
C92h	_				Unimple	emented				_		
C93h			Unimplemented									
C94h			Unimplemented									
C95h					Unimpl	emented						
C96h					Unimpl	emented						
C97h					Unimple	emented						
C98h					Unimple	emented						
C99h	—				Unimple	emented				-		
C9Ah	—				Unimple	emented				-		
C9Bh	—				Unimple	emented				-		
C9Ch					Unimple	emented				-		
C9Dh					Unimple	emented				-		
C9Eh	—				Unimple	emented				-		
C9Fh					Unimple	emented						
D0Ch — D1Fh	—				Unimple	emented						
D8Ch — D9Fh	_				Unimple	emented						

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: Unimplemented data memory locations, read as '0'.

PIC16(L)F19155/56/75/76/85/86

TABLE 39-14: COMPARATOR SPECIFICATIONS

······································	< l>	1
VDD = 3.0V, TA = 25°C	\backslash	1

Param. No.	Sym.	Characteristics	Min.	утур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage	\searrow	±30	-	mV	VICM = VDD/2
CM02	VICM	Input Common Mode Range	ØND	_	Vdd	V	
CM03	CMRR	Common Mode Input Rejection Ratio		50	_	dB	
CM04	VHYST	Comparator Hysteresis		25	_	mV	
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	_	300	600	ns	
		Response Time, Falling Edge		220	500	ns	
CMOS6	Тмсv2vo ⁽²⁾	Mode Charige to Valid Output	—		10	μs	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

TABLE 39-15: LOW-POWERED CLOCKED COMPARATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

VDD = 3 0V, IA = 25 °C										
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments			
СМ07	VIOFF	Input Offset Voltage		±30		mV	VICM = VDD/2			
CM08	VICM	Input Common Mode Range	GND		Vdd	V				
CM09	CMRR	Common Mode Input Rejection Ratio		50		dB				
CM010	VHYST	Comparator Hysteresis		25	_	mV				
CM011	TRESP ⁽¹⁾⁽³⁾	Response Time, Rising Edge	_	300	_	ns				
		Response Time, Falling Edge	_	220	_	ns				

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

3: Comparator output state change occurs on the rising edge of LFINTOSC.