

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19185-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started With PIC16(L)F19155/56/75/76/85/86 Microcontrollers	
3.0	Enhanced Mid-Range CPU	
4.0	Memory Organization	
5.0	Device Configuration	
6.0	Device Information Area	
7.0	Device Configuration Information	
8.0	Resets and Vbat	
9.0	Oscillator Module (with Fail-Safe Clock Monitor)	
10.0	Interrupts	
11.0	Power-Saving Operation Modes	
12.0	Windowed Watchdog Timer (WWDT)	193
13.0	Nonvolatile Memory (NVM) Control	
14.0	I/O Ports	
15.0	Peripheral Pin Select (PPS) Module	
16.0	Peripheral Module Disable (PMD)	
17.0	Interrupt-On-Change (IOC)	
18.0	Fixed Voltage Reference (FVR)	
19.0	Analog-to-Digital Converter with Computation (ADC2) Module	
20.0	Temperature Indicator Module (TIM)	
21.0	5-Bit Digital-to-Analog Converter (DAC1) Module	
22.0	Comparator Module	
23.0	Zero-Cross Detection (ZCD) Module	
24.0	Real-Time Clock and Calendar (RTCC)	
25.0	Timer0 Module	
26.0	Timer1 Module with Gate Control	
27.0	Timer2/4 Module With Hardware Limit Timer (HLT)	
28.0	Signal Measurement Timer (SMT)	
29.0	Capture/Compare/PWM Modules	
30.0	Pulse-Width Modulation (PWM)	
31.0	Complementary Waveform Generator (CWG) Module	
32.0	Configurable Logic Cell (CLC)	
33.0	Master Synchronous Serial Port (MSSP) Modules	
34.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART1/2)	
35.0	Liquid Crystal Display (LCD) Controller	
36.0	In-Circuit Serial Programming™ (ICSP™)	
37.0	Instruction Set Summary	633
38.0	Register Summary	
39.0	Electrical Specifications	
40.0	DC and AC Characteristics Graphs and Charts	
41.0	Development Support	
42.0	Packaging Information	
Appe	ndix A: Data Sheet Revision History	

							1 10 100,00,1	0/10/00		·)	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 7											
				CPU	CORE REGISTER	S; see Table 4-3 fo	rspecifics				
38Ch	_				Unimple	mented					
38Dh	_				Unimple	mented					
38Eh	_				Unimple	mented					
38Fh	_				Unimple	mented					
390h	_				Unimple	mented					
391h	_				Unimple	mented					
392h	_				Unimple	mented					
393h	—				Unimple	mented					
394h	—				Unimple	mented					
395h	_				Unimple	mented					
396h	_				Unimple	mented					
397h	_				Unimple	mented					
398h	_				Unimple	mented					
399h	_				Unimple	mented					
39Ah	_				Unimple	mented					
39Bh	_		Unimplemented								
39Ch	_		Unimplemented								
39Dh			Unimplemented								
39Eh	_				Unimple	mented					
39Fh					Unimple	mented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

						•••••••••••••••••••••••••••••••••••••••			(·1	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 18	•		•	•	•	•		•	•		
	CPU CORE REGISTERS; see Table 4-3 for specifics										
90Ch	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	'R<1:0>	ADF	/R<1:0>	0x00 xxxx	0q00 uuuu
90Dh	—				Unimplen	nented					
90Eh	DAC1CON0	EN	—	OE1	OE2	DAC1PS	SS<1:0>	—	—	0-00 00	0-00 00
90Fh	DAC1CON1	—	—	—			DAC1R<4:0>			x xxxx	u uuuu
90Fh		—	—	_	DAC1R4	DAC1R3	DAC1R2	DAC1R1	DAC1R0	x xxxx	u uuuu
910h	—				Unimplen	nented					
911h	—				Unimplen	nented					
912h	—				Unimplen	nented					
913h	—				Unimplen	nented					
914h	_				Unimplen	nented					
915h					Unimplen	nented					
916h					Unimplen	nented					
917h					Unimplen	nented					
918h					Unimplen	nented					
919h					Unimplen	nented					
91Ah					Unimplen	nented					
91Bh	_		Unimplemented								
91Ch	—				Unimplen	nented					
91Dh	—				Unimplen	nented					
91Eh	—				Unimplen	nented		-			
91Fh	ZCDCON	ZCDSEN	_	ZCDOUT	ZCDPOL	—	—	ZCDINTP	ZCDINTN	0-x000	0-x000

PIC16(L)F19155/56/75/76/85/86

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

	1		1			. ,			``````````````````````````````````````	,	
Address	Name	Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR Value on: MCLR								V <u>alue o</u> n: MCLR	
Banks 30-5	anks 30-57										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
F0Ch — 1C9Fh	DCh C9Fh Unimplemented										
Legend:	Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.										

BBEN	BBSIZE[2:0]	Actu User Pro	al Boot Block	Last Boot Block Memory Access	
		8k	16k	32k	
1	xxx	0	0	0	_
0	111	512	512	512	01FFh
0	110	1024	1024	1024	03FFh
0	101	2048	2048	2048	07FFh
0	100	4096	4096	4096	OFFFh
0	011		8192	8192	1FFFh
0	010		16384		3FFFh
0	001	No	te 1	3FFFh	
0	000				3FFFh

TABLE 5-1: BOOT BLOCK SIZE BITS

Note 1: The maximum boot block size is half the user program memory size. All selections higher than the maximum are set to half size. For example, all BBSIZE = 000 - 100 produce a boot block size of 4 kW on a 8 kW device.

REGISTER 5-5: CONFIGURATION WORD 5: CODE PROTECTION

U-1	U-1	U-1	U-1	U-1	U-1
_	—				
bit 13					bit 8

U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/P-1
—	—	—	—	—	—	—	CP
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	x = Bit is unknown	U = Unimplemented bit, read as '1'
'0' = Bit is cleared	'1' = Bit is set	W = Writable bit	n = Value when blank or after Bulk Erase

bit 13-1 Unimplemented: Read as '1'

bit 0

CP: Program Flash Memory Code Protection bit

1 = Program Flash Memory code protection disabled

0 = Program Flash Memory code protection enabled

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HC-1/u	R/W/HC-q/u
—	—	—	—	—	—	MEMV	VBATBOR
bit 7							bit 0
Legend:							
HC = Bit is clea	ared by hardwa	ire		HS = Bit is se	et by hardware		
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-m/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value der	pends on condit	on	

REGISTER 8-3: PCON1: POWER CONTROL REGISTER 1

bit 7-2	Unimplemented: Read as '0'.
bit 1	MEMV: Memory Violation Flag bit 1 = No Memory Violation Reset occurred or set to '1' by firmware 0 = A Memory Violation Reset occurred (set '0' in hardware when a Memory Violation occurs)
bit 0	VBATBOR:VBAT Brown-Out Reset Status Bit1 = No VBAT Brown-out Reset occurred.0 = A VBAT Brown-out Reset occurred.

8.17 VBAT System

The VBAT subsystem allows the RTCC and SOSC to run from a battery connected to the VBAT pin in the event of a VDD failure. Typically, the battery is a 3V coin cell, however the system is designed to operate over the entire VDD voltage range. If VDD is greater than VBAT, the RTCC and SOSC will be powered by VDD. If VDD is less than VBAT, the RTCC and SOSC will switch over to VBAT. See Table 4-5 and Table 4-8 for more information on the VBAT registers.

Note:	It should be noted that in this second scenario, VDD may still be in the valid operating range, but anytime the VDD drops below VBAT, the RTCC and SOSC
	will switch over to VBAT. This means that in a system with a 3V battery and a 2.8V
	VDD, the RTCC and SOSC will run off VBAT even when VDD is present.

8.17.1 VBAT GPR SEMAPHORE REGISTERS

The VBAT voltage domain offers the user four registers: VB0GPR, VB1GPR, VB3GPR and VB4GPR. These registers can be used by firmware to write any information that needs to survive a VDD failure. As long as either VDD or VBAT is valid, these registers will hold the last value written.

13.4.8 WRITE VERIFY

It is considered good programming practice to verify that program memory writes agree with the intended value. Since program memory is stored as a full row then the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 13-7: FLASH PROGRAM MEMORY VERIFY FLOWCHART

TABLE 19-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES^(1,4)

ADC C	ADC Clock Period (TAD)		D	evice Freque	ency (Fosc)		
ADC CS<5:0>		32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000000	62.5 ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns	2.0 μs
Fosc/4	000001	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns	1.0 μs	4.0 μs
Fosc/6	000010	187.5 ns ⁽²⁾	300 ns ⁽²⁾	375 ns ⁽²⁾	750 ns	1.5 μs	6.0 μs
Fosc/8	000011	250 ns ⁽²⁾	400 ns ⁽²⁾	500 ns	1.0 μs	2.0 μs	8.0 μs
Fosc/16	000111	500 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/128	111111	4.0 μs	6.4 μs	8.0 μs	16.0 μs ⁽³⁾	32.0 μs ⁽²⁾	128.0 μs ⁽²⁾
FRC CS(ADCON0<4>) = 1		1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs

Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for FRC source typical TAD value.

2: These values violate the required TAD time.

3: Outside the recommended TAD time.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

FIGURE 19-2: ANALOG-TO-DIGITAL CONVERSION CYCLES

REGISTER 19-24: ADACCU: ADC ACCUMULATOR REGISTER UPPER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-x/x	R/W-x/x
—	—	—	—	—	—	ACC<	17:16>
bit 7			•				bit 0
Legend:							
R = Readable b	it	W = Writable	bit	U = Unimpler	mented hit read	l as '0'	

		0 - Onimplementeu bit, reau as 0
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1-0 ACC<17:16>: ADC Accumulator MSB. Upper two bits of accumulator value. See Table 19-2 for more details.

REGISTER 19-25: ADACCH: ADC ACCUMULATOR REGISTER HIGH

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ACC< | 15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| | | | | | | | |

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<15:8>: ADC Accumulator middle bits. Middle eight bits of accumulator value. See Table 19-2 for more details.

REGISTER 19-26: ADACCL: ADC ACCUMULATOR REGISTER LOW

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ACC< | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Logondy | | | | | | | |

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<7:0>: ADC Accumulator LSB. Lower eight bits of accumulator value. See Table 19-2 for more details.

© 2017 Microchip Technology Inc.

PIC16(L)F19155/56/75/76/85/86

REGISTER 2	5-1: TOCON	NO: TIMERO		REGISTER 0			
R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TOEN	—	TOOUT	T016BIT		TOOUTI	PS<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	T0EN: Timer0 1 = The mode 0 = The mode) Enable bit ule is enabled ule is disabled	and operating and in the low) vest power mo	de		
bit 6 Unimplemented: Read as '0'							
bit 5 T0OUT: Timer0 Output bit (read-only) Timer0 output bit							
bit 4	T016BIT: Time 1 = Timer0 is 0 = Timer0 is	er0 Operating a 16-bit timer an 8-bit timer	as 16-bit Time	er Select bit			
bit 4 TOTOBIT: Thirefo Operating as 10-bit thin 1 = Timer0 is a 16-bit timer 0 = Timer0 is an 8-bit timer bit 3-0 TOOUTPS<3:0>: Timer0 output postscaler 1110 = 1:16 Postscaler 1101 = 1:17 Postscaler 1000 = 1:13 Postscaler 1010 = 1:11 Postscaler 1000 = 1:9 Postscaler 1000 = 1:9 Postscaler 0111 = 1:8 Postscaler 0110 = 1:7 Postscaler 0110 = 1:7 Postscaler 0101 = 1:6 Postscaler 0101 = 1:6 Postscaler 0101 = 1:7 Postscaler 0101 = 1:8 Postscaler 0101 = 1:9 Postscaler 0101 = 1:9 Postscaler 0101 = 1:12 Postscaler 0011 = 1:2 Postscaler				r (divider) sele	ct bits		

27.6 Timer2/4 Operation During Sleep

When PSYNC = 1, Timer2/4 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and T2PR registers will remain unchanged while processor is in Sleep mode.

When PSYNC = 0, Timer2/4 will operate in Sleep as long as the clock source selected is also still running. Selecting the LFINTOSC, MFINTOSC, or HFINTOSC oscillator as the timer clock source will keep the selected oscillator running during Sleep.

REGISTER 28-10: SMTxCPRL: SMT CAPTURED PERIOD REGISTER – LOW BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTx0	CPR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpler	nented bit, read	1 as '0'	
u = Bit is uncha	inged	x = Bit is unknow	'n	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cleared	b				

bit 7-0 SMTxCPR<7:0>: Significant bits of the SMT Period Latch – Low Byte

REGISTER 28-11: SMTxCPRH: SMT CAPTURED PERIOD REGISTER - HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTxCF	PR<15:8>			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bit		U = Unimpler	mented bit, read	d as '0'	

R = Readable bit	VV = VVritable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPR<15:8>: Significant bits of the SMT Period Latch – High Byte

REGISTER 28-12: SMTxCPRU: SMT CAPTURED PERIOD REGISTER – UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTxCPI	R<23:16>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPR<23:16>: Significant bits of the SMT Period Latch – Upper Byte

© 2017 Microchip Technology Inc.

29.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 26.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

29.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIE6 register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIR6 register following any change in Operating mode.

Note:	Clocking Timer1 from the system clock						
	(Fosc) should not be used in Capture						
	mode. In order for Capture mode to						
	recognize the trigger event on the CCPx						
	pin, Timer1 must be clocked from the						
	instruction clock (Fosc/4) or from an						
	external clock source.						

29.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxMODE<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 29-1 demonstrates the code to perform this function.

EXAMPLE 29-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	CCPxCON	;Set Bank bits to point
		TO CERCON
CLRF	CCPxCON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCPxCON	;Load CCPxCON with this
		;value

29.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by Fosc/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

29.2 Compare Mode

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- · Generate an Auto-conversion Trigger
- · Generate a Software Interrupt

The action on the pin is based on the value of the CCPxMODE<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set, and an ADC conversion can be triggered, if selected.

All Compare modes can generate an interrupt and trigger and ADC conversion.

Figure 29-2 shows a simplified diagram of the compare operation.

30.1 Standard PWM Mode

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the PWMx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- TMR2 register
- PR2 register
- PWMxCON registers
- PWMxDCH registers
- PWMxDCL registers

Figure 30-2 shows a simplified block diagram of PWM operation.

If PWMPOL = 0, the default state of the output is '0'. If PWMPOL = 1, the default state is '1'. If PWMEN = 0, the output will be the default state.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin.
 - 2: Two identical Timer2 modules are implemented on this device. The timers are named Timer2 and Timer4. All references to Timer2 apply as well to Timer4. All references to T2PR apply as well to T4PR.

© 2017 Microchip Technology Inc.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
LCxG2D4T	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N		
bit 7		·	•		·		bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	LCxG2D4T: (Gate 1 Data 4 T	rue (non-inve	rted) bit					
	1 = CLCIN3	(true) is gated i	nto CLCx Gat	e 1 Coto 1					
hit C		(li ue) is not gat		Gale I					
DILO	1 = CLCIN3	(inverted) is da	ted into CLCx	Gate 1					
	0 = CLCIN3	(inverted) is no	t gated into Cl	_Cx Gate 1					
bit 5	LCxG2D3T: (Gate 1 Data 3 T	rue (non-inve	rted) bit					
	1 = CLCIN2	(true) is gated i	nto CLCx Gat	e 1					
	0 = CLCIN2	(true) is not gat	ted into CLCx	Gate 1					
bit 4	LCxG2D3N:	Gate 1 Data 3 I	Negated (inve	rted) bit					
	1 = CLCIN2 (0 = CLCIN2 ((inverted) is ga (inverted) is no	ted into CLCx t gated into Cl	Gate 1 _Cx Gate 1					
bit 3	LCxG2D2T: Gate 1 Data 2 True (non-inverted) bit								
	1 = CLCIN1	(true) is gated i	nto CLCx Gat	e 1					
	0 = CLCIN1	(true) is not gat	ted into CLCx	Gate 1					
bit 2	LCxG2D2N:	Gate 1 Data 2 I	Negated (inve	rted) bit					
	1 = CLCIN1	(inverted) is ga	ted into CLCx	Gate 1					
hit 1	0 = CLCINT((Inverted) is no	ruo (non invo	LOX Gale 1					
DILI									
	0 = CLCINO	(true) is not gat	ted into CLCx	Gate1					
bit 0	LCxG2D1N:	Gate 1 Data 1 I	Negated (inve	rted) bit					
	1 = CLCIN0	(inverted) is ga	ted into CLCx	Gate 1					
	0 = CLCIN0	(inverted) is no	t gated into Cl	Cx Gate 1					

REGISTER 32-8: CLCxGLS1: GATE 1 LOGIC SELECT REGISTER

33.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 33-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 33-27: REPEATED START CONDITION WAVEFORM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	164	
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	—	—	BCL1IF	SSP1IF	177	
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	—	—	BCL1IE	SSP1IE	168	
RCxSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	583	
TXxSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	582	
BAUDxCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	584	
RCxREG	RCxREG<7:0>								585*	
TXxREG	TXxREG<7:0>								585*	
SPxBRGL	SPxBRG<7:0>								585*	
SPxBRGH	SPxBRG<15:8>								586*	
RXPPS	—	—	—	RXPPS<4:0>						
CKPPS	—	—	—	CXPPS<4:0>						
RxyPPS	—	—	—	RxyPPS<4:0>						
CLCxSELy	_	_	_		LCxDyS<4:0>					

TABLE 34-2: SUMMARY OF REGISTERS ASSOCIATED WITH EUSART

*

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the EUSART module. Page with register information.

PIC16(L)F19155/56/75/76/85/86

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
1E95h	_	Unimplemented									
1E96h	_	Unimplemented									
1E97h	_		Unimplemented								
1E98h	_		Unimplemented								
1E99h			Unimplemented								
1E9Ah	_				Unimple	emented					
1E9Bh	_				Unimple	emented					
1E9Ch	T2AINPPS	_	_	_			T2INPPS<4:0>	•		264	
1E9Dh	T4AINPPS	_	—	_			T4INPPS<4:0>	•		264	
1E9Eh	_				Unimple	emented					
1E9Fh	_				Unimple	emented					
1EA0h	_				Unimple	emented					
1EA1h	CCP1PPS	_	_	_			CCP1PPS<4:0	>		264	
1EA2h	CCP2PPS	_	—	—			CCP2PPS<4:0	>		264	
1EA3h	_				Unimple	emented					
1EA4h	_				Unimple	emented					
1EA5h	_				Unimple	emented					
1EA6h	_				Unimple	emented					
1EA7h	_				Unimple	emented					
1EA8h	_				Unimple	emented					
1EA9h	SMT1WINPPS	_	—	_		S	MT1WINPPS<4	:0>		264	
1EAAh	SMT1SIGPPS	_	_	—		S	MT1SIGPPS<4	:0>		264	
1EABh	_		Unimplemented								
1EACh	_				Unimple	emented					
1EADh	_		Unimplemented								
1EAEh	_				Unimple	emented					
1EAFh	_		Unimplemented								
1EB0h	_		Unimplemented								
1EB1h	CWG1PPS	CWG1PPS<4:0>						264			
1EB2h	_				Unimple	emented					
1EB3h	_				Unimple	emented					
1EB4h	_				Unimple	emented					
1EB5h	_				Unimple	emented					
1EB6h	_				Unimple	emented					
1EB7h	_		Unimplemented								
1EB8h	_	Unimplemented									
1EB9h	_	Unimplemented									
1EBAh	_	Unimplemented									
1EBBh	CLCIN0PPS	_	_	_		(CLCIN0PPS<4:)>		264	
1EBCh	CLCIN1PPS	_	_	_		(CLCIN1PPS<4:)>		264	
1EBDh	CLCIN2PPS	CLCIN2PPS<4:0>						264			

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

