

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19185-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB3/C1IN2-/C2IN2-/IOCB3/ANB3/SEG11/COM6/	RB3	TTL/ST	CMOS/OD	General purpose I/O.
SEGCFLY2	C1IN2-	AN	_	Comparator negative input.
	C2IN2-	AN	_	Comparator negative input.
	IOCB3	TTL/ST	_	Interrupt-on-change input.
	ANB3	AN	—	ADC Channel input.
	SEG11	_	AN	LCD Analog output.
	COM6	_	AN	LCD Driver Common Outputs.
	SEGCFLY2	AN	_	LCD Drive Charge Pump Capacitor Inputs
RB4/ADCACT ⁽¹⁾ /IOCB4/ANB4/COM0	RB4	TTL/ST	CMOS/OD	General purpose I/O.
	ADCACT ⁽¹⁾	TTL/ST	-	ADC Auto-Conversion Trigger input
	IOCB4	TTL/ST	—	Interrupt-on-change input.
	ANB4	AN	_	ADC Channel input.
	COM0		AN	LCD Driver Common Outputs.
RB5/T1G ⁽¹⁾ /IOCB5/ANB5/SEG13/COM1	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	T1G ⁽¹⁾	—	_	Timer1 Gate input.
	IOCB5	TTL/ST	_	Interrupt-on-change input.
	ANB5	AN	_	ADC Channel input.
	SEG13	_	AN	LCD Analog output.
	COM1	_	AN	LCD Driver Common Outputs.
RB6/CK2 ⁽³⁾ /TX2 ⁽¹⁾ /CLCIN2 ⁽¹⁾ /IOCB6/ANB6/SEG14/	RB6	TTL/ST	CMOS/OD	General purpose I/O.
ICSPCLK	CK2 ⁽³⁾	_	—	EUSART synchronous clock out
	TX2 ⁽¹⁾	_	_	EUSART asynchronous TX data out
	CLCIN2 ⁽¹⁾	_	_	Configurable Logic Cell source input.
	IOCB6	TTL/ST	_	Interrupt-on-change input.
	ANB6	AN	_	ADC Channel input.
	SEG14	_	AN	LCD Analog output.
	ICSPCLK	ST	_	In-Circuit Serial Programming™ and debugging clock input.
RB7/DK2 ⁽³⁾ /RX2 ⁽¹⁾ /CLCIN3 ⁽¹⁾ /IOCB7/ANB7/SEG15/	RB7	TTL/ST	CMOS/OD	General purpose I/O.
DAC1OUT2/ICSPDAT	DK2 ⁽³⁾	_	—	EUSART synchronous data output
	RX2 ⁽¹⁾	_	_	EUSART receive input.
	CLCIN3 ⁽¹⁾		_	Configurable Logic Cell source input.
	IOCB7	TTL/ST	_	Interrupt-on-change input.
	ANB7	AN	_	ADC Channel input.
	SEG15	_	AN	LCD Analog output.
	DAC1OUT2	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	TTL/ST	TTL/ST	In-Circuit Serial Programming™ and debugging data input/output.

TABLE 1-2: PIC16(L)F19155/56 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output TTL = TTL compatible input' HV = High Voltage

ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 14-2 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 14-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

XTAL = Crystal levels

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 14										•	
				CPU	CORE REGISTERS	; see Table 4-3 fo	specifics				
70Ch	PIR0	—		TMR0IF	IOCIF	_	—	—	INTF	001	001
70Dh	PIR1	OSFIF	CSWIF	_	_	_	_	ADTIF	ADIF	0000	0000
70Eh	PIR2	_	ZCDIF	_	_	_	_	C2IF	C1IF	0000 0000	0000 0000
70Fh	PIR3	RC2IF	TX2IF	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	000000	000000
710h	PIR4	_	_	_	_	TMR4IF	_	TMR2IF	TMR1IF	0000 0000	0000 0000
711h	PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF	00000	00000
712h	PIR6	CRIF	_	_	_	_	_	CCP2IF	CCP1IF	000	000
713h	PIR7	_	_	NVMIF	_	_	_	_	CWG1IF	0000 0000	0000 0000
714h	PIR8	LCDIF	RTCCIF	_	_	_	SMT1PWAIF	SMT1PRAIF	SMT1IF	00000	00000
715h	—				Unimpler	nented	•				
716h	PIE0	—	_	TMR0IE	IOCIE	—	—	—	INTE	0000 0000	0000 0000
717h	PIE1	OSFIE	CSWIE	—	—	—	—	ADTIE	ADIE	0000	0000
718h	PIE2	_	ZCDIE	_	_	_	_	C2IE	C1IE	0000 0000	0000 0000
719h	PIE3	RC2IE	TX2IE	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	000000	000000
71Ah	PIE4	—	_	—	—	TMR4IF	—	TMR2IE	TMR1IE	0000 0000	0000 0000
71Bh	PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	_		—	TMR1GIE	00000	00000
71Ch	PIE6	CRIE	_	—	—	-	—	CCP2IE	CCP1IE	000	000
71Dh	PIE7	_	_	NVMIE	—	—	_	_	CWG1IE	0000 0000	0000 0000
71Eh	PIE8	LCDIE	RTCCIE	—	_	_	SMT1PWAIE	SMT1PRAIE	SMT1IE	00000	00000
71Fh	_				Unimpler	mented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

1	TABLE 4	4-12: SPEC	IAL FUNC	FION REGIST	ER SUMMA	RY BANKS 0-	63 PIC16(L)	F19155/56/7	5/76/85/86 (CONTINUED)	
	Addroop	Nomo	Dit 7	Dit 6	Dit E	Dit 4	Dit 2	Dit 2	Dit 1	Rit 0	Value on:	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 61 (C	ank 61 (Continued)											
1EE5h	—				Unimpler	nented						
1EE6h	—				Unimpler	nented						
1EE7h	—				Unimpler	nented						
1EE8h	_		Unimplemented									
1EE9h	—		Unimplemented									
1EEAh	—				Unimpler	nented						
1EEBh	—				Unimpler	nented						
1EECh	—				Unimpler	nented						
1EEDh	—				Unimpler	nented						
1EEEh	_				Unimpler	nented						
1EEFh	_		Unimplemented									
1												

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

6.0 DEVICE INFORMATION AREA

The Device Information Area (DIA) is a dedicated region in the program memory space, it is a new feature in the PIC16(L)F19155/56/75/76/85/86 family of devices. The DIA contains the calibration data for the internal temperature indicator module, stores the Microchip Unique Identifier words and the Fixed Voltage Reference voltage readings measured in mV.

The complete DIA table is shown in Table 6-1, followed by a description of each region and its functionality. The data is mapped from 8100h to 811Fh in the PIC16(L)F19155/56/75/76/85/86 family. These locations are read-only and cannot be erased or modified. The data is programmed into the device during manufacturing.

TABLE 6-1: DEVICE INFORMATION AREA

Address Range	Name of Region	Standard Device Information				
	MUI0					
	MUI1					
	MUI2					
	MUI3					
8100h-8108h	MUI4	Microchip Unique Identifier (9 Words)				
	MUI5					
	MUI6					
	MUI7					
	MUI8					
8109h	MUI9	1 Word Reserved				
	EUI0					
	EUI1					
	EUI2					
810Ah-8111h	EUI3					
	EUI4	Unassigned (8 Words)				
	EUI5					
	EUI6					
	EUI7	1				
8112h	TSLR1	Unassigned (1 word)				
8113h	TSLR2	Temperature indicator ADC reading at 90°C (low-range setting)				
8114h	TSLR3	Unassigned(1 word)				
8115h	TSHR1	Unassigned (1 word)				
8116h	TSHR2	Temperature indicator ADC reading at 90°C (high-range setting)				
8117h	TSHR3	Unassigned (1 Word)				
8118h	FVRA1X	ADC FVR1 Output voltage for 1x setting (in mV)				
8119h	FVRA2X	ADC FVR1 Output Voltage for 2x setting (in mV)				
811Ah	FVRA4X ⁽¹⁾	ADC FVR1 Output Voltage for 4x setting (in mV)				
811Bh	FVRC1X	Comparator FVR2 output voltage for 1x setting (in mV)				
811Ch	FVRC2X	Comparator FVR2 output voltage for 2x setting (in mV)				
811Dh	FVRC4X ⁽¹⁾	Comparator FVR2 output voltage for 4x setting (in mV)				
811Eh-811Fh		Unassigned (1 Word)				

Note 1: Value not present on LF devices.

10.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 10-1.

FIGURE 10-1: INTERRUPT LOGIC

PIC16(L)F19155/56/75/76/85/86

FIGURE 10-2:	INTEF	RUPT LAT	ENCY				
							Rev. 10-000269E 8/31/2016
OSC1 /\ Q1					V V V V V V V V V V V V V V V V V V V		
сікоит /							
INT pin	Vali	d Interrupt	1 Cycle I	nstruction a	it PC		
Fetch	PC - 1	PC	PC + 1	X	PC = 0x0004	PC = 0x0005	PC = 0x0006
Execute	PC - 21	PC - 1	PC	NOP	NOP	PC = 0x0004	PC = 0x0005
		determinate Latency ⁽²⁾		Latency	•		
				nterrupt window he interrupt win	dow, the actual lat	ency can vary.	

10.3 Interrupts During Sleep

Interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 11.0** "**Power-Saving Operation Modes**" for more details.

10.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. Refer to Figure 10-3. This interrupt is enabled by setting the INTE bit of the PIE0 register. The INTEDG bit of the INTCON register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the PIR0 register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

10.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY (PFM)

; This write routine assumes the following:

; 1.3	32 bytes of d	ata are loaded, startir	ng at the address in DATA_ADDR
; 2.E	Each word of	data to be written is m	nade up of two adjacent bytes in DATA_ADDR,
; 5	stored in lit	tle endian format	
; 3. <i>I</i>	A valid start	ing address (the least	significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. <i>1</i>	ADDRH and ADD	RL are located in commo	on RAM (locations 0x70 - 0x7F)
; 5.1	WM interrupt	s are not taken into ac	count
	BANKSEL	NVMADRH	
	MOVF	ADDRH, W	
	MOVWF	NVMADRH	; Load initial address
	MOVF	ADDRL,W	
	MOVWF	NVMADRL	
	MOVLW	LOW DATA ADDR	; Load initial data address
	MOVWF	FSR0L	
	MOVLW	HIGH DATA_ADDR	
	MOVWF	FSR0H	
	BCF	NVMCON1, NVMREGS	; Set Program Flash Memory as write location
	BSF	NVMCON1, WREN	; Enable writes
	BSF	NVMCON1, LWLO	; Load only write latches
LOOP	MONTH	ECDO	
	MOVIW	FSR0++	· Trad Street date in the
	MOVWF	NVMDATL	; Load first data byte
	MOVIW MOVWF	FSR0++ NVMDATH	; Load second data byte
			/ Houd Second data byte
	MOVF	NVMADRL,W	· Charle if lower bits of address and 00000
	XORLW	0x1F	; Check if lower bits of address are 00000 ; and if on last of 32 addresses
	ANDLW BTFSC	0x1F	; Last of 32 words?
	GOTO	STATUS,Z START_WRITE	; If so, go write latches into memory
	CALL INCF	UNLOCK_SEQ	; If not, go load latch ; Increment address
	GOTO	NVMADRL, F LOOP	, increment address
	0010		
START	_WRITE		
	BCF	NVMCON1,LWLO	; Latch writes complete, now write memory
	CALL	UNLOCK_SEQ	; Perform required unlock sequence
	BCF	NVMCON1,WREN	; Disable writes
UNLOCI	K_SEQ		
	MOVLW	55h	
	BCF	INTCON,GIE	; Disable interrupts
	MOVWF	NVMCON2	; Begin unlock sequence
	MOVLW	AAh	
	MOVWF	NVMCON2	
	BSF	NVMCON1,WR	
	BSF	INTCON,GIE	; Unlock sequence complete, re-enable interrupts
	return		

FIGURE 13-6:

13.4.6 MODIFYING FLASH PROGRAM MEMORY

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FLASH PROGRAM

MEMORY MODIFY

3: See Figure 13-5.

27.7 Register Definitions: Timer2/4 Control

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_		_	_		CS<	:3:0>	
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-4	Unimplem	ented: Read as '	0'				
bit 3-0	CS<3:0>:	Timer2/4 Clock S	elect bits				
	1111 = Re	served					
	1110 = Re						
	1101 = Re	served					
	1100 = LC	4_out					
	1011 = LC	3_out					
	1010 = LC	2_out					
	1001 = LC	1_out					
	1000 = ZC	D1_output					
	0111 = SC	DSC					
		FINTOSC (31.25					
		FINTOSC (500 kH	lz)				
	0100 = LF						
		INTOSC (32 MH	z)				
	0010 = F o						
	0001 = F o						
	0000 = T2	CKIPPS					

REGISTER 27-1: TxCLKCON: TIMER2/4 CLOCK SELECTION REGISTER

PIC16(L)F19155/56/75/76/85/86

REGISTER 29-2: CCPxCAP: CAPTURE INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x	R/W-0/x
—	—	—	—	—		CTS<2:0>	
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-3 Unimplemented: Read as '0'

bit 2-0 CTS<2:0>: Capture Trigger Input Selection bits

CTS	CCP1.capture	CCP2.capture			
1000	RTCC_s	RTCC_seconds			
0111	LC4_	LC4_out			
0110	LC3_	LC3_out			
0101	LC2_	LC2_out			
0100	LC1_	LC1_out			
0011	IOC_int	errupt			
0010	C20	UT			
0001	C10	UT			
0000	CCP1PPS	CCP2PPS			

REGISTER 29-3: CCPRxL REGISTER: CCPx REGISTER LOW BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPR | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

 CCPxMODE = Capture mode

 CCPRxL<7:0>: Capture value of TMR1L

 CCPxMODE = Compare mode

 CCPRxL<7:0>: LS Byte compared to TMR1L

 CCPxMODE = PWM modes when CCPxFMT = 0:

 CCPRxL<7:0>: Pulse-width Least Significant eight bits

 CCPxMODE = PWM modes when CCPxFMT = 1:

 CCPxxL<7:6>: Pulse-width Least Significant two bits

 CCPRxL<7:6>: Not used.

© 2017 Microchip Technology Inc.

bit 7-0

31.8 Dead-Band Uncertainty

When the rising and falling edges of the input source are asynchronous to the CWG clock, it creates uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 31-1 for more details.

EQUATION 31-1: DEAD-BAND UNCERTAINTY

FIGURE 31-8: EXAMPLE OF PWM DIRECTION CHANGE

32.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- · Data selection
- · Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

32.1.1 DATA SELECTION

There are 40 signals available as inputs to the configurable logic. Four 40-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 32-2. Data inputs in the figure are identified by a generic numbered input name.

Table 32-2 correlates the generic input name to the actual signal for each CLC module. The column labeled 'LCxDyS<5:0> Value' indicates the MUX selection code for the selected data input. LCxDyS is an abbreviation to identify specific multiplexers: LCxD1S<5:0> through LCxD4S<5:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 32-3 through Register 32-6).

TABLE 32-2: CLC	DATA INPUT	SELECTION
-----------------	-------------------	-----------

LCxDyS<5:0> Value	CLCx Input Source			
100101 to 111111	Reserved			
100100	EUSART2 (TX/CK) output			
100011	EUSART2 (DT) output			
100010	CWG1B output			
100001	CWG1A output			
100000	RTCC seconds			
011111	MSSP1 SCK output			
011110	MSSP1 SDO output			
011101	EUSART1 (TX/CK) output			
011100	EUSART1 (DT) output			
011011	CLC4 output			
011010	CLC3 output			
011001	CLC2 output			
011000	CLC1 output			
010111	IOCIF			
010110	ZCD output			
010101	C2OUT			
010100	C10UT			
010011	PWM4 output			
010010	PWM3 output			
010001	CCP2 output			
010000	CCP1 output			
001111	SMT overflow			
001110	Timer4 overflow			
001101	Timer2 overflow			
001100	Timer1 overflow			
001011	Timer0 overflow			
001010	ADCRC			
001001	SOSC			
001000	MFINTOSC (32 kHz)			
000111	MFINTOSC (500 kHz)			
000110	LFINTOSC			
000101	HFINTOSC			
000100	FOSC			
000011	CLCIN3PPS			
000010	CLCIN2PPS			
000001	CLCIN1PPS			
000000	CLCIN0PPS			

32.7 Register Definitions: CLC Control

R/W-0/0	U-0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
LCxEN	– LCxOUT LCxINT			P LCxINTN LCxMODE<2:0>					
bit 7							bit (
Legend:									
R = Readable bit		W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is unc	hanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set	t	'0' = Bit is cleared							
bit 7	LCxEN: Con	figurable Logic	Cell Enable bi	t					
	•	1 = Configurable logic cell is enabled and mixing input signals							
L H 0	0	0 = Configurable logic cell is disabled and has logic zero output							
bit 6	•	Unimplemented: Read as '0'							
bit 5	LCxOUT: Configurable Logic Cell Data Output bit Read-only: logic cell output data, after LCPOL; sampled from CLCxOUT								
		•		· •					
bit 4	LCxINTP: Configurable Logic Cell Positive Edge Going Interrupt Enable bit								
	 1 = CLCxIF will be set when a rising edge occurs on CLCxOUT 0 = CLCxIF will not be set 								
bit 3	LCxINTN: Configurable Logic Cell Negative Edge Going Interrupt Enable bit								
	1 = CLCxIF will be set when a falling edge occurs on CLCxOUT								
		will not be set	5 - 5						
bit 2-0	LCxMODE<2	2:0>: Configura	ble Logic Cell	Functional Mo	de bits				
	111 = Cell is 1-input transparent latch with S and R								
	110 = Cell is J-K flip-flop with R								
	101 = Cell is 2-input D flip-flop with R 100 = Cell is 1-input D flip-flop with S and R								
	011 = Cell is		op with S and	R					
		4-input AND							
	001 = Cell is								
	000 = Cell is AND-OR								

REGISTER 32-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

33.5.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 33.5.6 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This \overline{ACK} value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not \overline{ACK}), then the data transfer is complete. When the not \overline{ACK} is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

33.5.3.1 Slave Mode Bus Collision

A slave receives a read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCL1IF bit of the PIR3 register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCL1IF bit to handle a slave bus collision.

33.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 33-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

PIC16(L)F19155/56/75/76/85/86

33.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 33-33).
- b) SCL is sampled low before SDA is asserted low (Figure 33-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- · the Start condition is aborted,
- the BCL1IF flag is set and
- the MSSP module is reset to its Idle state (Figure 33-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 33-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 34-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

34.4.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCxSTA register) or the Continuous Receive Enable bit (CREN of the RCxSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence. To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RXxIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCxREG. The RXxIF bit remains set as long as there are unread characters in the receive FIFO.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

35.7.4 35.6.4 INTERNAL RESISTOR WITH EXTERNAL CAPACITORS

In this configuration, the user can use the internal resistor ladders to generate the LCD bias levels, and use external capacitors to guard again burst currents. It is recommend the user utilize the external capacitors when driving large glass panels with a large pixels and a high pixel count. The external capacitors will help dampen current spikes during segment switching. Contrast is adjusted using the LCDCST<2:0> bits. The CFLYx pins are available as a GPIO. See Figure 35-7 for supported connections.

External capacitors can be used when voltage to the internal resistor ladder is supplied by VDD (LCDVSRC<3:0> = 0101) or an external source (LCDVSRC<3:0> = 0100). When supplying an external voltage to internal resistor ladder the external capacitors should be limited to VLCD2, and VLCD3.

PIC16(L)F19155/56/75/76/85/86

TABLE 39-26: I²C BUS DATA REQUIREMENTS

Param. No.	Symbol Thigh	Characteristic		Min.	Max.	Units	Conditions
SP100*		Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz
			SSP module	1.5Tcy	_		
SP101* TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a minimum of 1.5 MHz	
		400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy			
SP102* TR	SDA and SCL rise time	100 kHz mode	—	1000	ns		
		400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF	
SP103* TF	TF	SDA and SCL fall time	100 kHz mode	—	250	ns	
		400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF	
SP106* THD:DAT	T Data input hold time	100 kHz mode	0		ns		
			400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	TSU:DAT Data input setup time	100 kHz mode	250	_	ns	(Note 2)
			400 kHz mode	100	—	ns	
SP109*	Таа	AA Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmissior can start
SP111	Св	Bus capacitive loading			400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.