

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19185t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F19155/56/75/76/85/86

TABLE	- 3:	2	8-PIN AL	LOCA	ATION	ABL	.E (PIC16	(L)F19155	/56) (C	ONTIN	UED)									
(2)O/I	28-Pin SPDIP/SSOP/SOIC	28-Pin UQFN	ADC	Reference	Comparator	Zero-Cross Detect	DAC	Timers/SMT	CCP	WMd	CWG	dssm	EUSART	CLC	RTCC	ГСD	Interrupt-on-Change	High Current	dn-IInd	Basic
RB6	27	24	ANB6	I	_		_	-		_		—	TX2 ⁽¹⁾ CK2 ⁽¹⁾	CLCIN2 ⁽¹⁾	_	SEG14	IOCB6	_	Y	ICDCLK/ ICSPCLK
RB7	28	25	ANB7	I	_		DAC1OUT2			_		_	RX2 ⁽¹⁾ DT2 ⁽¹⁾	CLCIN3 ⁽¹⁾	_	SEG15	IOCB7	—	Y	ICDDAT/ ICSPDAT
RC0	11	8	_		_		_	T1CKI ⁽¹⁾ SMTWIN1 ⁽¹⁾		_	_	—		—	_		IOCC0	—	Y	SOSCO
RC1	12	9	_	_	_	_	_	SMTSIG1 ⁽¹⁾ T4IN ⁽¹⁾	CCP2 ⁽¹⁾	_	_	—	_	_	_	-	IOCC1	_	Y	SOSCI
RC2	13	10	ANC2	-	_	_	-	-	CCP1 ⁽¹⁾	_	_	—	-	-		COM2 SEG18	IOCC2	_	Y	_
RC3	14	11	ANC3	-	_	_	-	T2IN ⁽¹⁾	-	_	_	SCK ⁽¹⁾ SCL ^(1,3,4)		-	-	SEG19	IOCC3	_	Y	_
RC4	15	12	ANC4	_	_	_	_	—	_	_	_	SDI ⁽¹⁾ SDA ^(1,3,4)	_	-	_	SEG20	IOCC4	_	Y	_
RC6	17	14	ANC6	Ι	_		_	_	_		_	_	TX1 ⁽¹⁾ CK1 ⁽¹⁾	_	Ι	COM5 SEG22 VLCD2	IOCC6	_	Y	_
RC7	18	15	ANC7	Ι	_	_	-	_	_	-	_	—	RX1 ⁽¹⁾ DT1 ⁽¹⁾	—	Ι	SEG23 COM4 VLCD1	IOCC7	_	Y	_
RE3	1	26		—	—		_		-	—		_	-	—	_	-	IOCE3	_	Υ	MCLR
VLCD3	16	13	_	_	—		_	_	_	—	_	_	_	—	_	VLCD3	—	_	—	_
Vdd	20	17	_	—	—	_	_	_	_	—	_	_	—	—	_	_	—	_	—	Vdd
Vss	8 19	5 16	_	_	_	—	_	_	_	_	_	_	_	—	_	_	—	—	—	Vss
OUT ⁽²⁾		_	ADGRDA ADGRDB	_	C1OUT C2OUT		_	TMR0	CCP1 CCP2	PWM3 PWM4	CWG1A CWG1B CWG1C CWG1D	SDO SCK SCL SDA	TX1 DT1 CK1 TX2 DT2 CK2	CLC1OUT	RTCC	_	—	_	_	_
:	 Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. 2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one or more PORTx pin options. 3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers. 																			

TABLE 3 28-PIN ALLOCATION TABLE (PIC16(L)E19155/56) (CONTINUED)

These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by INLCVL register, instead of the I²C specific or 4: SMBUS input buffer thresholds.

These are alternative I²C logic levels pins. 5:

In I²C logic levels configuration, these pins can operate as either SCL and SDA pins. 6:

© 2017 Microchip Technology Inc.

Preliminary

1.0 DEVICE OVERVIEW

The PIC16(L)F19155/56/75/76/85/86 are described within this data sheet. The PIC16(L)F19155/56/75/76/85/86 devices are available in 48-pin TQFP and UQFN, 44-pin TQFP and UQFN, 40-pin PDIP and 28-pin SPDIP, SOIC, SSOP and UQFN packages. Figure 1-1 shows a block diagram of the PIC16(L)F19155/56/75/76/85/86 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

SUMMARY		
Peripheral		PIC16(L)F19155/56/75/76/85/86
Analog-to-Digital Converter with Computation	on (ADC ²)	٠
Digital-to-Analog Converter (DAC1)		٠
Fixed Voltage Reference (FVR)		•
Enhanced Universal Synchronous/Asynchron Transmitter (EUSART1 and EUSART2)	nous Receiver/	٠
Temperature Indicator Module (TIM)		٠
Zero-Cross Detect (ZCD1)		٠
Real-Time Calendar and Clock (RTCC)		٠
Liquid Crystal Display (LCD)		٠
Capture/Compare/PWM Modules (CCP)		
	CCP1	٠
Composition Markela (Oci)	CCP2	٠
Comparator Module (Cx)	C1	•
	C1	•
Configurable Logic Cell (CLC)	01	
	CLC1	•
	CLC2	•
	CLC3	•
	CLC4	٠
Complementary Waveform Generator (CWG)		
	CWG1	•
Master Synchronous Serial Ports (MSSP)		
	MSSP1	٠
Pulse-Width Modulator (PWM)		1
	PWM3	٠
	PWM4	٠
Signal Measure Timer (SMT)		
	SMT1	٠
Timers		
	Timer0	٠
	Timer1	٠
	Timer2	٠
	Timer4	٠

R/W/HC-0/0	R/W-0/0	U-0	R-0/0	R-0/0	U-0	U-0	U-0
CSWHOLD	SOSCPWR		ORDY	NOSCR	—	_	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown		at POR and BO		other Resets
'1' = Bit is set	C	'0' = Bit is clea	ared				
bit 7	CSWHOLD:	Clock Switch H	old bit				
	1 = Clock sv	witch will hold (with interrupt)	when the oscil	lator selected b	y NOSC is read	dy
		witch may proce at the time that			ted by NOSC is vitch will occur	ready; if this bi	t
bit 6	SOSCPWR:	Secondary Osc	illator Power N	/lode Select bi	t		
		ary oscillator op	• •	•			
	0 = Seconda	ary oscillator op	perating in Low	-power mode			
bit 5	Unimplemen	ted: Read as '	0'.				
bit 4		ator Ready bit	• • •				
				system clock	is the clock spe	cified by NOSC	2
		switch is in pro	•				
bit 3 NOSCR: New Oscillator is Ready bit (read-only) 1 = A clock switch is in progress and the oscillator selected by NOSC indicates a "ready" co					1 7		
			•		cted by NOSC ii cted oscillator is		•
bit 2-0		ted: Read as '				shot yet ready	
	ommplemen	ieu. Neau do	0				

REGISTER 9-3: OSCCON3: OSCILLATOR CONTROL REGISTER 3

11.0 POWER-SAVING OPERATION MODES

The purpose of the Power-Down modes is to reduce power consumption. There are three Power-Down modes: DOZE mode, IDLE mode and SLEEP mode.

11.1 DOZE Mode

DOZE mode saves power by reducing CPU execution and program memory (PFM) access, without affecting peripheral operation.

11.1.1 DOZE OPERATION

When the Doze Enable bit is set (DOZEN = 1), the CPU executes one instruction cycle out of every N cycles as defined by the DOZE<2:0> bits of the CPUDOZE register. FOSC and FOSC/4 clock sources are unaffected in Doze mode and peripherals can continue using these sources.

11.1.2 SYSTEM BEHAVIOR FOR INTERRUPTS DURING DOZE

If an interrupt occurs during Doze, it can be configured using the Recover-On-Interrupt bit (ROI) and the Doze-On-Exit bit (DOE). Refer to Table 11-1 for details about system behavior in all cases for a transition from <u>Main \rightarrow ISR \rightarrow Main.</u>

DOZEN		Code flow							
DOZEN	ROI	Main	ISR (1)	Return to Main					
0	0	Normal operation	Normal operation and DOE = DOZEN (in hardware) DOZEN = 0 (unchanged)						
0	1	Normal operation	Normal operation and DOE = DOZEN (in hardware) DOZEN = 0 (in hardware)	If DOE = 1 when return from interrupt;	If DOE = 0 when return from				
1	0	Doze operation	Doze operation and DOE = DOZEN (in hardware) DOZEN = 1 (unchanged)	Doze operation and DOZEN = 1 (in hard- ware)	interrupt; Normal operation and DOZEN = 0 (in hardware)				
1	1	Doze operation	Normal operation and DOE = DOZEN (in hardware) DOZEN = 0 (in hardware)						

TABLE 11-1: SYSTEM BEHAVIOR FOR INTERRUPT DURING DOZE

Note 1: User software can change the DOE bit in ISR.

For example, if ROI = 1 and DOZE<2:0> = 001, the instruction cycle ratio is 1:4. The CPU and memory operate for one instruction cycle and stay idle for the next three instruction cycles. The Doze operation is illustrated in Figure 11-1.

REGISTER 14-20: LATC: PORTC DATA LATCH REGISTER

R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATC7	LATC6	—	LATC4	LATC3	LATC2	LATC1	LATC0
bit 7							bit 0

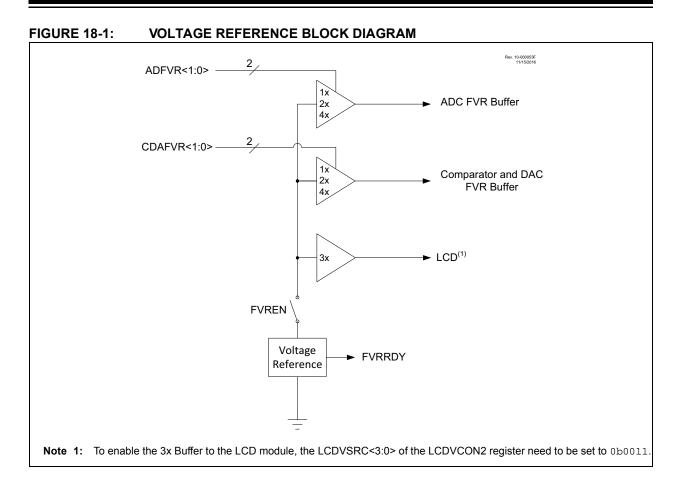
Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 LATC<7:6>: PORTC Output Latch Value b	its
---	-----

bit 4-0 LATC<4:0>: PORTC Output Latch Value bits

REGISTER 14-21: WPUC: WEAK PULL-UP PORTC REGISTER


R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WPUC7	WPUC6	—	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	WPUC<7:6>: Weak Pull-up Register bits ⁽¹⁾ 1 = Pull-up enabled 0 = Pull-up disabled
bit 5	Unimplemented: Read as '0'.
bit 4-0	WPUC<4:0>: Weak Pull-up Register bits ⁽¹⁾ 1 = Pull-up enabled 0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

PIC16(L)F19155/56/75/76/85/86

19.0 ANALOG-TO-DIGITAL CONVERTER WITH COMPUTATION (ADC²) MODULE

The Analog-to-Digital Converter with Computation (ADC²) allows conversion of an analog input signal to a 12-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 12-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair).

Additionally, the following features are provided within the ADC module:

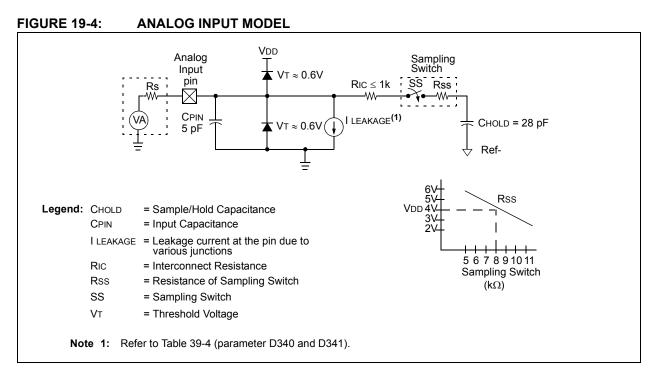
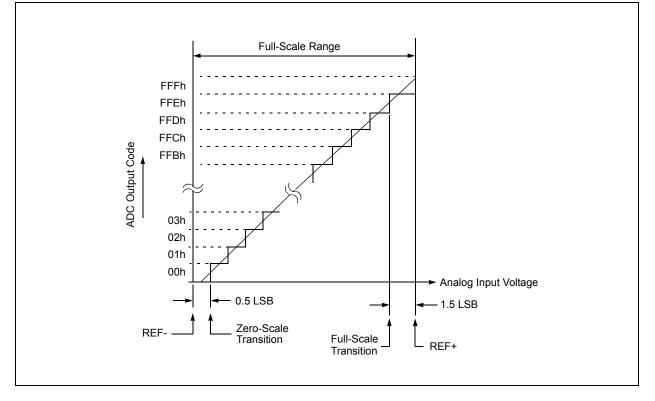

- 13-bit Acquisition Timer
- Hardware Capacitive Voltage Divider (CVD)
 Support:
 - 13-bit Precharge Timer
 - Adjustable sample and hold capacitor array
 - Guard ring digital output drive
- Automatic Repeat and Sequencing:
 - Automated double sample conversion for CVD
 - Two sets of result registers (Result and Previous result)
 - Auto-conversion trigger
 - Internal retrigger
- Computation Features:
 - Averaging and Low-Pass Filter functions
 - Reference Comparison
 - 2-level Threshold Comparison
 - Selectable Interrupts

Figure 19-1 shows the block diagram of the ADC.


The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion and upon threshold comparison. These interrupts can be used to wake-up the device from Sleep.

PIC16(L)F19155/56/75/76/85/86

© 2017 Microchip Technology Inc.

DS40001923A-page 295

REGISTER 19-9: ADPREL: ADC PRECHARGE TIME CONTROL REGISTER (LOW BYTE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PRE	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **PRE<7:0>**: Precharge Time Select bits See Table 19-4.

REGISTER 19-10: ADPREH: ADC PRECHARGE TIME CONTROL REGISTER (HIGH BYTE)

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	—	—			PRE<12:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **PRE<12:8>:** Precharge Time Select bits⁽¹⁾ See Table 19-4.

Note: If PRE is not equal to '0', then ADACQ = b' 0000000 means Acquisition time is 256 clocks of the selected ADC clock.

TABLE 19-4: PRECHARGE TIME

ADPRE	Precharge time
1 1111 1111 1111	8191 clocks of the selected ADC clock
1 1111 1111 1110	8190 clocks of the selected ADC clock
1 1111 1111 1101	8189 clocks of the selected ADC clock
0 0000 0000 0010	2 clocks of the selected ADC clock
0 0000 0000 0001	1 clock of the selected ADC clock
0 0000 0000 0000	Not included in the data conversion cycle

© 2017 Microchip Technology Inc.

REGISTER 19-18: ADRESH: ADC RESULT REGISTER HIGH, FM = 0

				,			
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<11:4>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unknow	vn	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-0 **ADRES<11:4>**: ADC Result Register bits Upper eight bits of 12-bit conversion result.

REGISTER 19-19: ADRESL: ADC RESULT REGISTER LOW, FM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
ADRES<3:0>				—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 ADRES<3:0>: ADC Result Register bits. Lower four bits of 12-bit conversion result.

bit 3-0 Unimplemented: Read as '0'

23.2 ZCD Logic Output

The ZCD module includes a Status bit, which can be read to determine whether the current source or sink is active. The OUT bit of the ZCDxCON register is set when the current sink is active, and cleared when the current source is active. The OUT bit is affected by the polarity even if the module is disabled.

23.3 ZCD Logic Polarity

The POL bit of the ZCDxCON register inverts the ZCDxOUT bit relative to the current source and sink output. When the POL bit is set, a OUT high indicates that the current source is active, and a low output indicates that the current sink is active.

The POL bit affects the ZCD interrupts. See **Section 23.4 "ZCD Interrupts**".

23.4 ZCD Interrupts

An interrupt will be generated upon a change in the ZCD logic output when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in the ZCD for this purpose.

The ZCDIF bit of the PIR2 register will be set when either edge detector is triggered and its associated enable bit is set. The INTP enables rising edge interrupts and the INTN bit enables falling edge interrupts. Both are located in the ZCDxCON register.

To fully enable the interrupt, the following bits must be set:

- ZCDIE bit of the PIE2 register
- INTP bit of the ZCDxCON register (for a rising edge detection)
- INTN bit of the ZCDxCON register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

Changing the POL bit can cause an interrupt, regardless of the level of the EN bit.

The ZCDIF bit of the PIR2 register must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

23.5 Correcting for VCPINV offset

The actual voltage at which the ZCD switches is the reference voltage at the noninverting input of the ZCD op amp. For external voltage source waveforms other than square waves, this voltage offset from zero causes the zero-cross event to occur either too early or too late.

23.5.1 CORRECTION BY AC COUPLING

When the external voltage source is sinusoidal then the effects of the VCPINV offset can be eliminated by isolating the external voltage source from the ZCD pin with a capacitor in addition to the voltage reducing resistor. The capacitor will cause a phase shift resulting in the ZCD output switch in advance of the actual zero-crossing event. The phase shift will be the same for both rising and falling zero crossings, which can be compensated for by either delaying the CPU response to the ZCD switch by a timer or other means, or selecting a capacitor value large enough that the phase shift is negligible.

To determine the series resistor and capacitor values for this configuration, start by computing the impedance, Z, to obtain a peak current of 300 uA. Next, arbitrarily select a suitably large non-polar capacitor and compute its reactance, Xc, at the external voltage source frequency. Finally, compute the series resistor, capacitor peak voltage, and phase shift by the formulas shown in Equation 23-2.

28.2 SMT Operation

The core of the module is the 24-bit counter, SMTxTMR combined with a complex data acquisition front-end. Depending on the mode of operation selected, the SMT can perform a variety of measurements summarized in Table .

28.2.1 CLOCK SOURCES

Clock sources available to the SMT include:

- Fosc
- Fosc/4
- HFINTOSC
- MFINTOSC (500 kHz and 31.25 kHz)
- LFINTOSC
- SOSC

The SMT clock source is selected by configuring the CSEL<2:0> bits in the SMTxCLK register. The clock source can also be prescaled using the PS<1:0> bits of the SMTxCON0 register. The prescaled clock source is used to clock both the counter and any synchronization logic used by the module.

28.2.2 PERIOD MATCH INTERRUPT

Similar to other timers, the SMT triggers an interrupt when SMTxTMR rolls over to '0'. This happens when SMTxTMR = SMTxPR, regardless of mode. Hence, in any mode that relies on an external signal or a window to reset the timer, proper operation requires that SMTxPR be set to a period larger than that of the expected signal or window.

28.3 Basic Timer Function Registers

The SMTxTMR time base and the SMTxCPW/SMTxPR/SMTxCPR buffer registers serve several functions and can be manually updated using software.

28.3.1 TIME BASE

The SMTxTMR is the 24-bit counter that is the center of the SMT. It is used as the basic counter/timer for measurement in each of the modes of the SMT. It can be reset to a value of 24'h00_0000 by setting the RST bit of the SMTxSTAT register. It can be written to and read from software, but it is not guarded for atomic access, therefore reads and writes to the SMTxTMR should only be made when the GO = 0, or the software should have other measures to ensure integrity of SMTxTMR reads/writes.

28.3.2 PULSE-WIDTH LATCH REGISTERS

The SMTxCPW registers are the 24-bit SMT pulse width latch. They are used to latch in the value of the SMTxTMR when triggered by various signals, which are determined by the mode the SMT is currently in.

The SMTxCPW registers can also be updated with the current value of the SMTxTMR value by setting the CPWUP bit of the SMTxSTAT register.

28.3.3 PERIOD LATCH REGISTERS

The SMTxCPR registers are the 24-bit SMT period latch. They are used to latch in values of the SMTxTMR when triggered by various other signals, which are determined by the mode the SMT is currently in.

The SMTxCPR registers can also be updated with the current value of the SMTxTMR value by setting the CPRUP bit in the SMTxSTAT register.

28.4 Halt Operation

The counter can be prevented from rolling-over using the STP bit in the SMTxCON0 register. When halting is enabled, the period match interrupt persists until the SMTxTMR is reset (either by a manual Reset, **Section 28.3.1 "Time Base**") or by clearing the SMTxGO bit of the SMTxCON1 register and writing the SMTxTMR values in software.

28.5 Polarity Control

The three input signals for the SMT have polarity control to determine whether or not they are active high/positive edge or active low/negative edge signals.

The following bits apply to Polarity Control:

- WSEL bit (Window Polarity)
- SSEL bit (Signal Polarity)
- CSEL bit (Clock Polarity)

These bits are located in the SMTxCON0 register.

28.6 Status Information

The SMT provides input status information for the user without requiring the need to deal with the polarity of the incoming signals.

28.6.1 WINDOW STATUS

Window status is determined by the WS bit of the SMTxSTAT register. This bit is only used in Windowed Measure, Gated Counter and Gated Window Measure modes, and is only valid when TS = 1, and will be delayed in time by synchronizer delays in non-Counter modes.

28.6.2 SIGNAL STATUS

Signal status is determined by the AS bit of the SMTxSTAT register. This bit is used in all modes except Window Measure, Time of Flight and Capture modes, and is only valid when TS = 1, and will be delayed in time by synchronizer delays in non-Counter modes.

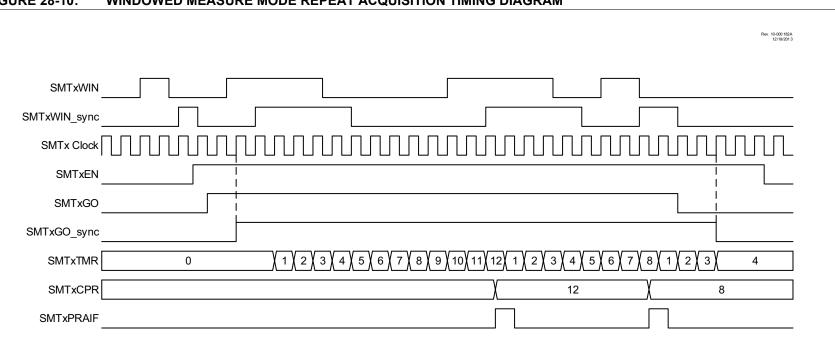


FIGURE 28-10:

PIC16(L)F19155/56/75/76/85/86

28.8 Interrupts

The SMT can trigger an interrupt under three different conditions:

- PW Acquisition Complete
- PR Acquisition Complete
- Counter Period Match

The interrupts are controlled by the PIR8 and PIE8 registers of the device.

28.8.1 PW AND PR ACQUISITION INTERRUPTS

The SMT can trigger interrupts whenever it updates the SMTxCPW and SMTxCPR registers, the circumstances for which are dependent on the SMT mode, and are discussed in each mode's specific section. The SMTxCPW interrupt is controlled by SMTxPWAIF and SMTxPWAIE bits in registers PIR8 and PIE8, respectively. The SMTxCPR interrupt is controlled by the SMTxPRAIF and SMTxPRAIE bits, also located in registers PIR8 and PIE8, respectively.

In Synchronous SMT modes, the interrupt trigger is synchronized to the SMTxCLK. In Asynchronous modes, the interrupt trigger is asynchronous. In either mode, once triggered, the interrupt will be synchronized to the CPU clock.

28.8.2 COUNTER PERIOD MATCH INTERRUPT

As described in Section 28.2.2 "Period Match interrupt", the SMT will also interrupt upon SMTxTMR, matching SMTxPR with its period match limit functionality described in Section 28.4 "Halt Operation". The period match interrupt is controlled by SMTxIF and SMTxIE.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PIE8	LCDIE	RTCCIE	—	—	—	SMT1PWAIE	SMT1PRAIE	SMT1IE	173
PIR8	LCDIF	RTCCIF	—	—	—	SMT1PWAIF	SMT1PRAIF	SMT1IF	182
SMT1CLK	_	_	—	_	_		CSEL<2:0>		413
SMT1CON0	EN	_	STP	WPOL	SPOL	CPOL	SMT1P	'S<1:0>	410
SMT1CON1	SMT1GO	REPEAT	—	—		MODE	<3:0>		411
SMT1CPRH				SMT1CF	PR<15:8>				417
SMT1CPRL				SMT1CI	PR<7:0>				417
SMT1CPRU	SMT1CPR<23:16>					417			
SMT1CPWH	SMT1CPW<15:8>						418		
SMT1CPWL	SMT1CPW<7:0>						418		
SMT1CPWU				SMT1CP	W<23:16>				418
SMT1PRH				SMT1PI	R<15:8>				419
SMT1PRL				SMT1P	PR<7:0>				419
SMT1PRU				SMT1PF	?<23:16>				419
SMT1SIG	—	_	_			SSEL<4:0>			415
SMT1STAT	CPRUP	CPWUP	RST	—	_	TS	WS	AS	412
SMT1TMRH				SMT1TM	1R<15:8>				416
SMT1TMRL				SMT1TM	/IR<7:0>				416
SMT1TMRU				SMT1TM	R<23:16>				416
SMT1WIN	—	_	—			WSEL<4:0>			414

TABLE 28-3: SUMMARY OF REGISTERS ASSOCIATED WITH SMTx

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for SMTx module.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CLC4GLS1	LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	506
CLC4GLS2	LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	507
CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	508
CLCIN0PPS	—	-	—		(CLCIN0PPS<4:	0>		264
CLCIN1PPS	_	_	_		CLCIN1PPS<4:0>				264
CLCIN2PPS	_	_	_		CLCIN2PPS<4:0>			264	
CLCIN3PPS	_	_	_		CLCIN3PPS<4:0>			264	

TABLE 32-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx (continued)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

33.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPxCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSPxIF, to be set (SSP interrupt, if enabled):

- Start condition generated
- · Stop condition generated
- Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

33.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 33.7** "**Baud Rate Generator**" for more detail.

34.1.2.3 Receive Interrupts

The RXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RXxIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RXxIF interrupts are enabled by setting all of the following bits:

- RXxIE, Interrupt Enable bit of the PIE3 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RXxIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

34.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCxSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCxREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCxSTA register which resets the EUSART. Clearing the CREN bit of the RCxSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

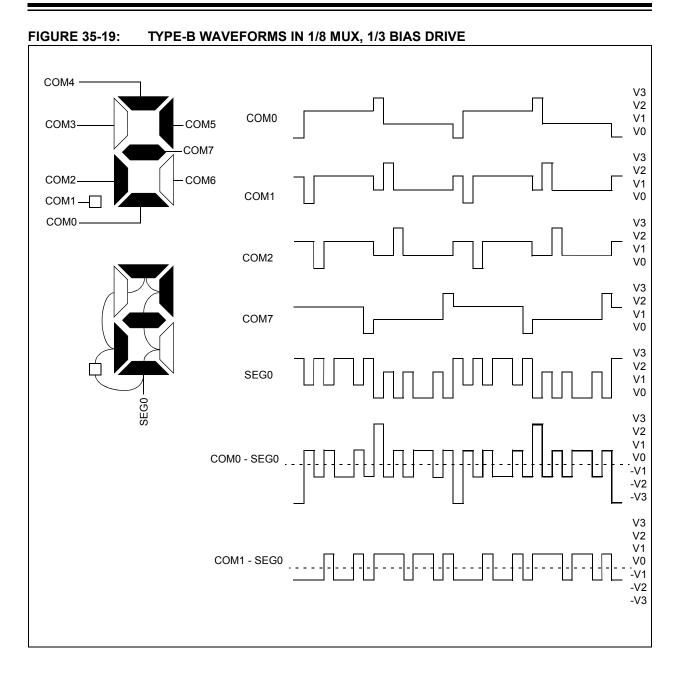
Note: If all receive characters in the receive FIFO have framing errors, repeated reads of the RCxREG will not clear the FERR bit.

34.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCxSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCxSTA register or by resetting the EUSART by clearing the SPEN bit of the RCxSTA register.

34.1.2.6 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCxSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCxSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCxREG.


34.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCxSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RXxIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

PIC16(L)F19155/56/75/76/85/86

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SE(n) |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

REGISTER 35-3: LCDSEx: LCD SEGMENT x ENABLE REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **SE(n+7):SE(n)** Segment Enable bits

<u>For LCDSE0: n = 0-7</u>
<u>For LCDSE1: n = 8-15</u>
For LCDSE2: n = 16-23
<u>For LCDSE3: n = 24-31</u>
<u>For LCDSE4: n = 32-39</u>
For LCDSE5: n = 40-47
1 = Segment function of the pin

1 = Segment function of the pin is enabled, digital I/O is disabled 0 = Segment function of the pin is disabled, digital I/O is enabled

REGISTER 35-4: LCDDATAX: LCD DATA x REGISTER

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SEGxCOMy |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SEGxCOMy: Pixel On bits

1 = Pixel on

0 = Pixel off

© 2017 Microchip Technology Inc.

TABLE 39-11: RESET, WDT, OSCILLATOR START-UP TIMER, POWER-UP TIMER, BROWN-OUT RESET AND LOW-POWER BROWN-OUT RESET SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
RST01*	TMCLR	MCLR Pulse Width Low to ensure Reset	2		—	μS	
RST02*	Tioz	I/O high-impedance from Reset detection	_	_	2	μs	
RST03	TWDT	Watchdog Timer Time-out Period	_	16		ms	16 ms Wominal Reset Time
RST04*	TPWRT	Power-up Timer Period	_	65	_	ms	
RST05	Vbor	Brown-out Reset Voltage ⁽⁴⁾	_	2.70 2.45 1.90	- <	× ×	BORV = 8 BORV = 1 (PIC16F)9155/56/75/76/85/86) BORV = 1 (PIC16(L)F19155/56/75/76/85/ 86)
RST06	VBORHYS	Brown-out Reset Hysteresis	_	40		_ mV∖_	
RST07	TBORDC	Brown-out Reset Response Time	— .	3	1	puş	
RST08	VLPBOR	Low-Power Brown-out Reset Voltage	$\overline{\ }$	2,45			
RST07 RST08	TBORDC VLPBOR	Brown-out Reset Response Time		3		× ×	

* These parameters are characterized but not tested.
 † Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 39-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2)

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C							
Param. No.	Sym.	Characteristic	Min.	∨ Typ†	Max.	Units	Conditions
AD01	NR	Resolution	<u> </u>	_	12	bit	
AD02	EIL	Integral Error	/-	±0.2	±1.0	LSb	ADCREF+ = 3.0V
AD03	Edl	Differential Error	—	±0.2	±1.0	LSb	ADCREF+ = 3.0V
AD04	EOFF	Offset Error	—	6		LSb	ADCREF+ = 3.0V
AD05	Egn	Gain Error	—	6	—	LSb	ADCREF+ = 3.0V
AD06	VADREF	ADC-Reference Voltage	1.8	_	Vdd	V	
AD07	VAIN	Full-Scale Range	—	_	ADREF+	V	
AD08		Recommended Impedance of Analog Voltage Source	—	1	—	kΩ	
AD09	RVREF	ADC Voltage Reference Ladder Impedance	—	50	—	kΩ	

/ These parameters are characterized but not tested.

Data/in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Use of the ADC charge pump to improve linearity performance is recommended for VDD <= 2.5V

2: This is the impedance seen by the VREF pads when the external reference pads are selected.

Note 1: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. $0.1 \ \mu$ F and $0.01 \ \mu$ F values in parallel are recommended.