

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19185t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/C1IN0-/C2IN0-/ANA0/CLCIN0 ⁽¹⁾ /IOCA0/SEG0	RA0	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN0-	AN	_	Comparator negative input.
	C2IN0-	AN	_	Comparator negative input.
	ANA0	AN	_	ADC Channel input.
	CLCIN0 ⁽¹⁾	—	_	Configurable Logic Cell source input.
	IOCA0	TTL/ST	_	Interrupt-on-change input.
	SEG0	_	AN	LCD Analog output.
RA1/C1IN1-/C2IN1-/ANA1/CLCIN1 ⁽¹⁾ /SEG1	RA1	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN1-	AN	_	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	ANA1	AN	_	ADC Channel input.
	CLCIN1 ⁽¹⁾	—	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	_	Interrupt-on-change input.
	SEG1	_	AN	LCD Analog output.
RA2/C1IN0+/C2IN0+/ANA2/DAC1OUT1/IOCA2/SEG2	RA2	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	ANA2	AN	_	ADC Channel input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
	SEG2	_	AN	LCD Analog output.
RA3/C1IN1+/ANA3/SEG3/IOCA3/VREF+ (ADC)/VREF+	RA3	TTL/ST	CMOS/OD	General purpose I/O.
(DAC1)	C1IN1+	AN	_	Comparator positive input.
	ANA3	AN	_	ADC Channel input.
	SEG3	_	AN	LCD Analog output.
	IOCA3	TTL/ST	_	Interrupt-on-change input.
	VREF+ (ADC)	AN	_	ADC positive reference.
	VREF+ (DAC1)	AN	_	DAC positive reference.
RA4/ANA4/T0CKI ⁽¹⁾ /IOCA4/SEG4/COM3	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	_	ADC Channel input.
	T0CKI ⁽¹⁾	—	_	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
	SEG4	_	AN	LCD Analog output.
	COM3	_	AN	LCD Driver Common Outputs.
Legend: AN = Analog input or output CMOS =	CMOS compat	ible input or out	tput OD = 0	Dpen-Drain

TABLE 1-3: PIC16(L)F19175/76 PINOUT DESCRIPTION

Legend:

CMOS = CMOS compatible input or output OD = Open-Drain ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C

TTL = TTL compatible input' XTAL = Crystal levels

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 14-2 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as 2: described in Table 14-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS 3: output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

HV = High Voltage

Name	Function	Input Type	Output Type	Description
RC7/DT1 ⁽³⁾ /RX1 ⁽¹⁾ /IOCC7/ANC7/SEG23/VLCD1	RC7	TTL/ST	CMOS/OD	General purpose I/O.
	DT1 ⁽³⁾	_	-	EUSART synchronous data output
	RX1 ⁽¹⁾	_	_	EUSART receive input.
	IOCC7	TTL/ST	_	Interrupt-on-change input.
	ANC7	AN	_	ADC Channel input.
	SEG23	_	AN	LCD Analog output.
	VLCD1	AN	_	LCD analog input
RD0/AND0/SEG24	RD0	TTL/ST	CMOS/OD	General purpose I/O.
	AND0	AN	_	ADC Channel input.
	SEG24	AN	_	LCD Analog output.
RD1/AND1/SEG25	RD1	TTL/ST	CMOS/OD	General purpose I/O.
	AND1	AN	—	ADC Channel input.
	SEG25	—	AN	LCD Analog output.
RD2/AND2/COM5	RD2	TTL/ST	CMOS/OD	General purpose I/O.
	AND2	AN	_	ADC Channel input.
	SEG26	—	AN	LCD Analog output.
	COM5	—	AN	LCD Driver Common Outputs.
RD3/AND3/SEG27/COM4	RD3	TTL/ST	CMOS/OD	General purpose I/O.
	AND3	AN	_	ADC Channel input.
	SEG27	_	AN	LCD Analog output.
	COM4	_	AN	LCD Driver Common Outputs.
RD4/AND4/SEG28	RD4	TTL/ST	CMOS/OD	General purpose I/O.
	AND4	AN		ADC Channel input.
	SEG28		AN	LCD Analog output.
RD5/AND5/SEG29	RD5	TTL/ST	CMOS/OD	General purpose I/O.
	AND5	AN	_	ADC Channel input.
	SEG29	AN	_	LCD Analog output.
RD6/AND6/SEG30	RD6	TTL/ST	CMOS/OD	General purpose I/O.
	AND6	AN	_	ADC Channel input.
	SEG30		AN	LCD Analog output.
RD7/AND7/SEG31	RD7	TTL/ST	CMOS/OD	General purpose I/O.
	AND7	AN	_	ADC Channel input.
	SEG31	AN	—	LCD Analog output.
RE0/ANE0/SEG32	RE0	TTL/ST	CMOS/OD	General purpose I/O.
	ANE0	AN	_	ADC Channel input.
	SEG32	_	AN	LCD Analog output.
RE1/ANE2/SEG33/COM6	RE1	TTL/ST	CMOS/OD	General purpose I/O.
	ANE2	AN	_	ADC Channel input.
	SEG33	_	AN	LCD analog input
	COM6		AN	LCD Driver Common Outputs.

TABLE 1-3: PIC16(L)F19175/76 PINOUT DESCRIPTION (CONTINUED)

AN = Analog input or output Legend: HV = High Voltage

TTL = TTL compatible input'

CMOS = CMOS compatible input or output OD = Open-Drain ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C

XTAL = Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note 1: Refer to Table 14-2 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 14-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS 3: output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assign-4: ments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

4.3.2.1 STATUS Register

The STATUS register, shown in Register 4-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (refer to **Section 37.0 "Instruction Set Summary"**).

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction.

REGISTER 4-1: STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
—	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-Out bit
	 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-Down bit
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order

bit of the source register.

									(********	-/	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 9	•	•	•	•	•	•	•		•		•
	CPU CORE REGISTERS; see Table 4-3 for specifics										
48Ch	SMT1TMRL				SMT11	ſMR				0000 0000	0000 0000
48Dh	SMT1TMRH				SMT11	ſMR				0000 0000	0000 0000
48Eh	SMT1TMRU				SMT11	ſMR				0000 0000	0000 0000
48Fh	SMT1CPRL				CPF	२				xxxx xxxx	xxxx xxxx
490h	SMT1CPRH				CPF	२				xxxx xxxx	xxxx xxxx
491h	SMT1CPRU				CPF	२				xxxx xxxx	XXXX XXXX
492h	SMT1CPWL				CPV	N				xxxx xxxx	xxxx xxxx
493h	SMT1CPWH				CPV	N				xxxx xxxx	XXXX XXXX
494h	SMT1CPWU				CPV	N				xxxx xxxx	xxxx xxxx
495h	SMT1PRL				SMT1	PR				1111 1111	1111 1111
496h	SMT1PRH				SMT1	PR				1111 1111	1111 1111
497h	SMT1PRU				SMT1	PR				1111 1111	1111 1111
498h	SMT1CON0	EN		STP	WPOL	SPOL	CPOL	SMT1	PS<1:0>	0-00 0000	0-00 0000
499h	SMT1CON1	SMT1GO	REPEAT	_	—		MODE	E<3:0>		00 0000	00 0000
49Ah	SMT1STAT	CPRUP	CPWUP	RST	—	—	TS	WS	AS	000000	000000
49Bh	SMT1CLK	—	CSEL<2:0>								0000 0000
49Ch	SMT1SIG	_	SSEL<4:0>							0000 0000	0000 0000
49Dh	SMT1WIN	_	_	_			WSEL<4:0>			0000 0000	0000 0000
49Eh	_				Unimplen	nented					
49Fh	—				Unimplen	nented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

10.6 Register Definitions: Interrupt Control

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	U-0	R/W-1/1
GIE	PEIE	—	_	—		—	INTEDG
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is un	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7	GIE: Global Ir	nterrupt Enable	bit				
	1 = Enables a	Ill active interru	pts				
	0 = Disables a	all interrupts					
bit 6	PEIE: Periphe	eral Interrupt E	nable bit				
	1 = Enables a	Ill active periph	eral interrupts	5			
bit 5_1		tod: Pead as '	nieniupis n'				
DIL 5-1	Unimplemen		J				
bit 0	INTEDG: Inte	rrupt Edge Sel	ect bit				
	$\perp = \text{Interrupt } C$	on falling edge (of INT pin				
		on tailing coge					
Note:	nterrupt flag bits a	re set when an	interrupt				
c	condition occurs, re	egardless of the	e state of				
it	ts corresponding e	enable bit or th	e Global				
E	Enable bit, GIE, o	f the INTCON	register.				
l í	User software	should ensu	ire the				
8	appropriate interru	upt flag bits a	ire clear				
4	shor to enabling at	i interrupt.					

PIC16(L)F19155/56/75/76/85/86

11.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0). If the SLEEP instruction is executed while the IDLEN bit is set (IDLEN = 1), the CPU will enter the IDLE mode (Section 11.2.3 "Low-Power Sleep Mode").

Upon entering Sleep mode, the following conditions exist:

- 1. WWDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The \overline{PD} bit of the STATUS register is cleared
- 3. The $\overline{\text{TO}}$ bit of the STATUS register is set
- 4. CPU Clock and System Clock
- 5. 31 kHz LFINTOSC, HFINTOSC and SOSC are unaffected and peripherals using them may continue operation in Sleep.
- 6. ADC is unaffected if the dedicated FRC oscillator is selected the conversion will be left abandoned if Fosc is selected and ADRES will have an incorrect value
- 7. I/O ports maintain the status they had before Sleep was executed (driving high, low, or high-impedance). This does not apply in the case of any asynchronous peripheral which is active and may affect the I/O port value
- 8. Resets other than WWDT are not affected by Sleep mode

Refer to individual chapters for more details on peripheral operation during Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
OSCCON1	—		NOSC<2:0> NDIV<3:0					:0>			
OSCCON2	—		COSC<2:0>			CDIV<	3:0>		152		
OSCCON3	CSWHOLD	SOSCPWR	_	ORDY	NOSCR	—	—	—	154		
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	140		
STATUS	—	—		TO	PD	Z	DC	С	50		
WDTCON0	—	—			WDTPS<4:)>		SWDTEN	196		
WDTCON1	—	V	VDTCS<2:0>		—	WI	NDOW<2:0>	>	197		
WDTPSL				PSCN	T<7:0>				198		
WDTPSH			PSCNT<15:8>						198		
WDTTMR			WDTTM	R<3:0>		STATE	PSCNT	<17:16>	198		

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH WINDOWED WATCHDOG TIMER

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	—	CSWEN	LCDPEN	VBATEN	CLKOUTEN	100
CONFIGT	7:0	_	F	RSTOSC<2:0	>	—	I	EXTOSC<2:0	>	120

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

13.4.9 WRERR BIT

The WRERR bit can be used to determine if a write error occurred.

WRERR will be set if one of the following conditions occurs:

- If WR is set while the NVMADRH:NMVADRL points to a write-protected address
- A Reset occurs while a self-write operation was in progress
- An unlock sequence was interrupted

The WRERR bit is normally set by hardware, but can be set by the user for test purposes. Once set, WRERR must be cleared in software.

Free	LWLO	Actions for PFM when WR = 1	Comments
1	x	Erase the 32-word row of NVMADRH:NVMADRL location. See Section 13.4.4 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set All 32 words are erased NVMDATH:NVMDATL is ignored
0	1	Copy NVMDATH:NVMDATL to the write latch corresponding to NVMADR LSBs. See Section 13.4.4 "NVMREG Erase of PFM"	Write protection is ignoredNo memory access occurs
0	0	Write the write-latch data to PFM row. See Sec- tion 13.4.4 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set Write latches are reset to 3FFh NVMDATH:NVMDATL is ignored

TABLE 13-4: ACTIONS FOR PFM WHEN WR = 1

Register on Bit 6 Bit 5 Bit 3 Bit 0 Name Rit 7 Rit 4 Bit 2 Rit 1 page Inputs PPSLOCK PPSLOCKED 265 INTPPS INTPPS<4:0> 264 T0CKIPPS<4:0> **T0CKIPPS** 264 _ ____ T1CKIPPS T1CKIPPS<4:0> 264 T1GPPS T1GPPS<4:0> 264 T2INPPS T2INPPS<4:0> 264 T4INPPS T4INPPS<4:0> 264 CCP1PPS CCP1PPS<4:0> 264 CCP2PPS CCP2PPS<4:0> 264 SMT1WINPPS SMT1WINPPS<4:0> 264 _ SMT1SIGPPS _ SMT1SIGPPS<4:0> 264 _ ____ CWG1PPS CWG1PPS<4:0> 264 **CLCIN0PPS** CLCIN0PPS<4:0> 264 CLCIN1PPS _ CLCIN1PPS<4:0> 264 _ CLCIN2PPS CLCIN2PPS<4:0> 264 **CLCIN3PPS** CLCIN3PPS<4:0> 264 ADCACTPPS ADCACTPPS<4:0> 264 SSP1CLKPPS ____ SSP1CLKPPS<4:0> 264 SSP1DATPPS SSP1DATPPS<4:0> 264 SSP1SSPPS SSP1SSPPS<4:0> 264 RX1PPS RX1PPS<4:0> 264 _ TX1PPS TX1PPS<4:0> 264 ____ ____ RX2PPS<4:0> RX2PPS 264 TX2PPS TX2PPS<4:0> 264 ____ Outputs RA0PPS RA0PPS<4:0> 265 RA1PPS RA1PPS<4:0> 265 _ _ _ RA2PPS RA2PPS<4:0> 265 ____ **RA3PPS** RA3PPS<4:0> 265 RA4PPS RA4PPS<4:0> 265 RA5PPS RA5PPS<4:0> ____ _ ____ 265 RA6PPS RA6PPS<4:0> 265 ____ RA7PPS RA7PPS<4:0> 265 **RB0PPS** RB0PPS<4:0> 265 _ RB1PPS ____ ____ RB1PPS<4:0> 265 RB2PPS RB2PPS<4:0> 265 RB3PPS RB3PPS<4:0> 265 **RB4PPS** RB4PPS<4:0> 265 ____ _ **RB5PPS** 265 ____ _ ____ RB5PPS<4:0> RB6PPS RB6PPS<4:0> 265 **RB7PPS** RB7PPS<4:0> 265 **RC0PPS** ____ _ _ RC0PPS<4:0> 265 RC1PPS RC1PPS<4:0> 265 _ RC2PPS RC2PPS<4:0> 265 **RC3PPS** RC3PPS<4:0> 265 RC4PPS RC4PPS<4:0> 265 ____ RC6PPS RC6PPS<4:0> 265 RC7PPS RC7PPS<4:0> 265 **RD0PPS** RD0PPS<4:0> 265 ____ _ ____

TABLE 15-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE

16.0 PERIPHERAL MODULE DISABLE (PMD)

The PIC16(L)F19155/56/75/76/85/86 provides the ability to disable selected modules, placing them into the lowest possible Power mode.

For legacy reasons, all modules are ON by default following any Reset.

16.1 Disabling a Module

Disabling a module has the following effects:

- All clock and control inputs to the module are suspended; there are no logic transitions, and the module will not function.
- The module is held in Reset:
 - Writing to SFRs is disabled
 - Reads return 00h

16.2 Enabling a module

When the register bit is cleared, the module is reenabled and will be in its Reset state; SFR data will reflect the POR Reset values.

Depending on the module, it may take up to one full instruction cycle for the module to become active. There should be no interaction with the module (e.g., writing to registers) for at least one instruction after it has been re-enabled.

16.3 Disabling a Module

When a module is disabled, all the associated PPS selection registers (Registers xxxPPS Register 15-1, 15-2, and 15-3), are also disabled.

16.4 System Clock Disable

Setting SYSCMD (PMD0, Register 16-1) disables the system clock (Fosc) distribution network to the peripherals. Not all peripherals make use of SYSCLK, so not all peripherals are affected. Refer to the specific peripheral description to see if it will be affected by this bit.

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
RTCCMD	DACMD	ADCMD	—	—	CMP2MD	CMP1MD	ZCDMD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is uncl	hanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7	RTCCMD: Dis 1 = RTCC mo 0 = RTCC mo	sable RTCC bit odule disabled odule enabled					
bit 6	DACMD: Disa 1 = DAC mod 0 = DAC mod	able DAC bit dule disabled dule enabled					
bit 5	ADCMD: Disa 1 = ADC mod 0 = ADC mod	able ADC bit dule disabled dule enabled					
bit 4-3	Unimplemen	ted: Read as 'd)'				
bit 2	CMP2MD: Dis 1 = C2 modu 0 = C2 modu	sable Compara le disabled le enabled	tor C2 bit				
bit 1	CMP1MD: Dis 1 = C1 modu 0 = C1 modu	sable Compara le disabled le enabled	tor C1 bit				
bit 0	ZCDMD: Disa 1 = ZCD mod 0 = ZCD mod	able ZCD dule disabled dule enabled					

REGISTER 16-3: PMD2: PMD CONTROL REGISTER 2

REGISTER 19-8: ADPCH: ADC POSITIVE CHANNEL SELECTION REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—			ADPCI	H<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0

ADPCH<5:0>: ADC Positive Input Channel Selection bits

ADPCH	Device Pin Count			ADC Input A	ADPCH	Device Pin Count			ADC Input	
<5:0>	28	40	48	Connection		<5:0>	28	40	48	Connection
0x00	٠	•	•	RA0		0x20	—	•	•	RE0
0x01	•	•	•	RA1		0x21	_	•	•	RE1
0x02	•	•	•	RA2		0x22	_	•	•	RE2
0x03	•	•	•	RA3		0x23	_	—	_	RE3
0x04	٠	•	•	RA4		0x24	_	—		RE4
0x05	_	—	_	RA5		0x25	_	—	-	RE5
0x06	•	•	•	RA6		0x26	_	—	-	RE6
0x07	•	•	•	RA7		0x27	_		_	RE7
0x08	•	•	•	RB0		0x28	-		•	RF0
0x09	•	•	•	RB1		0x29	_	—	•	RF1
0x0A	•	•	•	RB2		0x2A	_	_	•	RF2
0x0B	•	•	•	RB3	RB3		-		•	RF3
0x0C	•	•	•	RB4 RB5 RB6 RB7 RC0		0x2C	_	—	•	RF4
0x0D	•	•	•			0x2D	-		•	RF5
0x0E	•	•	•			0x2E	-		•	RF6
0x0F	•	•	•			0x2F	-		•	RF7
0x10	_	_	_			0x30	_			RG0
0x11	_	_	_	RC1		0x31	-		_	RG1
0x12	•	•	•	RC2		0x32	—		1	RG2
0x13	•	•	•	RC3		0x33	—	—		RG3
0x14	•	•	•	RC4		0x34	-		_	RG4
0x15	_	_	_	RC5		0x35	_			RG5
0x16	•	•	•	RC6		0x36	_	-		RG6
0x17	•	•	•	RC7		0x37	-		_	RG7
0x18	_	•	•	RD0		0x38	_			—
0x19	_	•	•	RD1		0x39	VLCD3 divided by 4 ⁽⁴⁾			
0x1A	_	•	•	RD2		0x3A	VBAT divided by 3 ⁽⁵⁾			
0x1B	_	•	•	RD3	RD3		AVss (Analog Ground)			
0x1C	_	•	•	RD4		0x3C	Temperature Indicator ⁽³⁾			
0x1D	_	•	•	RD5	1	0x3D	DAC1 Output ⁽¹⁾			
0x1E	_	•	•	RD6	1	0x3E	FVR Buffer 1 ⁽²⁾			
0x1F	_	•	•	RD7		0x3F	FVR Buffer 2 ⁽²⁾			

Note 1: See Section 19.0 "Analog-to-Digital Converter with Computation (ADC2) Module" for more information.

2: See Section 18.0 "Fixed Voltage Reference (FVR)" for more information.

3: See Section 20.0 "Temperature Indicator Module (TIM)" for more information.

4: See Section 35.0 "Liquid Crystal Display (LCD) Controller" for more information.

5: See Section 8.0 "Resets and Vbat" for more information.

20.0 TEMPERATURE INDICATOR MODULE (TIM)

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The main purpose of the temperature indicator module is to provide temperature-dependent voltage that can be measured by the Analog-to-Digital Converter.

The circuit's range of operating temperature falls between -40°C and +125°C. The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately.

20.1 Module Operation

The temperature indicator module consists of a temperature-sensing circuit that provides a voltage to the device ADC. The analog voltage output, VTSENSE, varies inversely to the device temperature. The output of the temperature indicator is referred to as VOUT.

Figure 20-1 shows a simplified block diagram of the temperature indicator module.

FIGURE 20-1: TEMPERATURE CIRCUIT DIAGRAM

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to Section 19.0 "Analog-to-Digital Converter with Computation (ADC2) Module" for detailed information.

The ON/OFF bit for the module is located in the FVRCON register. See **Section 18.0 "Fixed Voltage Reference (FVR)"** for more information. The circuit is enabled by setting the TSEN bit of the FVRCON register. When the module is disabled, the circuit draws no current.

The circuit operates in either High or Low range. Refer to **Section 20.5 "Temperature Indicator Range"** for more details on the range settings.

20.2 Estimation of Temperature

This section describes how the sensor voltage can be used to estimate the temperature of the module. To use the sensor, the output voltage, VTSENSE, is measured and the corresponding temperature is determined. Equation 20-1 provides an estimate for the die temperature based on the VTSENSE value.

EQUATION 20-1: SENSOR TEMPERATURE

$$T_{SENSE} = V_{TSENSE} \times (-Mt) + T_{OFFSET}$$

Where:

Mt = 1/Mv, where Mv = sensor voltage sensitivity (V/°C). TOFFSET is the temperature difference between the theoretical temperature and the actual temperature.

21.6 Register Definitions: DAC Control

REGISTER 21-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0				
DAC1EN	— DAC10E1 DAC10E2		DAC1PSS<1:0>		—	_					
bit 7			•				bit C				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7	DAC1EN: DA	C1 Enable bit									
	1 = DAC is e	nabled									
		Isabled									
bit 6	Unimplemen	ted: Read as '	0'								
bit 5	DAC10E1: D	AC1 Voltage C	Output 1 Enabl	e bit							
	1 = DAC volt	voltage level is an output on the DAC10U11 pin voltage level is disconnected from the DAC10UT1 pin									
bit 4			output 1 Epobl		orrpin						
DIL 4	1 = DAC volt	activullaye c			in						
	0 = DAC volt	age level is dis	connected fro	m the DAC10	UT2 pin						
bit 3-2	DAC1PSS<1	:0>: DAC1 Pos	sitive Source S	Select bits							
	11 = Reserve	ed, do not use									
	10 = FVR ou	itput									
	01 = VREF+ p	pin									
	00 = VDD	00 = VDD									

bit 1-0 Unimplemented: Read as '0'

REGISTER 21-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DAC1R<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
---------	----------------------------

bit 4-0 DAC1R<4:0>: DAC1 Voltage Output Select bits VOUT = (VSRC+ - VSRC-)*(DAC1R<4:0>/32) + VSRC

24.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

The PIC16(L)F19155/56/75/76/85/86 family of devices is equipped with a Real-Time Clock and Calendar (RTCC) module, designed to maintain accurate time measurement for extended periods, with little or no intervention from the CPU. The module is optimized for low-power operation in order to provide extended battery life. The key features include:

- · Time: Hours, Minutes and Seconds
- 24-hour Format (Military Time)
- Calendar: Weekday, Date, Month and Year
- Year Range: 2000 to 2099
- Leap Year Correction
- Configurable Alarm
- BCD Format for Compact Firmware
- Half-second Synchronization and Visibility
- User Calibration with Auto-Adjust
- Multiple Clock Sources
- Low-Power Optimization

27.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

FIGURE 33-28: I²C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)

C16(L)

)F19155/56/75/76/85/86

34.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 9.2.2.2 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 34.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

PIC16(L)F19155/56/75/76/85/86

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page			
994h	CM2CON0	ON	OUT	—	POL	—	-	HYS	SYNC	340			
995h	CM2CON1	—	_	—	—	—	_	INTP	INTN	341			
996h	CM2NSEL	—	_	_	_	—		NCH<2:0>		342			
996h		_	—	_	—	_	NCH2	NCH1	NCH0	342			
997h	CM2PSEL	_	—	_	—	_		PCH<2:0>		342			
997h		— — — — — PCH2 PCH1 PCH0								342			
998h	—	Unimplemented											
999h	—	Unimplemented											
99Ah	—		Unimplemented										
99Bh	—				Unimpl	emented							
99Ch	—				Unimpl	emented							
99Dh	—				Unimpl	emented							
99Eh	—				Unimpl	emented							
99Fh	—		Unimplemented										
A0Ch	—		Unimplemented										
A0Dh	—		Unimplemented										
A0Eh	—		Unimplemented										
A0Fh	—		Unimplemented										
A10h	—		Unimplemented										
A11h	—		Unimplemented										
A12h	—				Unimpl	emented							
A13h	—				Unimpl	emented							
A14h	—				Unimpl	emented							
A15h	—				Unimpl	emented							
A16h	—				Unimpl	emented							
A17h	—				Unimpl	emented							
A18h	—				Unimpl	emented							
A19h	RC2REG				RC2	2REG							
A1Ah	TX2REG				TX2	REG							
A1Bh	SP2BRGL				SP2	BRGL							
A1Ch	SP2BRGH				SP2	BRGH							
A1Dh	RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
A1Eh	TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D				
A1Fh	BAUD2CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN				
A8Ch	—				Unimpl	emented							
— A9Fh													
B0Ch													
— B1Fh	—				Unimpl	emented							
B8Ch					L la la contra	omonto d							
— B9Fh	_				Unimpi	ementea							

REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES **TABLE 38-1:**

Legend:

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: Unimplemented data memory locations, read as '0'.

42.1 Package Marking Information (Continued)

