

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19186-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

θ

Pull-up

Y

Υ

Y

Υ

Υ

Y

Y

Y

Y

Υ

Υ

Υ

Basic

_

_

VBAT

CLKOUT

OSC2 OSC1

CLKIN

INTPPS

_

ICDCLK/

ICSPCLK

ICDDAT/

ICSPDAT

	48-Pin TQFP/QFN	ADC	Reference	Comparator	Zero-Cross Detect	DAC	Timers/SMT	ССР	WMd	CWG	dSSM	EUSART	СГС	RTCC	ГСD	Interrupt-on-Change	High Current	
0	21	ANA0	_	C1IN0- C2IN0-		—	—	_		_	_		CLCIN0 ⁽¹⁾	_	SEG0	IOCA0	_	
1	22	ANA1		C1IN1- C2IN1-		—	_				_		CLCIN1 ⁽¹⁾	-	SEG1	IOCA1		
2	23	ANA2	-	C1IN0+ C2IN0+		DAC1OUT1	—				_		_		SEG2	IOCA2	_	
3	24	ANA3	VREF+	C1IN1+	I	DAC1REF+	_				—		—	-	SEG3	IOCA3	—	Ľ
4	25	ANA4	Ι	-		—	T0CKI ⁽¹⁾	-	-	-			-	Ι	SEG4 COM3	IOCA4	Ι	
5	26	—	_			—	_	_		_	SS ⁽¹⁾		—	_	_	IOCA5	-	
6	33	ANA6	_			_	_				_		_	_	SEG6	IOCA6	_	
7	32	ANA7	_	_	_	_	_	_	_	_	_	_	_	_	SEG7	IOCA7	—	
0	8	ANB0	—	C2IN1+	ZCD	_	_	—	_	CWG1IN ⁽¹⁾		_	_	—	SEG8	IOCB0	—	
1	9	ANB1	—	C1IN3- C2IN3-		—	_	_		_	SCL, SDA ^(1, 3, 4, 5, 6)	_	—	-	SEG9	IOCB1	HIB1	
2	10	ANB2	—	_	_	—	—	_	_	_	SCL, SDA ^(1, 3, 4, 5, 6)	-	-	_	SEG10 CFLY1	IOCB2	—	
3	11	ANB3	—	C1IN2- C2IN2-	_	—	—	_	_	_	_		—	-	SEG11 CFLY2	IOCB3	—	
4	16	ANB4 ADCACT ⁽¹⁾	_	_	_	—	—	_	_	_	—	_	—	_	COM0	IOCB4	—	
5	17	ANB5	_			—	T1G ⁽¹⁾	_	_	-	_		—	—	SEG13 COM1	IOCB5	_	
6	18	ANB6	_	_		-	_	_		_	_	TX2 ⁽¹⁾ CK2 ⁽¹⁾	CLCIN2 ⁽¹⁾	_	SEG14	IOCB6	_	
7	19	ANB7	_	_		DAC1OUT2	_	_	_	_	_	RX2 ⁽¹⁾ DT2 ⁽¹⁾	CLCIN3 ⁽¹⁾	_	SEG15	IOCB7	_	

48-PIN ALLOCATION TABLE (PIC16(L)F19185/86) TABLE 5: ...

© 2017 Microchip Technology Inc.

I/O⁽²⁾

RA0

RA1

RA2

RA3

RA4

RA5

RA6

RA7

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note 1:

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one or more PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by INLCVL register, instead of the I²C specific 4: or SMBUS input buffer thresholds.

These are alternative I²C logic levels pins. 5:

In I²C logic levels configuration, these pins can operate as either SCL and SDA pins. 6:

7.0 DEVICE CONFIGURATION INFORMATION

The Device Configuration Information (DCI) is a dedicated region in the Program Flash Memory mapped from 8200h to 821Fh. The data stored in the DCI memory is hard-coded into the device during manufacturing.

Refer to Table 7-1 for the complete DCI table address and description. The DCI holds information about the device which is useful for programming and bootloader applications. These locations are read-only and cannot be erased or modified.

TABLE 7-1: DEVICE CONFIGURATION INFORMATION FOR PIC16(L)F19155/56/75/76/85/86 FAMILY OF DEVICES

ADDRESS	Name	DESCRIPTION	VALUE	UNITS
8200h	ERSIZ	Erase Row Size	32	Words
8201h	WLSIZ	Number of write latches	32	
8202h	URSIZ	Number of User Rows	See Table 7-2	Rows
8203h	EESIZ	EE Data memory size	256	Bytes
8204h	PCNT	Pin Count	28/40/44/48	Pins

TABLE 7-2: MEMORY SIZE AND NUMBER OF USER ROWS

Part Name	Memory size	Number of User rows
PIC16(L)F19155	8k	256
PIC16(L)F19175	8k	256
PIC16(L)F19185	8k	256
PIC16(L)F19156	16k	512
PIC16(L)F19176	16k	512
PIC16(L)F19186	16k	512

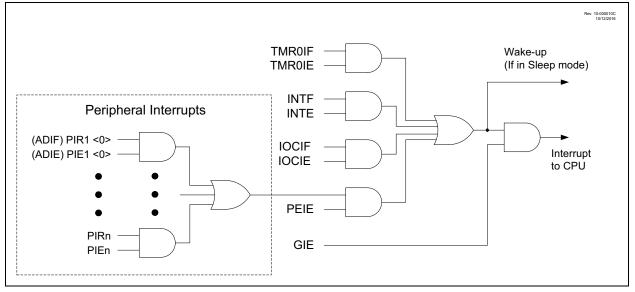
7.1 DIA and DCI Access

The DIA and DCI addresses are read-only and cannot be erased or modified. See Section 13.4.7 "NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Words" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the DIA and DCI regions, similar to the Device ID and Revision ID.

10.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 10-1.

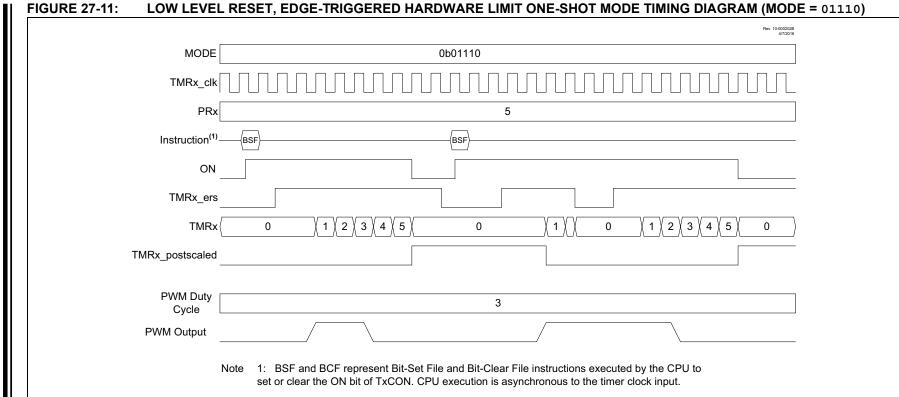
FIGURE 10-1: INTERRUPT LOGIC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	—	—	_	INTEDG	164
PIE0	_	—	TMR0IE	IOCIE	—	—	_	INTE	165
PIE1	OSFIE	CSWIE	—	-	—	—	ADTIE	ADIE	166
PIE2	-	ZCDIE	_		—	—	C2IE	C1IE	167
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	168
PIE4	_	—	_	_	TMR4IE	—	TMR2IE	TMR1IE	169
PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	—	—	_	TMR1GIE	170
PIE6	CRIE	—	_	-	—	—	CCP2IE	CCP1IE	171
PIE7	_	—	NVMIE	_	—	—	_	CWG1IE	172
PIE8	LCDIE	RTCCIE	_	_	—	SMT1PWAIE	SMT1PRAIE	SMT1IE	173
PIR0	_	—	TMR0IF	IOCIF	—	—	—	INTF	174
PIR1	OSFIF	CSWIF	_		—	—	ADTIF	ADIF	175
PIR2	_	ZCDIF	_	_	_	_	C2IF	C1IF	176
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	177
PIR4	_	_	_	_	TMR4IF	_	TMR2IF	TMR1IF	178
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF	179
PIR6	CRIF	_	_	_	_	_	CCP2IF	CCP1IF	180
PIR7	_	_	NVMIF	_	_	_	_	CWG1IF	181
PIR8	LCDIF	RTCCIF	_	_	_	SMT1PWAIF	SMT1PRAIF	SMT1IF	182

TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTE	RE7	RE6	RE5	RE4	RE3	_	RE1	RE0	248
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	—	TRISE1	TRISE0	248
LATE	LATE7	LATE6	LATE5	LATE4	LATE3	—	LATE1	LATE0	249
ANSELE	ANSE7	ANSE6	ANSE5	ANSE4	ANSE3	—	ANSE1	ANSE0	249
WPUE	WPUE7	WPUE6	WPUE5	WPUE4	WPUE3	—	WPUE1	WPUE0	250
ODCONE	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	—	ODCE1	ODCE0	250
SLRCONE	SLRE7	SLRE6	SLRE5	SLRE4	SLRE3	—	SLRE1	SLRE0	251
INLVLE	INLVLE7	INLVLE6	INLVLE5	INLVLE4	INLVLE3	_	INLVLE1	INLVLE0	251


TABLE 14-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

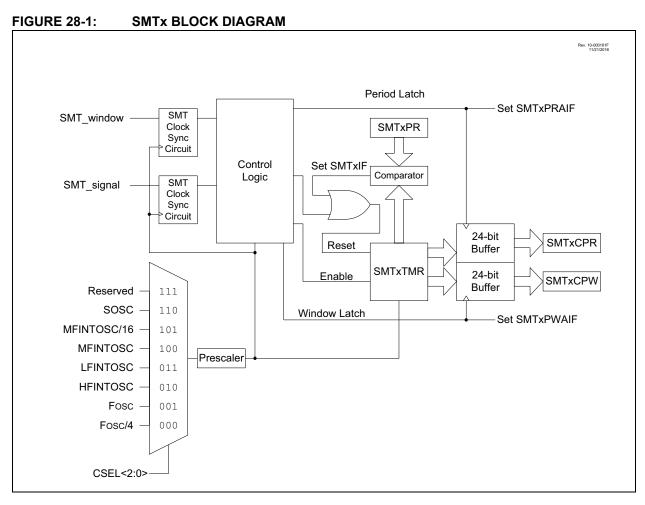
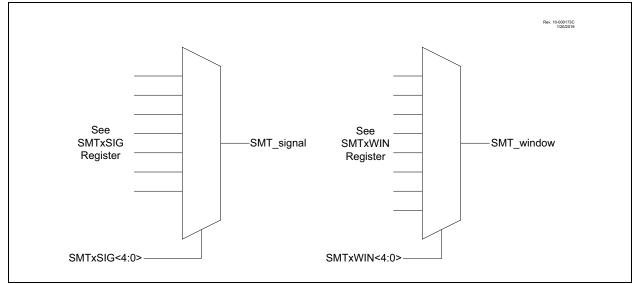

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

TABLE 15-3:	PPS OUTPUT SIGNAL ROUTING OPTIONS


	Outrast		Remappable to Pins of PORTx												
Output Signal Name	Output Register	PIC	C16(L)F1915	5/56	PIC16(L)F19175/76				PIC16(L)F19185/86						
	Value	PORTA	PORTB	PORTC	PORTA	PORTB	PORTC	PORTD	PORTE	PORTA	PORTB	PORTC	PORTD	PORTE	PORTF
RTCC	0x18	•		•	•		•			•		•			
ADGRDB	0x17	•		•	•		•			•					•
ADGRDA	0x16	•		•	•		•			•					•
TMR0	0x15		•	•		•	•					•			•
SDO1/SDA1	0x14		•	•		•	•				•	•			
SCK1/SCL1	0x13		•	•		•	•				•	•			
C2OUT	0x12	•		•	•				•	•				•	
C1OUT	0x11	•		•	•			•		•			•		
DT2	0x10		•	•		•		•			•		•		
TX2/CK2	0x0F		•	•		•		•			•		•		
DT1	0x0E		•	•		•	•					•			•
TX1/CK1	0x0D		•	•		•	•					•			•
PWM4OUT	0x0C		•	•		•		•			•		•		
PWM3OUT	0x0B		•	•		•		•			•		•		
CCP2	0x0A		•	•		•	•					•			•
CCP1	0x09		•	•		•	•					•			•
CWG1D	0x08		•	•		•		•			•		•		
CWG1C	0x07		•	•		•		•			•		•		
CWG1B	0x06		•	•		•		•			•		•		
CWG1A	0x05		•	•		•	•				•	•			
CLC4OUT	0x04		•	•		•		•			•		•		
CLC3OUT	0x03		•	•		•		•			•		•		
CLC2OUT	0x02	•		•	•		•			•					•
CLC1OUT	0x01	•		•	•		•			•					•

© 2017 Microchip Technology Inc.

© 2017 Microchip Technology Inc.

30.1 Standard PWM Mode

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the PWMx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

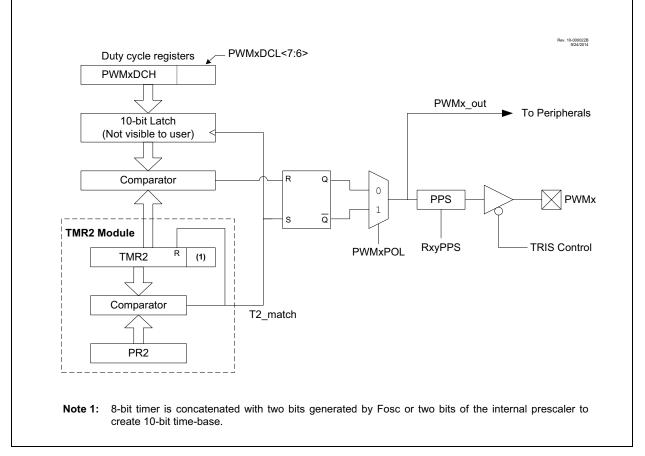

- TMR2 register
- PR2 register
- PWMxCON registers
- PWMxDCH registers
- PWMxDCL registers

Figure 30-2 shows a simplified block diagram of PWM operation.

If PWMPOL = 0, the default state of the output is '0'. If PWMPOL = 1, the default state is '1'. If PWMEN = 0, the output will be the default state.

- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin.
 - 2: Two identical Timer2 modules are implemented on this device. The timers are named Timer2 and Timer4. All references to Timer2 apply as well to Timer4. All references to T2PR apply as well to T4PR.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7							bit
Legend:							
R = Readable		W = Writable		-	nented bit, read		
u = Bit is uncha	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG4D4T: (Gate 3 Data 4 T	rue (non-inve	rted) bit			
		(true) is gated i		,			
		(true) is not gat					
bit 6	LCxG4D4N:	Gate 3 Data 4 I	Negated (inver	rted) bit			
		(inverted) is ga					
	0 = CLCIN3	(inverted) is no	t gated into Cl	Cx Gate 3			
bit 5		Gate 3 Data 3 T	•				
		(true) is gated i					
1.11.4		(true) is not gat					
bit 4		Gate 3 Data 3 I					
		(inverted) is ga (inverted) is no					
bit 3		Sate 3 Data 2 T	•				
		(true) is gated i		,			
	0 = CLCIN1 ((true) is not gat	ed into CLCx	Gate 3			
bit 2	LCxG4D2N:	Gate 3 Data 2 I	Negated (inver	rted) bit			
		(inverted) is ga					
	0 = CLCIN1	(inverted) is no	t gated into Cl	Cx Gate 3			
bit 1	LCxG4D1T: (Gate 4 Data 1 T	rue (non-inve	rted) bit			
		(true) is gated i					
		(true) is not gat					
bit 0		Gate 3 Data 1 I	•				
		(inverted) is ga					
	0 = CLCINU((inverted) is no	i galeu mio Cl				

REGISTER 32-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			SSPxM	ISK<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncl	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-1	SSPxMSK<	7:1>: Mask bits					
	1 = The rec	eived address b	it n is compar	ed to SSPxAD	<pre>D<n> to detect</n></pre>	I ² C address ma	atch
	0 = The rec	eived address b	it n is not use	d to detect I ² C	address match		
bit 0	SSPxMSK<	0>: Mask bit for	I ² C Slave mo	de, 10-bit Addr	ess		
	I ² C Slave m	ode, 10-bit addr	ess (SSPM<3	3:0> = 0111 or	1111):		
	1 = The rec	eived address b	it 0 is compar	ed to SSPxAD	D<0> to detect	I ² C address ma	atch
	0 = The rec	eived address b	it 0 is not use	d to detect I ² C	address match		
	l ² C Slave m	ode, 7-bit addre	SS:				

REGISTER 33-5: SSPxMSK: SSPx MASK REGISTER

REGISTER 33-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

						•	,			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
	SSPxADD<7:0>									
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	SSPxADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

MSK0 bit is ignored.

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 SSPxADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 SSPxADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

34.3.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDxCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPxBRGH:SPxBRGL register pair. The overflow condition will set the RXxIF flag. The counter continues to count until the fifth rising edge is detected on the RX pin. The RCIDL bit will remain false ('0') until the fifth rising edge at which time the RCIDL bit will be set. If the RCxREG is read after the overflow occurs but before the fifth rising edge then the fifth rising edge will set the RXxIF again.

Terminating the auto-baud process early to clear an overflow condition will prevent proper detection of the sync character fifth rising edge. If any falling edges of the sync character have not yet occurred when the ABDEN bit is cleared then those will be falsely detected as Start bits. The following steps are recommended to clear the overflow condition:

- 1. Read RCxREG to clear RXxIF.
- 2. If RCIDL is '0' then wait for RDCIF and repeat step 1.
- 3. Clear the ABDOVF bit.

34.3.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDxCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RXxIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 34-7), and asynchronously if the device is in Sleep mode (Figure 34-8). The interrupt condition is cleared by reading the RCxREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in IDLE mode waiting to receive the next character.

34.3.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RXxIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCxREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

					SYNC	C = 0, BRG	i = 0, BRG	616 = 1					
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Fosc	: = 3.686	4 MHz	Fos	Fosc = 1.000 MHz		
RATE	-		SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_	
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	_	_	_	
115.2k	—		_	_	_	_	115.2k	0.00	1	_	—	_	

TABLE 34-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc	: = 32.00	0 MHz	Fosc	= 20.00	0 MHz	Fosc	: = 18.43	2 MHz	Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215	
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303	
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151	
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287	
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264	
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143	
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47	
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23	

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fos	c = 8.000) MHz	Fos	c = 4.000) MHz	Foso	: = 3.686	4 MHz	Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	_	_	

R/W-0	R/W-0	HS/C-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LCDEN	SLPEN	WERR	CS	LMUX3	LMUX2	LMUX1	LMUX0
bit 7							bit 0
Legend:		C = Clearable	e bit	HS = Bit is se	t by hardware		
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	LCDEN: LCD	Enable bit					
		lule is enabled lule is disabled					
bit 6	SLPEN: LCD	Display Sleep-	Enabled bit				
		vill stop driving					
		vill continue driv					
bit 5		Write Failed Er					
			A register occ	urred (must be	reset in softwa	are)	
	0 = No LCD						
bit 4		urce Select bit					
	1 = SOSC Se 0 = LFINTOS						
bit 3-0			tion hita Cna	oifice the numb	or of common	.(2)	
DIT 3-0		Common Selec	ction bits. Spe	cifies the numbe	er of commons	5(-)	
	LMUX<3	:0>		Multiplex			Bias
	0000			All COMs off			_
	0001			Static (COM0)			Static
	0010		1/2	MUX (COM<1:	0>)		1/2
	0011		1/3	MUX (COM<2:	0>)		1/3
	0100		1/4	MUX (COM<3:	0>)		1/3
	0101		1/5	MUX (COM<4:	0>)		1/3
	0110		1/6	MUX (COM<5:	0>)		1/3
	0111		1/7	MUX (COM<6:	0>)		1/3
	1000		1/8	MUX (COM<7:	0>)		1/3

REGISTER 35-1: LCDCON: LCD CONTROL REGISTER

Note 1: Bit can only be set by hardware and only cleared in software by writing to zero.

2: Cannot be changed when LCDEN = 1.

37.2 General Format for Instructions

	TABLE 37-3:	INSTRUCTION SET
--	-------------	-----------------

Mnemonic,		Description	Cycles	14-Bit Opcode				Status	Notes
Oper	ands	Description	Cycles	MSb			LSb	Affected	Note
		BYTE-ORIENTED FILE	REGISTER OPE	RATIC	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f. d	Logical Left Shift	1	11	0101	dfff	ffff	c.z	2
LSRF	f. d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00		lfff		Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	-
COMF	f. d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f. d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1					Z	
	,		1	00	1010		ffff	Z	2 2
IORWF	f, d	Inclusive OR W with f		00	0100		ffff		
MOVF	f, d	Move f	1	00	1000		ffff	Z	2
MOVWF	f	Move W to f	1	00	0000		ffff	_	2
RLF	f, d	Rotate Left f through Carry	1	00	1101		ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100		ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED	SKIP OPERATIO	ONS					
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE	REGISTER OPER	RATIO	NS	•	•		
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED	SKIP OPERATIO	NS		•			
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01			ffff		1, 2
LITERAL (OPERATI	-		1					1
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	1
IORLW	k	Inclusive OR literal with W	1	11	1000		kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	000	0k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001		kkkk		1
MOVLW	k	Move literal to W	1	11	0000	kkkk			
SUBLW	k	Subtract W from literal	1	11	1100		kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11		kkkk		Z, DO, Z	
Note 1:		ogram Counter (PC) is modified, or a condit							<u> </u>

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch	BTFSS
Syntax:	[label] BRA label	Syntax:
	[<i>label</i>]BRA \$+k	Operands
Operands:	-256 ≤ label - PC + 1 ≤ 255	
	$-256 \le k \le 255$	Operation
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Aff
Status Affected:	None	Descriptic
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.	

Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

X:	[label] BTFSS f,b
ands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
ation:	skip if (f) = 1
Affected:	None
iption:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

Λ

TABLE 39-3: POWER-DOWN CURRENT (IPD)^(1,2)

PIC16(L)F19155/56/75/76/85/86			Standard Operating Conditions (unless otherwise stated)						
PIC16F19155/56/75/76/85/86			Standard Operating Conditions (unless otherwise stated) VREGPM = 1						
Param. No.	Symbol	Device Characteristics	Min.	Typ.†	Max. +85°C	Max. +125°C	Units	VDD	Conditions
D200	IPD	IPD Base	_	0.05	_	_	μA	3.00	
D200	IPD	IPD Base	_	0.4	_	\sim	μA	3.0V	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$
D200A			_	18	_ <	F	μA	3.0V	VREGPM = 0
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.4	-	$\langle - \rangle$	μA	3.0V	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	—	0.6		7	μΑ	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	_0.6_		<u> </u>	μA	3.0V	
D202	IPD_SOSC	Secondary Oscillator (SOSC)	— `	_ 0.8	-	\rightarrow	μΑ	3.0V	
D203	IPD_FVR	FVR	A	28		\rightarrow	μΑ	3.0V	
D203	IPD_FVR	FVR	X	33	$\langle - \rangle$	_	μΑ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)		10	\geq	—	μΑ	3.0V	
D204	IPD_BOR	Brown-out Reset (BOR)	X	74	> -	—	μΑ	3.0V	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	$\langle \succ \rangle$	0.5	1 —	—	μΑ	3.0V	
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	$\langle + \rangle$	0.7	-	—	μΑ	3.0V	
D206	IPD_ADCA	ADC - Active	$\langle - \rangle$	250	—	—	μΑ	3.0V	ADC is converting (4)
D206	IPD_ADCA	ADC - Active	\geq	280	—	—	μΑ	3.0V	ADC is converting (4)
D207	IPD_ADCA_CHGPUMP	ADC - Active with Charge Rump	$\geq -$	315	—	—	μΑ	3.0V	
D207	IPD_ADCA_CHGPUMP	ADC - Active with Charge Pump		345	—	—	μΑ	3.0V	
D208	IPD_CMP	Comparator C1	_	30	—	—	μΑ	3.0V	
D208	IPD_CMP	Comparator C1	_	33	_	—	μΑ	3.0V	
D209	IPD_CMP_LP	LP Comparator C2(6)		0.25	_	_	μΑ	3.0V	
D209	IPD_CMP_LP	LP Comparator C2 ⁽⁶⁾	_	0.6	_	_	μΑ	3.0V	
D210	IPD_LCD_PUMP_3V	3V Pump Output		2.5	_	—	μΑ	2.5V	
D210	IPD_LCD_PUMP_5	SV/Pump Output	_	3	_	_	μA	2.5V	

t

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when 1:

calculating total current consumption. The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in 2: Sleep mode with all I/O pins in high-impedance state and tied to Vss.

All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

ADC clock source is FRC.

= KF device

Note

5į/

The IPD spec for the LP comparator does not include current consumed by the supporting clock. 6:

Standar	d Operati	ng Conditions (unless otherwise stated)				\sim
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
High Vo	ltage Entr	y Programming Mode Specifications				/	\frown
MEM01	V _{IHH}	Voltage on MCLR/VPP pin to enter pro- gramming mode	8	—	9		(Note 2 Note 3)
MEM02	I _{PPGM}	Current on MCLR/VPP pin during pro- gramming mode	—	1	—	mA	(Note 2)
Program	nming Mo	de Specifications					\sim
MEM10	V_{BE}	VDD for Bulk Erase	—	2.7	$7 \neq 7$	∖-y `	
MEM11	I _{DDPGM}	Supply Current during Programming operation	_	-	10	/mA	
Data EE	PROM Me	mory Specifications				$\langle \rangle$	
MEM20	ED	DataEE Byte Endurance	100k	\sim	$\langle \rangle$	₩.W	$-40^\circ C \leq T A \leq +85^\circ C$
MEM21	TD-RET	Characteristic Retention		40		Year	Provided no other specifications are violated
MEM22	ND_REF	Total Erase/Write Cycles before Refresh			700k	E/W	
MEM23	VD_RW	Vdd for Read or Erase/Write operation	VORMIN	\sim	VDDMAX	V	
MEM24	TD_BEW	Byte Erase and Write Cycle Time		4.0	5.0	ms	
Program	n Flash M	emory Specifications	\mathcal{I}	\checkmark			
MEM30	E _P	Flash Memory Cell Endurance	hak /	—	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
MEM32	T _{P_RET}	Characteristic Retention	\geq	40	_	Year	Provided no other specifications are violated
MEM33	$V_{P_{RD}}$	VDD for Read operation	VDDMIN	—	VDDMAX	V	
MEM34	$V_{P_{REW}}$	VDD for Row Erase or Write operation	VDDMIN	—	VDDMAX	V	
MEM35	T _{P_REW}	Self-Timed Row Erase of Self-Timed	—	2.0	2.5	ms	

Data in "Typ" column is at 3.0/, 28°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: Flash/Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

Required only if CONFIG4, bit LVP is disabled. 2:

The MPLAB® TCD2 does not support variable VPP output. Circuitry to limit the ICD2 VPP voltage must be placed 3: between the CD2 and target system when programming or debugging with the ICD2.

41.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- · Flexible macro language
- MPLAB X IDE compatibility

41.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

41.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

41.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

41.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

41.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradeable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

41.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

41.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

41.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.