

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f19186-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 18	•		•	•	•	•		•	•		
	CPU CORE REGISTERS; see Table 4-3 for specifics										
90Ch	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	'R<1:0>	ADF	/R<1:0>	0x00 xxxx	0q00 uuuu
90Dh	—				Unimplen	nented					
90Eh	DAC1CON0	EN	—	OE1	OE2	DAC1PS	SS<1:0>	—	—	0-00 00	0-00 00
90Fh	DAC1CON1	—	—	—			DAC1R<4:0>			x xxxx	u uuuu
90Fh		—	—	_	DAC1R4	DAC1R3	DAC1R2	DAC1R1	DAC1R0	x xxxx	u uuuu
910h	—				Unimplen	nented					
911h	—				Unimplen	nented					
912h	—				Unimplen	nented					
913h	—				Unimplen	nented					
914h	_				Unimplen	nented					
915h					Unimplen	nented					
916h					Unimplen	nented					
917h					Unimplen	nented					
918h					Unimplen	nented					
919h					Unimplen	nented					
91Ah					Unimplen	nented					
91Bh	_		Unimplemented								
91Ch	—				Unimplen	nented					
91Dh	—		Unimplemented								
91Eh	—				Unimplen	nented		-			
91Fh	ZCDCON	ZCDSEN	_	ZCDOUT	ZCDPOL	—	—	ZCDINTP	ZCDINTN	0-x000	0-x000

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Banks 30-5	Banks 30-57										
	CPU CORE REGISTERS; see Table 4-3 for specifics										
F0Ch — 1C9Fh	OCh IC9Fh										
Legend:	Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.										

Note 1: Unimplemented data memory locations, read as '0'.

REGISTER 5-4: CONFIGURATION WORD 4: MEMORY							
		R/W-1	U-1	R/W-1	R/W-1	R/W-1	R/W-1
		LVP	—	WRTSAF ⁽¹⁾	WRTD ⁽¹⁾	WRTC ⁽¹⁾	WRTB ⁽¹⁾
		bit 13	12	11	10	9	bit 8
R/W-1	<u>U-1</u>	U-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
WRTAPP ⁽¹⁾)		SAFEN ⁽¹⁾	BBEN ⁽¹⁾	BBSIZE2	BBSIZE1	BBSIZE0
bit 7	6	5	4	3	2	1	bit 0
Lananda							
Legena:							1 (4)
R = Readab	DIE DIT P = Pr	ogrammable bi	x = Bit is	s unknown		nented bit, read	
'0' = Bit is cl	eared $(1) = B$	it is set	W = Writ	able bit	n = Value wh	en blank or afte	er Bulk Erase
bit 13	 bit 13 LVP: Low Voltage Programming Enable bit 1 = Low voltage programming enabled. MCLR/VPP pin function is MCLR. MCLRE Configuration bit is ignored. 0 = HV on MCLR/VPP must be used for programming. The LVP bit cannot be written (to zero) while operating from the LVP programming interface. The purpose of this rule is to prevent the user from dropping out of LVP mode while programming from LVP mode, or accidentally eliminating LVP mode from the configuration state. 						
bit 12	Unimplemen	ted: Read as '1	,				
bit 11	WRTSAF: Sto	orage Area Flas	sh Write Protec	ction bit			
bit 10	 1 = SAF NOT write-protected 0 = SAF write-protected Unimplemented, if SAF is not supported in the device family and only applicable if SAFEN = 0. WRTD: Data EEPROM Write Protection bit 1 = Data EEPROM NOT write-protected 0 = Data EEPROM write-protected 						
bit 9	WRTC: Configur 1 = Configur 0 = Configur	guration Register	er Write Protec NOT write-prot write-protected	ction bit tected			
bit 8	WRTB: Boot 1 = Boot Blo 0 = Boot Blo Only applicab	WRTB: Boot Block Write Protection bit 1 = Boot Block NOT write-protected 0 = Boot Block write-protected Only applicable if BBEN = 0.					
bit 7	WRTAPP: Ap 1 = Applicat 0 = Applicat	WRTAPP: Application Block Write Protection bit 1 = Application Block NOT write-protected 0 = Application Block write-protected					
bit 6-5	Unimplemen	ted: Read as '1	, 				
bit 4	SAFEN: SAF Enable bit 1 = SAF disabled 0 = SAF enabled						
bit 3	BBEN: Boot Block Enable bit 1 = Boot Block disabled 0 = Boot Block enabled						
bit 2-0	BBSIZE<2:0> BBSIZE is use BBSIZ bits ca	: Boot Block Size ed only when B n only be writte	e Selection bits BEN = 0 n while BBEN	= 1; after BBE	$\overline{N} = 0$, BBSIZ is	s write-protecte	d.
Note 1: B	Bits are implemente	ed as sticky bits. (Once protection	is enabled, it can	only be reset thi	rough a Bulk Era	se.

BBEN	BBSIZE[2:0]	Actu User Pro	al Boot Block	(Size ze (words)	Last Boot Block Memory Access
		8k	16k	32k	
1	xxx	0	0	0	_
0	111	512	512	512	01FFh
0	110	1024	1024	1024	03FFh
0	101	2048	2048	2048	07FFh
0	100	4096	4096	4096	OFFFh
0	011		8192	8192	1FFFh
0	010				3FFFh
0	001	No	te 1		3FFFh
0	000				3FFFh

TABLE 5-1: BOOT BLOCK SIZE BITS

Note 1: The maximum boot block size is half the user program memory size. All selections higher than the maximum are set to half size. For example, all BBSIZE = 000 - 100 produce a boot block size of 4 kW on a 8 kW device.

REGISTER 5-5: CONFIGURATION WORD 5: CODE PROTECTION

U-1	U-1	U-1	U-1	U-1	U-1
_	—				
bit 13					bit 8

U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/P-1
—	—	—	—	-	—	—	CP
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	x = Bit is unknown	U = Unimplemented bit, read as '1'
'0' = Bit is cleared	'1' = Bit is set	W = Writable bit	n = Value when blank or after Bulk Erase

bit 13-1 Unimplemented: Read as '1'

bit 0

CP: Program Flash Memory Code Protection bit

1 = Program Flash Memory code protection disabled

0 = Program Flash Memory code protection enabled

REGISTER 9 -	-4: OSCS	TAT: OSCILI	ATOR STAT	US REGISTE	ER 1		
R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR
bit 7							bit 0
Logond							
R = Readable bi	it	W = Writable b	it	U = Unimplem	ented bit read as	s 'O'	
u = Bit is unchar	naed	x = Rit is unknown	משני	-n/n = Value at	POR and BORA	/alue at all other	Resets
'1' = Bit is set	iged	'0' = Bit is clear	red				Resets
		0 2.1.0 0.000					
bit 7	EXTOR: EXTOSC (external) Oscillator Ready bit 1 = The oscillator is ready to be used 0 = The oscillator is not enabled, or is not yet ready to be used						
bit 6	 HFOR: HFINTOSC Oscillator Ready bit 1 = The oscillator is ready to be used 0 = The oscillator is not enabled, or is not yet ready to be used 						
bit 5	MFOR: MFINT 1 = The oscilla 0 = The oscilla	OSC Oscillator F ator is ready to b ator is not enable	Ready bit be used ed, or is not yet r	ready to be used			
bit 4	LFOR: LFINTC 1 = The oscil 0 = The oscil	OSC Oscillator R lator is ready to lator is not enab	eady bit be used led, or is not yet	ready to be used	J.		
bit 3	 SOR: Secondary (Timer1) Oscillator Ready bit 1 = The oscillator is ready to be used 0 = The oscillator is not enabled, or is not yet ready to be used 						
bit 2	 ADOSC Oscillator Ready bit 1 = The oscillator is ready to be used 0 = The oscillator is not enabled, or is not yet ready to be used 						
bit 1	Unimplemente	ed: Read as '0'					
bit 0	PLLR: PLL is F 1 = The PLL 0 = The PLL	Ready bit is ready to be us is not enabled, t	sed he required inpu	t source is not re	eady, or the PLL i	s not locked.	

U-0	U-0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0
		NVMIE	—	_		<u> </u>	CWG1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7-6	Unimplemen	ted: Read as '	o'.				
bit 5	NVMIE: NVM	Interrupt Enab	le bit				
	1 = NVM tas	sk complete inte	errupt enabled	t			
	0 = NVM int	errupt not enab	bied				
bit 4-1	Unimplemen	ted: Read as '	Ο'.				
bit 0	CWG1IE: Cor	mplementary W	/aveform Gen	erator (CWG)	Interrupt Enable	bit	
	1 = CWG1 interrupt is enabled						
	0 = CWG1 ir	nterrupt disable	d				
Note: Bit	Note: Bit PEIE of the INTCON register must be						
set	set to enable any peripheral interrupt						

REGISTER 10-9: PIE7: PERIPHERAL INTERRUPT ENABLE REGISTER 7

controlled by registers PIE1-PIE8.

14.8 PORTD Registers

Note:	PORTD functionality is not available on
	the PIC16(L)F19155/56 family of devices.

14.8.1 DATA REGISTER

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD (Register 14-2). Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., disable the output driver). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 14.2.8 shows how to initialize PORTD.

Reading the PORTD register (Register 14-1) reads the status of the pins, whereas writing to it will write to the PORT latch.

The PORT data latch LATD (Register 14-3) holds the output port data, and contains the latest value of a LATD or PORTD write.

EXAMPLE 14-3: INITIALIZING PORTD

<pre>; This code example illustrates ; initializing the PORTD register. The ; other ports are initialized in the same ; manner.</pre>					
BANKSEL	PORTD	;			
CLRF	PORTD	;Init PORTD			
BANKSEL	LATD	;Data Latch			
CLRF	LATD	;			
BANKSEL	ANSELD	;			
CLRF	ANSELD	;digital I/O			
BANKSEL	TRISD	;			
MOVLW	B'00111000'	;Set RD<5:3> as inputs			
MOVWF	TRISD	;and set RD<2:0> as			
		;outputs			

14.8.2 DIRECTION CONTROL

The TRISD register (Register 14-2) controls the PORTD pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISD register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

14.8.3 OPEN-DRAIN CONTROL

The ODCOND register (Register 14-6) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCOND bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCOND bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

Note:	It is not necessary to set open-drain control when using the pin for I ² C; the I ² C
	module controls the pin and makes the pin open-drain.

14.8.4 SLEW RATE CONTROL

The SLRCOND register (Register 14-7) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCOND bit is set, the corresponding port pin drive is slew rate limited. When an SLRCOND bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

14.8.5 INPUT THRESHOLD CONTROL

The INLVLD register (Register 14-8) controls the input voltage threshold for each of the available PORTD input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTD register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 39-4 for more information on threshold levels.

Note:	Changing the input threshold selection should be performed while all peripheral
	modules are disabled. Changing the
	threshold level during the time a module is
	active may inadvertently generate a
	transition associated with an input pin,
	regardless of the actual voltage level on
	that pin.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	
LATE7	LATE6	LATE5	LATE4	LATE3	—	LATE1	LATE0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-3 LATE<7:3>: RE<7:3> Output Latch Value bits ⁽¹⁾								
bit 2	bit 2 Unimplemented: Read as '0'							
bit 1-0	it 1-0 LATE<1:0>: RE<1:0> Output Latch Value bits ⁽¹⁾							

REGISTER 14-35: LATE: PORTE DATA LATCH REGISTER

Note 1: Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.

REGISTER 14-36: ANSELE: PORTE ANALOG SELECT REGISTER

allow external control of the voltage on the pin.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1
ANSE7	ANSE6	ANSE5	ANSE4	ANSE3	—	ANSE1	ANSE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	 ANSE<7:3>: Analog Select between Analog or Digital Function on pins RE<7:3>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 2	Unimplemented: Read as '0'
bit 1-0	 ANSE<1:0>: Analog Select between Analog or Digital Function on pins RE<1:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1:	When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to

© 2017 Microchip Technology Inc.

14.13 Register Definitions: PORTF

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	
bit 7						•	bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cle	ared					

REGISTER 14-41: PORTF: PORTF REGISTER

bit 7-0 **RF<7:0>**: PORTF I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTF are actually written to corresponding LATF register. Reads from PORTF register is return of actual I/O pin values.

REGISTER 14-42: TRISF: PORTF TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISF7 | TRISF6 | TRISF5 | TRISF4 | TRISF3 | TRISF2 | TRISF1 | TRISF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISF<7:0>: PORTF Tri-State Control bit

1 = PORTF pin configured as an input (tri-stated)

0 = PORTF pin configured as an output

TABLE 15-1: PPS INPUT SIGNAL ROUTING OPTIONS

INPLIT Dofault			Remappable to Pins of PORTx												
SIGNAL	SIGNAL Input Register	Location at	PIC	PIC16(L)F19155/56			PIC16(L)F19175/76				PIC16(L)F19185/86				
		TOK	PORTA	PORTB	PORTC	PORTA	PORTB	PORTC	PORTD	PORTA	PORTB	PORTC	PORTD	PORTE	PORTF
INT	INTPPS	RB0	•	•		•	•			•	•				
T0CKI	TOCKIPPS	RA4	•	•		•	•			•					•
T1CKI	T1CKIPSS	RC0	•		•	•		•				•		•	
T1G	T1GPPS	RB5		•	•		•	•			•	•			
T2IN	T2INPPS	RC3	•		•	•		•		•		•			
T4IN	T4INPPS	RC1		•	•		•	•			•	•			
CCP1	CCP1PPS	RC2		•	•		•	•				•			•
CCP2	CCP2PPS	RC1		•	•		•	•				•			•
SMT1WIN	SMT1WINPPS	RC0		•	•		•	•				•			•
SMT1SIG	SMT1SIGPPS	RC1		•	•		•	•				•			•
CWG1IN	CWG1INPPS	RB0		•	•		•		•		•		•		
CLCIN0	CLCIN0PPS	RA0	•		•	•		•		•		•			
CLCIN1	CLCIN1PPS	RA1	•		•	•		•		•		•			
CLCIN2	CLCIN2PPS	RB6		•	•		•		•		•		•		
CLCIN3	CLCIN3PPS	RB7		•	•		•		•		•		•		
ADCACT	ADACTPPS	RB4		•	•		•		•		•		•		
SCK1/SCL1	SSP1CLKPPS	RC3		•	•		•	•			•	•			
SDI1/SDA1	SSP1DATPPS	RC4		•	•		•	•			•	•			
SS1	SSP1SS1PPS	RA5	•		•	•			•	•			•		
RX1/DT1	RX1PPS	RC7		•	•		•	•				•			•
CK1	TX1PPS	RC6		•	•		•	•				•			•
RX2/DT2	RX2PPS	RB7		•	•		•		•		•		•		
CK2	TX2PPS	RB6		•	•		•		•		•		•		

18.3 Register Definitions: FVR Control

REGISTER 18-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF\	/R<1:0>	ADFV	R<1:0>
bit 7							bit 0

Legend:								
R = Read	lable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
u = Bit is	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is	sset	'0' = Bit is cleared	q = Value depends on condition					
bit 7 FVREN: Fixed Voltage Reference Enable bit ⁽⁴⁾ 1 = Fixed Voltage Reference is enabled ⁽⁴⁾ 0 = Fixed Voltage Reference is disabled								
bit 6	FVRRDY:	Fixed Voltage Reference Re	eady Flag bit ⁽¹⁾					
	1 = Fixed	Voltage Reference output is	ready for use					
	0 = Fixed	Voltage Reference output is	not ready or not enabled					
bit 5	TSEN: Ter	nperature Indicator Enable b	_{bit} (3)					
	1 = Tempe	erature Indicator is enabled						
	0 = Tempe	erature Indicator is disabled						
bit 4	TSRNG: T	emperature Indicator Range	Selection bit ⁽³⁾					
	1 = Tempe	erature in High Range						
1.10.0		A Character in Low Range						
DIT 3-2	LUAFVR<	1:0>: Comparator FVR Buff paratar EVP Buffor Cain is 4	er Gain Selection bits $(4.006)/(2)$					
	11 = Comp 10 = Comp	parator FVR Buffer Gain is 2	$(4.090 V)^{(1)}$					
	01 = Com	parator FVR Buffer Gain is 1	x, (1.024V)					
	00 = Com	parator FVR Buffer is off						
bit 1-0	ADFVR<1	:0>: ADC FVR Buffer Gain S	Selection bit					
	11 = ADC	FVR Buffer Gain is 4x, (4.09	96V) ⁽²⁾					
	10 = ADC	FVR Buffer Gain is 2x, (2.04	18V) ⁽²⁾					
	01 = ADC	EVR Buffer Gain is 1x, (1.02 EVR Buffer is off	24V)					
Note 1:	FVRRDY is alw	ays '1' for PIC16(L)F19155/	56/75/76/85/86 devices only.					
2:	Fixed Voltage R	eference output cannot exc	eed VDD.					
3:	See Section 20	.0 "Temperature Indicator	Module (TIM)" for additional information.					
4:	Enables the 3x buffer for the LCD module.							

© 2017 Microchip Technology Inc.

REGISTER 19-20: ADRESH: ADC RESULT REGISTER HIGH, FM = 1

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—		ADRES	6<11:8>	
bit 7							bit 0
Legend:							

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is cleared

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ADRES<11:8>: ADC Sample Result bits. Upper four bits of 12-bit conversion result.

REGISTER 19-21: ADRESL: ADC RESULT REGISTER LOW, FM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
ADRES<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADRES<7:0>**: ADC Result Register bits. Lower eight bits of 12-bit conversion result.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—				SSEL<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	ends on condi	tion	
bit 7-5	Unimplemen	ited: Read as '	0'				
bit 4-0	SSEL<4:0>:	SMTx Signal S	election bits				
	11111 = Res	erved					
	•						
	•						
	10001 = Res	erved					
	10000 = RTC	CC_Seconds					
	01111 = CLC	30UT					
	01100 = CLC 01101 = CLC	20UT					
	01100 = CLC	C1OUT					
	01011 = ZCE	DOUT					
	01010 = C2C	DUT					
	01001 = C1C	DUT M4 out					
	01000 = PW	M3_out					
	00110 = CCF	20UT					
	00101 = CCF	P10UT					
	00100 = TMF	R4_postscaler					
	00011 = TMF	R2_postscaler					
	00010 = IMH	R1_overflow					
	00001 = 1MF	TSIG nin					
		. c. c p					

REGISTER 28-6: SMTxSIG: SMTx SIGNAL INPUT SELECT REGISTER

REGISTER 28-7:	SMTxTMRL: SMT TIMER REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			SMTxT	MR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 SMTxTMR<7:0>: Significant bits of the SMT Counter – Low Byte

REGISTER 28-8: SMTxTMRH: SMT TIMER REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			SMTxTN	IR<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	inged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other R						other Resets

bit 7-0 SMTxTMR<15:8>: Significant bits of the SMT Counter – High Byte

'0' = Bit is cleared

REGISTER 28-9: SMTxTMRU: SMT TIMER REGISTER – UPPER BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
SMTxTMR<23:16>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxTMR<23:16>: Significant bits of the SMT Counter – Upper Byte

'1' = Bit is set

DS40001923A-page 442

31.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 31-12.

31.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External input

31.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event.

31.10.2 EXTERNAL INPUT SOURCE

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Comparator C1OUT_sync
- Comparator C2OUT_sync
- Timer2 TMR2_postscaled
- CWG1IN input pin

Shutdown inputs are selected using the CWG1AS1 register (Register 31-6).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

31.11 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- · CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, then the CPU will go idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

REGISTER 32-	3: CLCxS	SEL0: GENE	RIC CLCx D	DATA 0 SELE	CT REGISTE	R	
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_				LCxD	1S<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	LCxD1S<5:0	>: CLCx Data1	Input Selecti	ion bits			
	See Table 32	-2.					
REGISTER 3 2	2-4: CLCxS	SEL1: GENE	RIC CLCx D	OATA 1 SELE	CT REGISTE	R	
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—				LCxD:	2S<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	LCxD2S<5:0	>: CLCx Data 2	2 Input Select	tion bits			
	See Table 32	-2.					
REGISTER 3 2	2-5: CLCxS	SEL2: GENE	RIC CLCx D	OATA 2 SELE	CT REGISTE	R	
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	—			LCxD:	3S<5:0>		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 7

bit 5-0 LCxD3S<5:0>: CLCx Data 3 Input Selection bits See Table 32-2.

 $\ensuremath{\textcircled{}^{\odot}}$ 2017 Microchip Technology Inc.

bit 0

34.1.1.5 TSR Status

The TRMT bit of the TXxSTA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TXxREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

34.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TXxSTA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TXxSTA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TXxREG. All nine bits of data will be transferred to the TSR shift register immediately after the TXxREG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 34.1.2.7** "Address **Detection**" for more information on the Address mode.

34.1.1.7 Asynchronous Transmission Set-up:

- Initialize the SPxBRGH, SPxBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 34.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXxIF interrupt bit to be set.
- If interrupts are desired, set the TXxIE interrupt enable bit of the PIE3 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXxREG register. This will start the transmission.

FIGURE 34-3: ASYNCHRONOUS TRANSMISSION

TABLE 39-19: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	Тт0Н	TOCKI High Pulse Width No Prescaler		0.5 Tcy + 20	—	_	ns		
		\wedge		With Prescaler	10	—	_	ns	
41*	T⊤0L	TOCKI Low Pulse Width / No Prescaler		0.5 Tcy + 20	—	_	ns		
		\land	\smallsetminus	With Prescaler	10	—	_	ns	
42*	Ттор	70CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
45*	Тт1Н	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	—	_	ns	
46*	TT1L	T1CKI Łow Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
$\left(-\right)$	$) \land)$	>	Asynchronous		30	—	_	ns	
47*	ΤτήΡ	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
			Asynchronous		60	—	_	ns	
48	ET1	Secondary Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)			32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.