

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19155-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 4	•							•		•	
				CPU	CORE REGISTERS	S; see Table 4-3 for	specifics				
20Ch	TMR1L	TMR1L7	TMR1L7 TMR1L6 TMR1L5 TMR1L4 TMR1L3 TMR1L2 TMR1L1 TMR1L0						0000 0000	uuuu uuu	
				<u>.</u>	TMF	R1L				0000 0000	uuuu uuu
20Dh	TMR1H	TMR1H7	TMR1H6	TMR1H5	TMR1H4	TMR1H3	TMR1H2	TMR1H1	TMR1H0	0000 0000	uuuu uuu
					TMF	1H				0000 0000	uuuu uuu
20Eh	T1CON	_	_	CKP	S<1:0>	_	SYNC	RD16	ON	0000 0000	uu -u0
20Fh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	_	0000 0x	uuuu ux-
210h	T1GATE	_	_	_		GSS<4:0>				0000	u uuu
211h	T1CLK	_	—	—	—	CS<3:0>				0000	uuu
212h	—		Unimplemented								
213h	—				Unimple	mented					
214h	—				Unimple	mented					
215h	—				Unimple	mented					
216h	—				Unimple	mented					
217h	—				Unimple	mented					
218h	—				Unimple	mented					
219h	_				Unimple	mented					
21Ah	_				Unimple	mented					
21Bh	_				Unimple	mented					
21Ch	_				Unimple	mented					
21Dh	_			-	Unimple	mented		•			
21Eh	CCPTMRS0	P4TS	EL<1:0>	P3T5	SEL1:0>	C2TSE	L<1:0>	C1TS	EL<1:0>	0101 0101	0101 010
21Fh	—				Unimple	mented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

DS40001923A-page 65

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 12											
				CPU	CORE REGISTER	S: see Table 4-3 for	specifics				
	1									-	
60Ch	CWG1CLKCON	—	—	—	—	-	—	—	CS	0000 0000	0000 0000
60Dh	CWG1ISM	—	_	—	_		IS	<3:0>		0000 0000	0000 0000
60Eh	CWG1DBR	—	_			DBR<	5:0>			0000 0000	0000 0000
60Fh	CWG1DBF	—	_			DBF<	5:0>			0000 0000	0000 0000
610h	CWG1CON0	EN	LD	—	—	—		MODE<2:0>		00000	00000
611h	CWG1CON1	_	—	IN	—	POLD	POLC	POLB	POLA	x- 0000	u- 0000
612h	CWG1AS0	SHUTDOWN	REN	LSB	BD<1:0>	LSAC	<1:0>	_	_	0001 01	0001 01
613h	CWG1AS1	_	_	—	AS4E	AS3E	AS2E	AS1E	AS0E	0000 0000	u 0000
614h	CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	0000 0000	0000 0000
615h	_	<u> </u>			Unimple	mented					
616h	_				Unimple	mented					
617h	_				Unimple	mented					
618h	_				Unimple	mented					
619h	_				Unimple	mented					
61Ah	_				Unimple	mented					
61Bh	_				Unimple	mented					
61Ch	_				Unimple	mented					
61Dh	_				Unimple	mented					
61Eh	_				Unimple	mented					
61Fh	_				Unimple	mented					

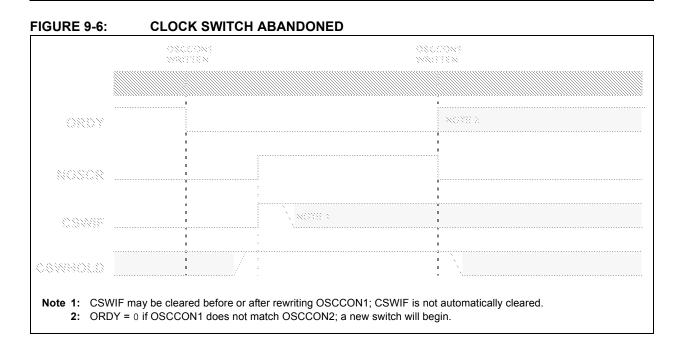
TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(1) E19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

8.4 Register Definitions: Brown-out Reset Control

REGISTER 8-1: BORCON: BROWN-OUT RESET CONTROL REGISTER


R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN ⁽¹⁾	—	—	—	—	—	_	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit ⁽¹⁾
	If BOREN <1:0> in Configuration Words ≠ 01:
	SBOREN is read/write, but has no effect on the BOR.
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active

0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

EXAMPLE 13-1: PFM PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
    PROG_ADDR_HI : PROG_ADDR_LO
    data will be returned in the variables;
*
    PROG_DATA_HI, PROG_DATA_LO
    BANKSELNVMADRL; Select Bank for NVMCON registersMOVLWPROG_ADDR_LO;MOVWFNVMADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWFNVMADRH; Store MSB of address
             NVMCON1,NVMREGS ; Do not select Configuration Space
    BCF
                NVMCON1, RD
    BSF
                                      ; Initiate read
    MOVF
                 NVMDATL,W
                                        ; Get LSB of word
                NVMDATL,W; Get LSB of wordPROG_DATA_LO; Store in user locationNVMDATH,W; Get MSB of wordPROG_DATA_HI; Store in user location
    MOVWF
    MOVF
    MOVWF
```

18.3 Register Definitions: FVR Control

REGISTER 18-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF\	/R<1:0>	ADFVI	R<1:0>
bit 7							bit 0

Legend:	abla bit		$11 - 11$ minutes and a bit $r_{2} = 1 - 1 - 1$				
R = Read		W = Writable bit	U = Unimplemented bit, read as '0'				
	unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Res				
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition				
bit 7	1 = Fixed	ixed Voltage Reference Enal Voltage Reference is enable Voltage Reference is disable	d ⁽⁴⁾				
bit 6	1 = Fixed	Fixed Voltage Reference Re Voltage Reference output is Voltage Reference output is	ready for use				
bit 5	1 = Temp	nperature Indicator Enable b erature Indicator is enabled erature Indicator is disabled	it ⁽³⁾				
bit 4	1 = Temp	emperature Indicator Range erature in High Range erature in Low Range	Selection bit ⁽³⁾				
bit 3-2	11 = Com 10 = Com 01 = Com	C1:0>: Comparator FVR Buffer parator FVR Buffer Gain is 4 parator FVR Buffer Gain is 2 parator FVR Buffer Gain is 1 parator FVR Buffer is off	x, (4.096∨) ⁽²⁾ x, (2.048∨) ⁽²⁾				
bit 1-0	11 = ADC 10 = ADC 01 = ADC	:0>: ADC FVR Buffer Gain S FVR Buffer Gain is 4x, (4.09 FVR Buffer Gain is 2x, (2.04 FVR Buffer Gain is 1x, (1.02 FVR Buffer is off	06∨) ⁽²⁾ 18∨) ⁽²⁾				
Note 1: 2: 3: 4:	Fixed Voltage F See Section 20	Reference output cannot exce	56/75/76/85/86 devices only. eed VDD. Module (TIM)" for additional information.				

© 2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	_	—	332
DAC1CON1	_	-	_			DAC1R<4:	0>		332
CM1PSEL	—	_	—	—	_		PCH<2:0>		342
CM2PSEL	_	_	—				PCH<2:0>		342

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC1 MODULE

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC1 module.

25.2 Clock Source Selection

The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 25-2 displays the clock source selections.

25.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, Timer0 operates as a timer and will increment on multiples of the clock source, as determined by the Timer0 prescaler.

25.2.2 EXTERNAL CLOCK SOURCE

When an external clock source is selected, Timer0 can operate as either a timer or a counter. Timer0 will increment on multiples of the rising edge of the external clock source, as determined by the Timer0 prescaler.

25.3 Programmable Prescaler

A software programmable prescaler is available for exclusive use with Timer0. There are 16 prescaler options for Timer0 ranging in powers of two from 1:1 to 1:32768. The prescaler values are selected using the T0CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable. Clearing the prescaler register can be done by writing to the TMR0L register or the T0CON1 register.

25.4 Programmable Postscaler

A software programmable postscaler (output divider) is available for exclusive use with Timer0. There are 16 postscaler options for Timer0 ranging from 1:1 to 1:16. The postscaler values are selected using the TOOUTPS<3:0> bits of the TOCON0 register.

The postscaler is not directly readable or writable. Clearing the postscaler register can be done by writing to the TMR0L register or the T0CON0 register.

25.5 Operation during Sleep

When operating synchronously, Timer0 will halt. When operating asynchronously, Timer0 will continue to increment and wake the device from Sleep (if Timer0 interrupts are enabled) provided that the input clock source is active.

25.6 Timer0 Interrupts

The Timer0 Interrupt Flag bit (TMR0IF) is set when either of the following conditions occur:

- 8-bit TMR0L matches the TMR0H value
- 16-bit TMR0 rolls over from 'FFFFh'

When the postscaler bits (T0OUTPS<3:0>) are set to 1:1 operation (no division), the T0IF flag bit will be set with every TMR0 match or rollover. In general, the TMR0IF flag bit will be set every T0OUTPS +1 matches or rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the PIE0 register = 1), the CPU will be interrupted and the device may wake from sleep (see Section 25.2 "Clock Source Selection" for more details).

25.7 Timer0 Output

The Timer0 output can be routed to any I/O pin via the RxyPPS output selection register (see Section 15.0 "Peripheral Pin Select (PPS) Module" for additional information). The Timer0 output can also be used by other peripherals, such as the Auto-conversion Trigger of the Analog-to-Digital Converter. Finally, the Timer0 output can be monitored through software via the Timer0 output bit (T0OUT) of the T0CON0 register (Register 25-1).

TMR0_out will be one postscaled clock period when a match occurs between TMR0L and TMR0H in 8-bit mode, or when TMR0 rolls over in 16-bit mode. The Timer0 output is a 50% duty cycle that toggles on each TMR0_out rising clock edge.

26.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is 16-bit timer/counters with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- · 2-bit prescaler
- Clock source for optional comparator synchronization
- Multiple Timer1 gate (count enable) sources
- Interrupt on overflow

- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Auto-conversion Trigger (with CCP)
- · Selectable Gate Source Polarity
- Gate Toggle mode
- · Gate Single-Pulse mode
- · Gate Value Status
- · Gate Event Interrupt

Figure 26-1 is a block diagram of the Timer1 module. This device has one instance of Timer1 type modules.

FIGURE 26-1: TIMER1 BLOCK DIAGRAM

27.5.10 LEVEL-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

The Level-Triggered Hardware Limit One-Shot modes hold the timer in Reset on an external Reset level and start counting when both the ON bit is set and the external signal is not at the Reset level. If one of either the external signal is not in Reset or the ON bit is set then the other signal being set/made active will start the timer. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 10110)
- High Reset level (MODE<4:0> = 10111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control the timer will stay in Reset until both the ON bit is set and the external signal is not at the Reset level.

When Level-Triggered Hardware Limit One-Shot modes are used in conjunction with the CCP PWM operation the PWM drive goes active with either the external signal edge or the setting of the ON bit, whichever of the two starts the timer.

28.7.8 CAPTURE MODE

Capture mode captures the Timer value based on a rising or falling edge on the SMTWINx input and triggers an interrupt. This mimics the capture feature of a CCP module. The timer begins incrementing upon the SMTxGO bit being set, and updates the value of the SMTxCPR register on each rising edge of SMTWINx, and updates the value of the CPW register on each falling edge of the SMTWINx. The timer is not reset by any hardware conditions in this mode and must be reset by software, if desired. See Figure 28-16 and Figure 28-17.

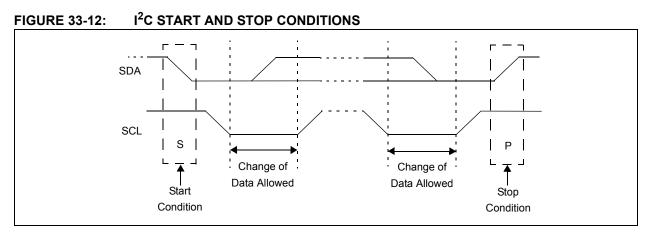
KEGISTER 51-3							
R/W/HS-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0
SHUTDOWN ^(1, 2)	REN	LSBI	D<1:0>	LSAC	<1:0>		_
bit 7							bit (
Legend:							
HC = Bit is cleare	d by hardware			HS = Bit is se	et by hardware	9	
R = Readable bit		W = Writable	e bit	U = Unimplei	mented bit, rea	ad as 'O'	
u = Bit is unchang	ged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	OR/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleared q = Value depends on co		pends on conc	ndition		
L:1 7				hua hit(1, 2)			
bit 7		Shutdown sta	own Event Stat	tus bit ^(1, -)			
			ent has occurre	ed			
bit 6	REN: Auto-R	estart Enable	bit				
	1 = Auto-res	tart enabled					
	0 = Auto-res	tart disabled					
bit 5-4	LSBD<1:0>:	CWG1B and	CWG1D Auto	-Shutdown Sta	te Control bits		
				hen an auto-sh			
	•	•		hen an auto-sh an auto-shutdo		•	
				g polarity, is pla			equired dead
	band in	terval					·
bit 3-2	LSAC<1:0>:	CWG1A and	CWG1C Auto	-Shutdown Sta	te Control bits		
				hen an auto-sh			
				hen an auto-sh an auto-shutdo			
				g polarity, is pla			equired dead
	band in						•
bit 1-0	Unimplemer	nted: Read as	· '0'				
Note 1: This I	bit may be writ juration.	tten while EN	= 0 (CWG10	CON0 register) to place the	outputs into	the shutdow

REGISTER 31-5: CWG1AS0: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 0

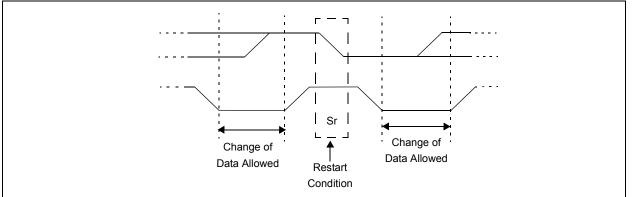
2: The outputs will remain in auto-shutdown state until the next rising edge of the input signal after this bit is cleared.

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_	lotting	1011 /04		S<5:0>	1017,00	1011700
pit 7							bi
Legend:	:.		L.11				
R = Readable bi				•	nented bit, read		
u = Bit is unchar	nged	x = Bit is unkr		-n/n = Value a	t POR and BO	R/Value at all o	other Resets
1' = Bit is set		'0' = Bit is cle	ared				
oit 7-6	Unimpleme	nted: Read as '	0'				
	LCxD1S<5: See Table 32	0>: CLCx Data1 2-2.	Input Selecti	on bits			
EGISTER 32	-4· CLCx	SEL1: GENE		ATA 1 SELEO		R	
LOISIER 32	T. OLOA						
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/เ
				R/W-x/u			R/W-x/u
U-0				R/W-x/u	R/W-x/u		
U-0 — Dit 7				R/W-x/u	R/W-x/u		R/W-x/u bi
U-0 — Dit 7 Legend:	U-0 —		R/W-x/u	R/W-x/u LCxD2	R/W-x/u	R/W-x/u	
U-0 —	U-0 —	R/W-x/u	R/W-x/u	R/W-x/u LCxD2 U = Unimplem	R/W-x/u 2S<5:0> nented bit, read	R/W-x/u	bi
U-0 —	U-0 —	R/W-x/u W = Writable	R/W-x/u bit	R/W-x/u LCxD2 U = Unimplem	R/W-x/u 2S<5:0> nented bit, read	R/W-x/u	bi
U-0 —	U-0 —	R/W-x/u W = Writable x = Bit is unkr	R/W-x/u bit	R/W-x/u LCxD2 U = Unimplem	R/W-x/u 2S<5:0> nented bit, read	R/W-x/u	b
U-0 —	U-0 — it nged	R/W-x/u W = Writable x = Bit is unkr	R/W-x/u bit nown ared	R/W-x/u LCxD2 U = Unimplem	R/W-x/u 2S<5:0> nented bit, read	R/W-x/u	b
U-0 — bit 7 Legend: R = Readable bin u = Bit is unchar 1' = Bit is set bit 7-6 bit 5-0	U-0 — it nged Unimpleme	R/W-x/u W = Writable x = Bit is unkr '0' = Bit is clean nted: Read as ' 0>: CLCx Data 2	R/W-x/u bit nown ared	R/W-x/u LCxD2 U = Unimplen -n/n = Value a	R/W-x/u 2S<5:0> nented bit, read	R/W-x/u	b
U-0 —	U-0 — it nged Unimpleme LCxD2S<5:(See Table 32	R/W-x/u W = Writable x = Bit is unkr '0' = Bit is clean nted: Read as ' 0>: CLCx Data 2	R/W-x/u bit nown ared 0' 2 Input Select	R/W-x/u LCxD2 U = Unimplen -n/n = Value a	R/W-x/u 2S<5:0> hented bit, read t POR and BO	R/W-x/u I as '0' R/Value at all c	bi
U-0 — bit 7 Legend: R = Readable bi u = Bit is unchar i1' = Bit is set bit 7-6 bit 5-0	U-0 — it nged Unimpleme LCxD2S<5:(See Table 32	R/W-x/u W = Writable x = Bit is unkr '0' = Bit is cle nted: Read as ' 0>: CLCx Data 2 2-2.	R/W-x/u bit nown ared 0' 2 Input Select	R/W-x/u LCxD2 U = Unimplen -n/n = Value a	R/W-x/u 2S<5:0> hented bit, read t POR and BO	R/W-x/u I as '0' R/Value at all c	b

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-6 Unimplemented: Read as '0'

bit 7


bit 5-0 LCxD3S<5:0>: CLCx Data 3 Input Selection bits See Table 32-2.

 $\ensuremath{\textcircled{}^{\odot}}$ 2017 Microchip Technology Inc.

bit 0

33.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an $\overline{\text{ACK}}$ is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, the clock is stretched, allowing the slave time to change the ACK value before it is sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

34.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state which represents a '1' data bit, and a VoL Space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 34-3 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

34.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 34-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXxREG register.

34.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

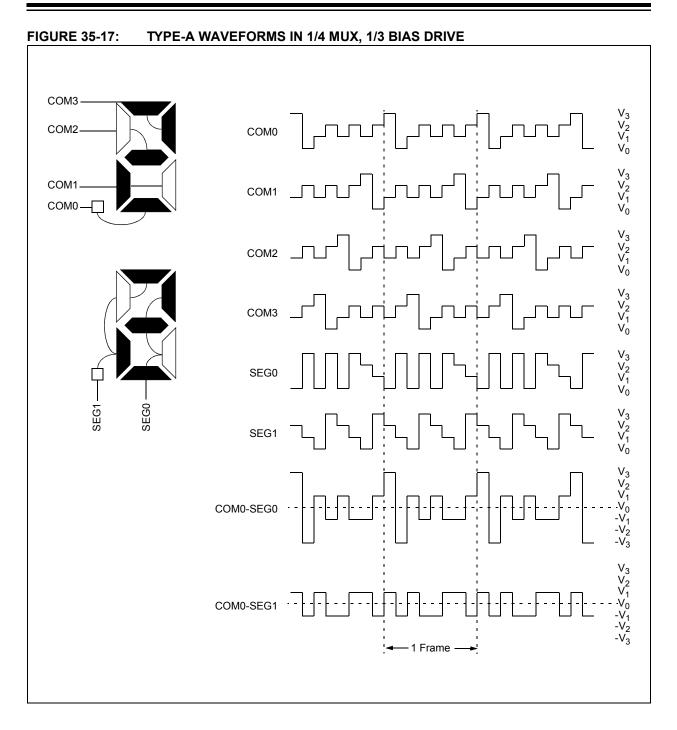
Setting the TXEN bit of the TXxSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXxIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

34.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXxREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXxREG until the Stop bit of the previous character has been transmitted. The pending character in the TXxREG is then transferred to the TSR in one TcY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXxREG.

34.1.1.3 Transmit Data Polarity


The polarity of the transmit data can be controlled with the SCKP bit of the BAUDxCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section 34.4.1.2 "Clock Polarity"**.

34.1.1.4 Transmit Interrupt Flag

The TXxIF interrupt flag bit of the PIR3 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXxREG. In other words, the TXxIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXxREG. The TXxIF flag bit is not cleared immediately upon writing TXxREG. TXxIF becomes valid in the second instruction cycle following the write execution. Polling TXxIF immediately following the TXxREG write will return invalid results. The TXxIF bit is read-only, it cannot be set or cleared by software.

The TXxIF interrupt can be enabled by setting the TXxIE interrupt enable bit of the PIE3 register. However, the TXxIF flag bit will be set whenever the TXxREG is empty, regardless of the state of TXxIE enable bit.

To use interrupts when transmitting data, set the TXxIE bit only when there is more data to send. Clear the TXxIE interrupt enable bit upon writing the last character of the transmission to the TXxREG.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page			
40Ch	_		Unimplemented										
40Dh	HIDRVB	_	_	—	_	_	—	HIDB1	_	232			
40Eh	_		Unimplemented										
40Fh	_		Unimplemented										
410h	—		Unimplemented										
411h	—		Unimplemented										
412h	_		Unimplemented										
413h	_		Unimplemented										
414h	_		Unimplemented										
415h	_				Unimpl	emented							
416h	_				Unimpl	emented							
417h	_				Unimpl	emented							
418h	_				Unimpl	emented							
419h	_				Unimpl	emented							
41Ah	_				Unimpl	emented							
41Bh	_		Unimplemented										
41Ch			Unimplemented										
41Dh					Unimpl	emented							
41Eh	_		Unimplemented										
41Fh	—		Unimplemented										
48Ch	SMT1TMRL		SMT1TMR										
48Dh	SMT1TMRH		SMT1TMR										
48Eh	SMT1TMRU		SMT1TMR										
48Fh	SMT1CPRL				С	PR				417			
490h	SMT1CPRH				С	PR				417			
491h	SMT1CPRU				С	PR				417			
492h	SMT1CPWL				С	PW				418			
493h	SMT1CPWH				С	PW				418			
494h	SMT1CPWU					PW				418			
495h	SMT1PRL					T1PR				419			
496h	SMT1PRH									419			
497h	SMT1PRU												
497h 498h	SMT1CON0	EN		STP	WPOL	SPOL	CPOL	CMT4	PS<1.0>	419 410			
49011 499h	SMT1CON0	SMT1GO	REPEAT		STP WPOL SPOL CPOL SMT1PS<1:0> MODE<3:0> MODE<3:0>								
				DOT	_		TS		48	411			
49Ah	SMT1STAT	CPRUP	CPWUP	RST		_	15	WS	AS	412			
49Bh	SMT1CLK							CSEL<2:0>		413			
49Ch	SMT1SIG	_		_			SSEL<4:0>			415			
49Dh Legend:	SMT1WIN				= unimplemented		WSEL<4:0>			414			

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
 Note 1: Unimplemented data memory locations, read as '0'.

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
49Eh			Unimplemented								
49Fh	_		Unimplemented								
50Ch	_		Unimplemented								
50Dh	_		Unimplemented								
50Eh	_				Unimple	emented					
50Fh	_	Unimplemented									
510h	_		Unimplemented								
511h	_		Unimplemented								
512h	_		Unimplemented								
513h	_		Unimplemented								
514h	_		Unimplemented								
515h	_				Unimple	emented					
516h	_				Unimple	emented					
517h	_	Unimplemented									
518h	_		Unimplemented								
519h	_		Unimplemented								
51Ah	_	Unimplemented									

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
 Note 1: Unimplemented data memory locations, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
E0Ch												
— E1Fh	_		Unimplemented									
E8Ch	VB0GPR		VB0GPR									
E8Dh	VB1GPR		VB1GPR									
E8Eh	VB2GPR		VB2GPR									
E8Fh	VB3GPR		VB3GPR									
E90h	_		Unimplemented									
E91h	_		Unimplemented									
E92h	_		Unimplemented									
E93h	—		Unimplemented									
E94h	_				Unimpl	emented						
E95h	_				Unimpl	emented						
E96h	_				Unimpl	emented						
E97h	—				Unimpl	emented						
E98h	—				Unimpl	emented						
E99h	—				Unimpl	emented						
E9Ah	—		Unimplemented									
E9Bh	—		Unimplemented									
E9Ch	—		Unimplemented									
E9Dh	_		Unimplemented									
E9Eh	_	Unimplemented										
E9Fh	_		Unimplemented									
F0Ch		Unimplemented										
 1C9Fh	_	Unimplemented										
1D0Ch	LCDCON	LCDEN	SLPEN	WERR	CS		LMU	X<3:0>		622		
1D0Dh	LCDPS	WFT	_	LCDA	WA		LP	<3:0>		623		
1D0Eh	LCDSE0	SE07	SE06	SE05	SE04	SE03	SE02	SE01	SE00	624		
1D0Fh	LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE09	SE08	624		
1D10h	LCDSE2	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	624		
1D11h	LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	624		
1D12h	LCDSE4	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32	624		
1D13h	LCDSE5	SE47	SE46	SE45	SE44	SE43	SE42	SE41	SE40	624		
1D14h	LCDVCON1	LPEN EN5V — — — BIAS<2:0>								625		
1D15h	LCDVCON2		_			LCDVSRC3	LCDVSRC2	LCDVSRC1	LCDVSRC0	626		
1D16h	LCDREF	_	—	_	—	_		LCDCST<2:0>		628		
1D17h	LCDRL	LRLAP<1:0> LRLBP<1:0> LCDIRI LRLAT<2:0>							627			
1D18h	LCDDATA0	S07C0	S06C0	S05C0	S04C0	S03C0	S02C0	S01C0	S00C0	624		
1D19h	LCDDATA1	S15C0	S14C0	S13C0	S12C0	S11C0	S10C0	S09C0	S08C0	624		
1D1Ah	LCDDATA2	S23C0	S22C0	S21C0	S20C0	S19C0	S18C0	S17C0	S16C0	624		
1D1Bh	LCDDATA3	S31C0	S30C0	S29C0	S28C0	S27C0	S26C0	S25C0	S24C0	624		
1D1Ch	LCDDATA4	S39C0	S38C0	S37C0	S36C0	S35C0	S34C0	S33C0	S32C0	624		
1D1Dh	LCDDATA5	_	_	S45C0	S44C0	S43C0	S42C0	S41C0	S40C0	624		
1D1Eh	LCDDATA6	S07C1	S06C1	S05C1	S04C1	S03C1	S02C1	S01C1	S00C1	624		
1D1Fh	LCDDATA7	S15C1	S14C1	S13C1	S12C1	S11C1	S10C1	S09C1	S08C1	624		
Legend:					= unimplemented					read as '0'		

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

 Legend:
 x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

 Note
 1:
 Unimplemented data memory locations, read as '0'.

TABLE 39-4: I/O PORTS

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
	VIL	Input Low Voltage									
		I/O PORT:									
D300		with TTL buffer	—	_	0.8	V	4.5V ≤ VDD ≤ 5.5V				
D301			_	_	0.15 Vdd	V	1.8√ ≤ VDD ≨ 4.5V				
D302		with Schmitt Trigger buffer	—	_	0.2 VDD	V	2.0Y ≤ VDD <u>₹ 5.5</u> V				
D303		with I ² C levels	_	_	0.3 VDD	_ v <					
D304		with SMBus levels	—	_	0.8	V	$2.7V \leq VOD \leq 5.5V$				
D305		MCLR	—	_	0.2 VDD	V					
	VIH	Input High Voltage									
		I/O PORT:				\frown	,				
D320		with TTL buffer	2.0	_	_ `	∇	4.5V ≤ VDD ≤ 5.5V				
D321			0.25 VDD+	—	<u> </u>	\v <	$1.8V \le VDD \le 4.5V$				
			0.8	<	$\langle \ \rangle$	$\langle \rangle$					
D322		with Schmitt Trigger buffer	0.8 VDD	1		\sim	$2.0V \le VDD \le 5.5V$				
D323		with I ² C levels	0.7 Vdd	$\overline{1}$	1	V					
D324		with SMBus levels	2.1			Ζv	$2.7V \leq V\text{DD} \leq 5.5V$				
D325		MCLR	0.7 Vdd	$\langle - \rangle$	$\overline{}$	V					
	lı∟	Input Leakage Current ⁽¹⁾		//	$\overline{}$						
D340		I/O Ports		±5	± 125	nA	$VSS \leq VPIN \leq VDD,$				
				\setminus	/		Pin at high-impedance, 85°C				
D341			$\checkmark \neq /$	<u>+</u> 5	± 1000	nA	$Vss \leq Vpin \leq Vdd,$				
							Pin at high-impedance, 125°C				
D342		MCLR ⁽²⁾)± 50	± 200	nA	$Vss \le VPIN \le VDD$,				
		We als Duill up Oursea	$\Box \searrow \bigcirc$	\checkmark			Pin at high-impedance, 85°C				
D 050	IPUR	Weak Pull-up Current		400	000						
D350	.,		25~	120	200	μA	VDD = 3.0V, VPIN = VSS				
	Vol	Output Low Voltage	\searrow	1			[
D080		Standard I/O ports	~ —		0.6	V	IOL = 8 mA, VDD = 5.0V				
		$ \land \land$	2				IOL = 6 mA, VDD = 3.3 V				
							IOL = 1.8 mA, VDD = 1.8V				
D080A		High-Drive I/Q Ports	—		0.6	V	Юн = 10 mA, VDD = 2.3V, HIDCx = 2				
			—	0.6	—	V	ЮН = 32 mA, VDD = 3.0V, HIDCx = 1				
		$\overline{}$	_	0.6	_	V	Юн = 51 mA, VDD = 5.0V, HIDCx = 1				
D090	Voн	Qutput High Voltage									
	$/ \cap$	Standard V/O Ports	Vdd - 0.7	—	—	V	Юн = 3.5 mA, VDD = 5.0V				
	$\langle \rangle$						IOH = 3 mA, VDD = 3.3 V				
DOODA	\setminus \checkmark /)/== 0 -			N/	IOH = 1 mA, VDD = 1.8 V				
D090A	$ $ \backslash \langle	High-Drive I/O Ports	Vdd - 0.7	 Vdd - 0.7	_	V V	ІОН = 10 mA, VDD = 2.3V, HIDCx = 1 ІОН = 37 mA, VDD = 3.0V, HIDCx = 1				
$\langle \frown $	\backslash	$\langle \rangle$		VDD - 0.7 VDD - 0.7		V	10H = 37 mA, VDD = 3.00, HIDCx = 1 10H = 54 mA, VDD = 5.00, HIDCx = 1				
Ø380/	Cio	All I/O pins		5	50	pF					

tested.

 \langle

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.