

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19155-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F19155/56/75/76/85/86 are described within this data sheet. The PIC16(L)F19155/56/75/76/85/86 devices are available in 48-pin TQFP and UQFN, 44-pin TQFP and UQFN, 40-pin PDIP and 28-pin SPDIP, SOIC, SSOP and UQFN packages. Figure 1-1 shows a block diagram of the PIC16(L)F19155/56/75/76/85/86 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16(L)F19155/56/75/76/85/86
Analog-to-Digital Converter with Computation	n (ADC ²)	•
Digital-to-Analog Converter (DAC1)		٠
Fixed Voltage Reference (FVR)		•
Enhanced Universal Synchronous/Asynchrono Transmitter (EUSART1 and EUSART2)	ous Receiver/	٠
Temperature Indicator Module (TIM)		•
Zero-Cross Detect (ZCD1)		•
Real-Time Calendar and Clock (RTCC)		•
Liquid Crystal Display (LCD)		•
Capture/Compare/PWM Modules (CCP)		
	CCP1	٠
	CCP2	•
Comparator Module (Cx)		
	C1	٠
	C2	٠
Configurable Logic Cell (CLC)		
	CLC1	٠
	CLC2	٠
	CLC3	•
	CLC4	•
Complementary Waveform Generator (CWG)		
	CWG1	٠
Master Synchronous Serial Ports (MSSP)	1	
	MSSP1	٠
Pulse-Width Modulator (PWM)		
	PWM3	٠
	PWM4	•
Signal Measure Timer (SMT)	SMT1	•
Timers		l
	Timer0	•
	Timer1	•
	Timer2	•
	Timer4	•
	-	

									(********	-/	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 9	•		•	•	•	•	•		•		•
				CPU		· soo Table 4-3 for	specifics				
				CFU	CORE REGISTERS	, see Table 4-3 101	specifics				
48Ch	SMT1TMRL	SMT1TMR 0000 0000 0000									
48Dh	SMT1TMRH				SMT11	ſMR				0000 0000	0000 0000
48Eh	SMT1TMRU				SMT11	ſMR				0000 0000	0000 0000
48Fh	SMT1CPRL				CPF	२				xxxx xxxx	xxxx xxxx
490h	SMT1CPRH				CPF	२				xxxx xxxx	xxxx xxxx
491h	SMT1CPRU		CPR								XXXX XXXX
492h	SMT1CPWL		CPW								xxxx xxxx
493h	SMT1CPWH				CPV	N				xxxx xxxx	XXXX XXXX
494h	SMT1CPWU				CPV	N				xxxx xxxx	xxxx xxxx
495h	SMT1PRL				SMT1	PR				1111 1111	1111 1111
496h	SMT1PRH				SMT1	PR				1111 1111	1111 1111
497h	SMT1PRU				SMT1	PR				1111 1111	1111 1111
498h	SMT1CON0	EN		STP	WPOL	SPOL	CPOL	SMT1	PS<1:0>	0-00 0000	0-00 0000
499h	SMT1CON1	SMT1GO	REPEAT	_	—		MODE	E<3:0>		00 0000	00 0000
49Ah	SMT1STAT	CPRUP	CPWUP	RST	—	—	TS	WS	AS	000000	000000
49Bh	SMT1CLK	—	— — — — — CSEL<2:0>						0000 0000	0000 0000	
49Ch	SMT1SIG	_	_	_			SSEL<4:0>			0000 0000	0000 0000
49Dh	SMT1WIN	_	_	_			WSEL<4:0>			0000 0000	0000 0000
49Eh	_				Unimplen	nented					
49Fh	—				Unimplen	nented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

	-12. OIL						1 19133/30/7	3/10/03/00		<u>' </u>	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 15											
				0.01							
				CPU	CORE REGISTERS	s; see Table 4-3 tol	specifics				
78Ch	- Unimplemented										
78Dh	—				Unimpler	mented					
78Eh	_				Unimpler	mented					
78Fh	_				Unimpler	mented					
790h	_				Unimpler	mented					
791h	_		Unimplemented								
792h	_		Unimplemented								
793h	_		Unimplemented								
794h	_				Unimpler	mented					
795h	_			-	Unimpler	mented					
796h	PMD0	SYSCMD	FVRMD	ACTMD	_	_	NVMMD	_	IOCMD	0000-0	0000-0
797h	PMD1		_		TMR4MD	_	TMR2MD	TMR1MD	TMR0MD	0 -000	0000 0000
798h	PMD2	RTCCMD	DACMD	ADCMD	_	_	CMP2MD	CMP1MD	ZCDMD	000000	000000
799h	PMD3		_		_	PWM4MD	PWM3MD	CCP2MD	CCP1MD	0000 0000	0000 0000
79Ah	PMD4	UART2MD	UART1MD	_	MSSP1MD	_	_	_	CWG1MD	00-00	00-00
79Bh	PMD5	—	SMT1MD	LCDMD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	_	-000 000-	-000 000-
79Ch	_				Unimpler	mented					
79Dh	_				Unimpler	mented					
79Eh	_				Unimpler	mented					
79Fh	-				Unimpler	mented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Address	Name	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 V.							Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 61 (C	ontinued)										
1ECFh	_				Unimpler	nented					
1ED0h	_		Unimplemented								
1ED1h			Unimplemented								
1ED2h			Unimplemented								
1ED3h					Unimpler	mented					
1ED4h					Unimpler	mented					
1ED5h	_				Unimpler	mented					
1ED6h	_				Unimpler	mented					
1ED7h	_		Unimplemented								
1ED8h	_		Unimplemented								
1ED9h	_		Unimplemented								
1EDAh	_				Unimpler	mented					
1EDBh					Unimpler	mented					
1EDCh					Unimpler	mented					
1EDDh	_				Unimpler	mented					
1EDEh					Unimpler	mented					
1EDFh					Unimpler	mented					
1EE0h					Unimpler	mented					
1EE1h					Unimpler	mented					
1EE2h					Unimpler	mented					
1EE3h	_				Unimpler	mented					
1EE4h	_				Unimpler	mented					

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

11.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0). If the SLEEP instruction is executed while the IDLEN bit is set (IDLEN = 1), the CPU will enter the IDLE mode (Section 11.2.3 "Low-Power Sleep Mode").

Upon entering Sleep mode, the following conditions exist:

- 1. WWDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The \overline{PD} bit of the STATUS register is cleared
- 3. The $\overline{\text{TO}}$ bit of the STATUS register is set
- 4. CPU Clock and System Clock
- 5. 31 kHz LFINTOSC, HFINTOSC and SOSC are unaffected and peripherals using them may continue operation in Sleep.
- 6. ADC is unaffected if the dedicated FRC oscillator is selected the conversion will be left abandoned if Fosc is selected and ADRES will have an incorrect value
- 7. I/O ports maintain the status they had before Sleep was executed (driving high, low, or high-impedance). This does not apply in the case of any asynchronous peripheral which is active and may affect the I/O port value
- 8. Resets other than WWDT are not affected by Sleep mode

Refer to individual chapters for more details on peripheral operation during Sleep.

EXAMPLE 13-1: PFM PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
    PROG_ADDR_HI : PROG_ADDR_LO
    data will be returned in the variables;
*
    PROG_DATA_HI, PROG_DATA_LO
    BANKSELNVMADRL; Select Bank for NVMCON registersMOVLWPROG_ADDR_LO;MOVWFNVMADRL; Store LSB of addressMOVLWPROG_ADDR_HI;MOVWFNVMADRH; Store MSB of address
             NVMCON1,NVMREGS ; Do not select Configuration Space
    BCF
                NVMCON1, RD
    BSF
                                      ; Initiate read
    MOVF
                 NVMDATL,W
                                        ; Get LSB of word
                NVMDATL,W; Get LSB of wordPROG_DATA_LO; Store in user locationNVMDATH,W; Get MSB of wordPROG_DATA_HI; Store in user location
    MOVWF
    MOVF
    MOVWF
```

REGISTER 17-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER	REGISTER 17-9:	IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER
---	----------------	--

R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0			
IOCCF7	IOCCF6	—	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared	HS - Bit is se	t in hardware					
bit 7-6	bit 7-6 IOCCF<7:6>: Interrupt-on-Change PORTC Flag bits									
	 1 = An enabled change was detected on the associated pin Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling 									

	edge was detected on RCx.
	0 = No change was detected, or the user cleared the detected change
bit 5	Unimplemented: Read as '0'
bit 4-0	 IOCCF<4:0>: Interrupt-on-Change PORTC Flag bits 1 = An enabled change was detected on the associated pin Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.

^{0 =} No change was detected, or the user cleared the detected change

REGISTER 17-10: IOCEP: INTERRUPT-ON-CHANGE PORTE POSITIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	U-0	U-0
—	—	—	—	IOCEP3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	Unimplemented: Read as '0'	
---------	----------------------------	--

bit 3 IOCEP3: Interrupt-on-Change PORTE Positive Edge Enable bit

1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCEFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

bit 2-0 Unimplemented: Read as '0'

Note 1: If MCLRE = 1 or LVP = 1, RC port functionality is disabled and IOC is not available on RE3.

19.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port Configuration
- Channel Selection
- ADC Voltage Reference Selection
- ADC Conversion Clock Source
- Interrupt Control
- Result Formatting
- Conversion Trigger Selection
- ADC Acquisition Time
- ADC Precharge Time
- Additional Sample and Hold Capacitor
- Single/Double Sample Conversion
- Guard Ring Outputs

19.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 14.0 "I/O Ports"** for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

19.1.2 CHANNEL SELECTION

There are several channel selections available:

- Seven PORTA pins
- Eight PORTB pins
- Eight PORTD pins
- Temperature Indicator
- Seven PORTE pins
- Eight PORTF pins
- Seven PORTG pins
- VLCD3 Voltage divided by 4
- VBAT Voltage divided by 3
- DAC output
- Fixed Voltage Reference (FVR)
- · Vss (ground)

The ADPCH register determines which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion.

Refer to **Section 19.2 "ADC Operation**" for more information.

19.1.3 ADC VOLTAGE REFERENCE

The PREF<1:0> bits of the ADREF register provide control of the positive voltage reference (VREF+). The positive voltage reference can be:

- VREF+ pin
- Vdd
- FVR outputs

The negative voltage reference (VREF-) source is:

• Vss

See **Section 18.0 "Fixed Voltage Reference (FVR)"** for more details on the Fixed Voltage Reference.

19.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCLK register and the CS bits of the ADCON0 register. If Fosc is selected as the ADC clock, there is a prescaler available to divide the clock so that it meets the ADC clock period specification. The ADC clock source options are the following:

- Fosc/(2*n)(where n is from 1 to 128)
- FRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. Refer to Figure 19-2 for the complete timing details of the ADC conversion.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 39-13 for more information. Table 19-1 gives examples of appropriate ADC clock selections.

- Note 1: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.
 - 2: The internal control logic of the ADC runs off of the clock selected by the CS bit of ADCON0. What this can mean is when the CS bit of ADCON0 is set to '1' (ADC runs on FRC), there may be unexpected delays in operation when setting ADC control bits.

22.9 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 39-14 and Table 39-15 for more details.

22.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 22-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $1k\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

REGISTER 22-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	_	—	_	_	—	MC2OUT	MC10UT
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1 MC2OUT: Mirror Copy of C2OUT bit

bit 0 MC1OUT: Mirror Copy of C1OUT bit

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2		Bit 1	Bit 0	Register on Page
CMxCON0	ON	OUT	—	POL	—	—	HYS	SYNC	340
CMxCON1	_		_		_	—	INTP	INTN	341
CMOUT	_		_				MC2OUT	MC1OUT	343
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF\	/R<1:0>	ADFV	R<1:0>	285
DAC1CON0	DAC1EN		DAC10E1	DAC10E2	DAC1P	SS<1:0>	_	_	332
DAC1CON1	—	_	—			DAC1R<4:0>			332
INTCON	GIE	PEIE	—					INTEDG	164
PIE2	_	ZCDIE	_				C2IE	C1IE	167
PIR2	_	ZCDIF	_		_	—	C2IF	C1IF	176
CLCINxPPS	—	_	_		Cl	_CIN0PPS<4:0	>		264
T1GPPS	—	_	_	T1GPPS<4:0>					

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	T0CS<2:0>		TOASYNC		TOCKP	'S<3:0>	
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-5	TOCS<2:0>: 111 = CLC1 110 = SOSC 101 = MFINT 100 = LFINT 011 = HFINT 010 = FOSC/4 001 = TOCKI 000 = TOCKI	Timer0 Clock S TOSC (500 kHz OSC TOSC 4 PPS (Inverted) PPS (True)	Source select b	pits			
bit 4	TOASYNC: T	MR0 Input Asy	nchronization	Enable bit			
	1 = The inpu	It to the TMR0	counter is not	synchronized to E	to system clock	S	
bit 3-0	TOCKPS<3:0)>: Prescaler R	ate Select bit		000/4		
	1111 = 1:327 $1110 = 1:163$ $1101 = 1:819$ $1001 = 1:409$ $1011 = 1:204$ $1010 = 1:102$ $1001 = 1:512$ $1000 = 1:256$ $0111 = 1:128$ $0100 = 1:64$ $0101 = 1:32$ $0100 = 1:16$ $0011 = 1:8$ $0010 = 1:4$ $0001 = 1:2$ $0000 = 1:1$	768 384 92 96 48 24 2 5 3					

27.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal gates the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 27-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

FIGURE 27-5:	HARDWARE GATE MODE TIMING DIAGRAM ((MODE = 00001)	

	Rev. 10-000 1988 5030201 4	
MODE	0b00001	
TMRx_clk		
TMRx_ers		
PRx	5	
TMRx	$0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	
TMRx_postscaled		
PWM Duty Cycle PWM Output	3	

FIGURE 28-17: CAPTURE MODE SINGLE ACQUISITION TIMING DIAGRAM

31.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 31.9 "CWG Steering Mode"**.

31.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWG1CLKCON register.

31.13 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripherals are shown in Section 1.1 "Register and Bit Naming Conventions".

REGISTER 31-1: CWG1CON0: CWG1 CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
EN	LD ⁽¹⁾	—	_	—	MODE<2:0>			
bit 7							bit 0	

Legend:		
HC = Bit is cleared by hardware		HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	EN: CWG1 Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 6	LD: CWG1 Load Buffer bits ⁽¹⁾
	1 = Buffers to be loaded on the next rising/falling event
	0 = Buffers not loaded
bit 5-3	Unimplemented: Read as '0'
bit 2-0	MODE<2:0>: CWG1 Mode bits
	111 = Reserved
	110 = Reserved
	101 = CWG outputs operate in Push-Pull mode
	100 = CWG outputs operate in Half-Bridge mode
	011 = CWG outputs operate in Reverse Full-Bridge mode
	010 = CWG outputs operate in Forward Full-Bridge mode
	001 = CWG outputs operate in Synchronous Steering mode
	000 = CWG outputs operate in Steering mode

Note 1: This bit can only be set after EN = 1 and cannot be set in the same instruction that EN is set.

TABLE 39-14: COMPARATOR SPECIFICATIONS

······································	< l>	1
VDD = 3.0V, TA = 25°C	\backslash	1

Param. No.	Sym.	Characteristics	Min.	утур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage	\searrow	±30	-	mV	VICM = VDD/2
CM02	VICM	Input Common Mode Range	ØND	_	Vdd	V	
CM03	CMRR	Common Mode Input Rejection Ratio		50	_	dB	
CM04	VHYST	Comparator Hysteresis		25	_	mV	
CM05	TRESP ⁽¹⁾	Response Time, Rising Edge	_	300	600	ns	
		Response Time, Falling Edge		220	500	ns	
CMOS6	Тмсv2vo ⁽²⁾	Mode Charige to Valid Output	—		10	μs	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

TABLE 39-15: LOW-POWERED CLOCKED COMPARATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25%							
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
СМ07	VIOFF	Input Offset Voltage		±30		mV	VICM = VDD/2
CM08	VICM	Input Common Mode Range	GND		Vdd	V	
CM09	CMRR	Common Mode Input Rejection Ratio		50		dB	
CM010	VHYST	Comparator Hysteresis		25	_	mV	
CM011	TRESP ⁽¹⁾⁽³⁾	Response Time, Rising Edge		300		ns	
		Response Time, Falling Edge	_	220	_	ns	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD.

2: A mode change includes changing any of the control register values, including module enable.

3: Comparator output state change occurs on the rising edge of LFINTOSC.

TABLE 39-16: 5-BIT DAC SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)	
VDD = 3.0V, TA = 25°C	

VDD = 3.0V, TA = 25°C							
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DSB01	VLSB	Step Size	—	(VDACREF+ -VDACREF-) /32	_/ /	/ y 1	
DSB01	VACC	Absolute Accuracy	_	—	± 0.5	LSb_	
DSB03*	RUNIT	Unit Resistor Value	_	5000	_ `	A A	
DSB04*	TST	Settling Time ⁽¹⁾	_	- ~	10	hs	

* These parameters are characterized but not tested.

+ Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '00000' to '01111

