

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19155t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 9											
				CPU	CORE REGISTERS	: see Table 4-3 for	specifics				
	1					,				-	1
48Ch	SMT1TMRL				SMT1	ſMR				0000 0000	0000 0000
48Dh	SMT1TMRH				SMT1	ſMR				0000 0000	0000 0000
48Eh	SMT1TMRU				SMT1	ſMR				0000 0000	0000 0000
48Fh	SMT1CPRL				CPI	R				xxxx xxxx	XXXX XXXX
490h	SMT1CPRH				CPI	R				xxxx xxxx	XXXX XXXX
491h	SMT1CPRU				CPI	R				xxxx xxxx	xxxx xxxx
492h	SMT1CPWL				CP\	N				xxxx xxxx	xxxx xxxx
493h	SMT1CPWH				CP\	N				xxxx xxxx	xxxx xxxx
494h	SMT1CPWU				CP\	N				xxxx xxxx	xxxx xxxx
495h	SMT1PRL				SMT1	PR				1111 1111	1111 1111
496h	SMT1PRH				SMT1	PR				1111 1111	1111 1111
497h	SMT1PRU				SMT1	PR				1111 1111	1111 1111
498h	SMT1CON0	EN	—	STP	WPOL	SPOL	CPOL	SMT1	PS<1:0>	0-00 0000	0-00 0000
499h	SMT1CON1	SMT1GO	REPEAT	_	_		MOD	E<3:0>		00 0000	00 0000
49Ah	SMT1STAT	CPRUP	CPWUP	RST	_	_	TS	WS	AS	000000	000000
49Bh	SMT1CLK	—	—		—	—		CSEL<2:0>		0000 0000	0000 0000
49Ch	SMT1SIG	—	—			SSEL<4:0>					0000 0000
49Dh	SMT1WIN	—	_	_	— WSEL<4:0>						0000 0000
49Eh					Unimpler	nented					
49Fh	_		— Unimplemented								

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

8.2 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

8.3 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- · BOR is off when in Sleep
- BOR is controlled by software
- BOR is always off

Refer to Table 8-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 8-2 for more information.

TABLE 8-1: BOR OPERATING MODES

8.3.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

8.3.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	х	Х	Active	Wait for release of BOR ⁽¹⁾ (BORRDY = 1)
1.0		Awake	Active	Waits for release of BOR (BORRDY = 1)
10	X	Sleep	Disabled	Waits for BOR Reset release
0.1	1	х	Active	Waits for BOR Reset release (BORRDY = 1)
01	0	х	Disabled	Paging immediately (POPDDY =)
00	Х	х	Disabled	Begins immediately (BORRDY = x)

Note 1: In this specific case, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

PIC16(L)F19155/56/75/76/85/86

R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR
bit 7					· · · · · ·		bit
Legend:							
R = Readable b	bit	W = Writable b	t	U = Unimplem	ented bit, read as	'0'	
u = Bit is uncha	inged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	1 = The osci	DSC (external) Os Ilator is ready to Ilator is not enab	be used	bit ready to be used	d.		
bit 6	1 = The osci	OSC Oscillator R llator is ready to llator is not enab	be used	ready to be used	d.		
bit 5	1 = The oscill	OSC Oscillator F ator is ready to b ator is not enable	e used	ready to be used			
bit 4	1 = The osci	DSC Oscillator Re llator is ready to llator is not enabl	be used	ready to be used	d.		
bit 3	1 = The osci	ary (Timer1) Osci llator is ready to llator is not enabl	be used	ready to be used	d.		
bit 2	1 = The osci	C Oscillator Read llator is ready to llator is not enabl	be used	ready to be used	d		
bit 1	Unimplemente	ed: Read as '0'					
bit 0		is ready to be us		ut source is not re	eady, or the PLL is	not locked.	

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
—	—	TMR0IE	IOCIE	—	—	—	INTE
bit 7							bit 0

REGISTER 10-2: PIE0: PERIPHERAL INTERRUPT ENABLE REGISTER 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7-6	Unimplemented: Read as '0'						
bit 5	 TMR0IE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt 						
bit 4	 IOCIE: Interrupt-on-Change Interrupt Enable bit 1 = Enables the IOC change interrupt 0 = Disables the IOC change interrupt 						
bit 3-1	Unimplemented: Read as '0'						
bit 0	 INTE: INT External Interrupt Flag bit⁽¹⁾ 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt 						

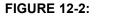
Note 1: The External Interrupt GPIO pin is selected by INTPPS (Register 15-1).

Note:	Bit PEIE of the INTCON register must be							
	set to enable any peripheral interrupt							
	controlled by PIE1-PIE8. Interrupt							
	sources controlled by the PIE0 register do							
	not require PEIE to be set in order to allow							
	interrupt vectoring (when GIE is set).							

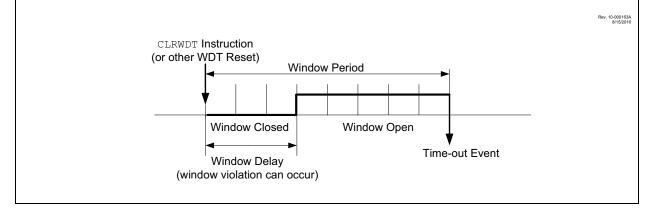
U-0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
_	ZCDIE		_			C2IE	C1IE
bit 7	·			·			bit 0
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	et	'0' = Bit is clea	ared				
bit 7	Unimpleme	nted: Read as ')'				
bit 6	ZCDIE: Zero	o-Cross Detectio	n (ZCD) Inter	rupt Enable bit			
	1 = Enables	s the ZCD interru	ıpt				
	0 = Disables	s the ZCD interr	upt				
bit 5-2	Unimpleme	nted: Read as ')'				
bit 1	C2IE: Comp	arator C2 Interru	upt Enable bit				
		the Comparato					
	0 = Disables	s the Comparato	or C2 interrup	t			
bit 0	C1IE: Comp	arator C1 Interru	ipt Enable bit				
	1 = Enables	the Comparato	r C1 interrupt				
	0 = Disables	s the Comparato	or C1 interrup	t			
Note:	Bit PEIE of the IN	NTCON register	must be				
	set to enable a						
	controlled by regi						

REGISTER 10-4: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

12.6 Operation During Sleep


When the device enters Sleep, the WWDT is cleared. If the WWDT is enabled during Sleep, the WWDT resumes counting. When the device exits Sleep, the WWDT is cleared again.

The WWDT remains clear until the OST, if enabled, completes. See Section 9.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information on the OST.


TABLE 12-2: WWDT CLEARING CONDITIONS

When a WWDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See Section 4.3.2.1 "STATUS Register" for more information.

Conditions	WWDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = SOSC, EXTOSC, INTOSC	
Change INTOSC divider (IRCF bits)	Unaffected

WINDOW PERIOD AND DELAY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	222
TRISA	TRISA7	TRISA6	(1)	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	222
LATA	LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0	223
ANSELA	ANSA7	ANSA6	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	223
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	224
ODCONA	ODCA7	ODCA6	—	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	224
SLRCONA	SLRA7	SLRA6	—	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	225
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	225

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: Unimplemented, read as '1'.

-n/n = Value at POR and BOR/Value at all other Resets

R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7							bit 0	
ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	

REGISTER 14-46: ODCONF: PORTF OPEN-DRAIN CONTROL REGISTER

x = Bit is unknown

'0' = Bit is cleared

ODCF<7:0>: PORTF Open-Drain Enable bits

u = Bit is unchanged

'1' = Bit is set

bit 7-0

For RF<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 14-47: SLRCONF: PORTF SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRF7 | SLRF6 | SLRF5 | SLRF4 | SLRF3 | SLRF2 | SLRF1 | SLRF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **SLRF<7:0>:** PORTF Slew Rate Enable bits

For RF<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 14-48: INLVLF: PORTF INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLF7 | INLVLF6 | INLVLF5 | INLVLF4 | INLVLF3 | INLVLF2 | INLVLF1 | INLVLF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLF<7:0>: PORTF Input Level Select bits

For RF<7:0> pins, respectively

 $\ensuremath{\mathtt{1}}$ = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

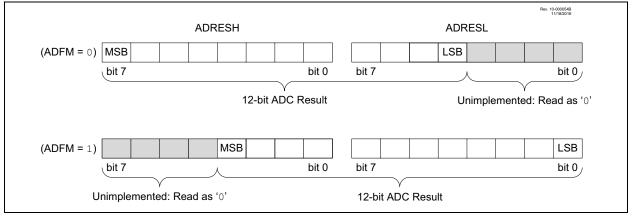
19.1.5 INTERRUPTS

The ADC module allows the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the ADIE bit of the PIEx register and the PEIE bit of the INTCON register must both be set and the GIE bit of the INTCON register must be cleared. If all these bits are set, the PC will jump to the Interrupt Service Routine.


19.1.6 RESULT FORMATTING

The 12-bit ADC conversion result can be supplied in two formats, left justified or right justified. The FM bits of the ADCON0 register controls the output format.

Figure 19-3 shows the two output formats.

Writes to the ADRES register pair are always right justified regardless of the selected format mode. Therefore, data read after writing to ADRES when ADFRM0 = 0 will be shifted left four places.

FIGURE 19-3: 12-BIT ADC CONVERSION RESULT FORMAT

TABLE 19-2: COMPUTATION MODES

		Bit Clear Conditions	Value after Trigg	Value after Trigger completion		Threshold Operations			Value at ADTIF Interrupt		
Mode	ADMD	ACC and CNT	ACC	CNT	Retrigger	Threshold Test	Interrupt	OV	FLTR	CNT	
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sample	If threshold=true	N/A	N/A	count	
Accumulate	1	ADACLR = 1	S + ACC or (S2-S1) + ACC	If (CNT=0xFF): CNT, otherwise: CNT+1	No	Every Sample	If threshold=true	ACC Overflow	ACC/2 ^{ADCRS}	count	
Average	2	ADACLR = 1 or CNT>=RPT at GO or retrigger	S + ACC or (S2-S1) + ACC	If (CNT=0xFF): CNT, otherwise: CNT+1	No	lf CNT>=RPT	If threshold=true	ACC Overflow	ACC/2 ^{ADCRS}		
Burst Average	3	ADACLR = 1 or GO set or retrigger	Each repetition: same as Average End with sum of all samples	Each repetition: same as Average End with CNT=RPT	Repeat while CNT <rpt< td=""><td>lf CNT>=RPT</td><td>If threshold=true</td><td>ACC Overflow</td><td>ACC/2^{ADCRS}</td><td>RPT</td></rpt<>	lf CNT>=RPT	If threshold=true	ACC Overflow	ACC/2 ^{ADCRS}	RPT	
Low-pass Filter	4	ADACLR = 1	S+ACC-ACC/ 2 ^{ADCRS} or (S2-S1)+ACC-ACC/2 ^{ADCRS}	Count up, stop counting when CNT = 0xFF	No	lf CNT>=RPT	If threshold=true	ACC Overflow	Filtered Value	count	

PIC16(L)F19155/56/75/76/85/86

Note: S1 and S2 are abbreviations for Sample 1 and Sample 2, respectively. When ADDSEN = 0, S1 = ADRES; When ADDSEN = 1, S1 = PREV and S2 = ADRES.

REGISTER 19-24: ADACCU: ADC ACCUMULATOR REGISTER UPPER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-x/x	R/W-x/x
—	—	—	—	—	—	ACC<	17:16>
bit 7			•				bit 0
Legend:							
R = Readable bi	R = Readable bit W = Writable bit			U = Unimpler	nented bit, read	l as '0'	

R – Reauable bil		0 – Onimplemented bit, read as 0
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1-0 ACC<17:16>: ADC Accumulator MSB. Upper two bits of accumulator value. See Table 19-2 for more details.

REGISTER 19-25: ADACCH: ADC ACCUMULATOR REGISTER HIGH

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
ACC<15:8>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<15:8>: ADC Accumulator middle bits. Middle eight bits of accumulator value. See Table 19-2 for more details.

REGISTER 19-26: ADACCL: ADC ACCUMULATOR REGISTER LOW

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ACC< | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Logond | | | | | | | |

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<7:0>: ADC Accumulator LSB. Lower eight bits of accumulator value. See Table 19-2 for more details.

© 2017 Microchip Technology Inc.

R/W-0/0	U-0	U-0	U-0	U-0	U-0	U-0	R-0/0
CPON		—	—	_	_	_	CPRDY
bit 7		•					bit 0
Legend:							

REGISTER 19-36: ADCP: ADC CHARGE PUMP CONTROL REGISTER

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS= Hardware set

bit 7	CPON : Charge Pump On Control bit 1 = Charge Pump On when requested by the ADC 0 = Charge Pump Off
bit 6-1	Unimplemented: Read as '0'
bit 0	CPRDY: Charge Pump Ready Status bit 1 = Charge Pump is ready 0 = Charge Pump is not ready (or never started)

27.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal gates the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 27-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

FIGURE 27-5:	HARDWARE GATE MODE TIMING DIAGRAM ((MODE = 00001)	

	Rev. 10-000 1988 5030201 4	
MODE	0b00001	
TMRx_clk		
TMRx_ers		
PRx	5	
TMRx	$0 \qquad \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$	
TMRx_postscaled		
PWM Duty Cycle PWM Output	3	

PIC16(L)F19155/56/75/76/85/86

REGISTER 29-2: CCPxCAP: CAPTURE INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x	R/W-0/x
—	—	—	—	—		CTS<2:0>	
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 CTS<2:0>: Capture Trigger Input Selection bits

CTS	CCP1.capture	CCP2.capture					
1000	RTCC_s	econds					
0111	LC4_	LC4_out					
0110	LC3_	LC3_out					
0101	LC2_	LC2_out					
0100	LC1_	out					
0011	IOC_int	errupt					
0010	C20	UT					
0001	C10	C10UT					
0000	CCP1PPS	CCP2PPS					

REGISTER 29-3: CCPRxL REGISTER: CCPx REGISTER LOW BYTE

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
CCPRx<7:0>							
bit 7							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

 CCPxMODE = Capture mode

 CCPRxL<7:0>: Capture value of TMR1L

 CCPxMODE = Compare mode

 CCPRxL<7:0>: LS Byte compared to TMR1L

 CCPxMODE = PWM modes when CCPxFMT = 0:

 CCPRxL<7:0>: Pulse-width Least Significant eight bits

 CCPxMODE = PWM modes when CCPxFMT = 1:

 CCPxxL<7:6>: Pulse-width Least Significant two bits

 CCPRxL<7:6>: Not used.

© 2017 Microchip Technology Inc.

bit 7-0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T2CON	ON		CKPS<2:0>			OUTP	S<3:0>		404
T2TMR	Holding Register for the 8-bit TMR2 Register						384*		
T2PR	TMR2 Period Register						384*		
RxyPPS	—	—	—	- RxyPPS<4:0>					265
CWG1ISM	—	_	_	— — IS<3:0>					492
CLCxSELy	—	_			LCxDyS	<5:0>			503
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	222
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	235
PWM3CON	PWM3EN	_	PWM3OUT	PWM3POL	—	—	_	—	
PWM4CON	PWM4EN	_	PWM4OUT	PWM4POL	—	—	_	—	
PWM3DCL	PWM3DC1	PWM3DC0	_	_	_	_	_	_	
PWM3DCH	PWM3DC9	PWM3DC8	PWM3DC7	PWM3DC6	PWM3DC5	PWM3DC4	PWM3DC3	PWM3DC2	
PWM4DCL	PWM4DC1	PWM4DC0	—	—	—	—	—	—	
PWM4DCH	PWM4DC9	PWM4DC8	PWM4DC7	PWM4DC6	PWM4DC5	PWM4DC4	PWM4DC3	PWM4DC2	

TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWMx module.

*Page provides register information.

KEGISTER 51-3								
R/W/HS-0/0	R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	U-0	U-0	
SHUTDOWN ^(1, 2)	REN	LSBI	D<1:0>	LSAC	<1:0>		_	
bit 7							bit (
Legend:								
HC = Bit is cleare	d by hardware			HS = Bit is se	et by hardware	9		
R = Readable bit		W = Writable	e bit	U = Unimplei	mented bit, rea	ad as 'O'		
u = Bit is unchang	ged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	OR/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is cle	eared	q = Value de	pends on conc	dition		
L:1 7				hua hit(1, 2)				
bit 7		Shutdown sta	own Event Stat	tus bit ^(1, -)				
			ent has occurre	ed				
bit 6	REN: Auto-Restart Enable bit							
	1 = Auto-restart enabled							
	0 = Auto-res	tart disabled						
bit 5-4	LSBD<1:0>:	SBD<1:0>: CWG1B and CWG1D Auto-Shutdown State Control bits						
	11 =A logic '1' is placed on CWG1B/D when an auto-shutdown event is present							
	10 =A logic '0' is placed on CWG1B/D when an auto-shutdown event is present 01 =Pin is tri-stated on CWG1B/D when an auto-shutdown event is present							
	00 = The inactive state of the pin, including polarity, is placed on CWG1B/D after the required dead-							
	band in	terval					·	
bit 3-2	LSAC<1:0>:	CWG1A and	CWG1C Auto	-Shutdown Sta	te Control bits			
	11 =A logic '1' is placed on CWG1A/C when an auto-shutdown event is present							
	10 =A logic '0' is placed on CWG1A/C when an auto-shutdown event is present 01 =Pin is tri-stated on CWG1A/C when an auto-shutdown event is present							
	00 = The inactive state of the pin, including polarity, is placed on CWG1A/C after the required dead-							
	band in						•	
bit 1-0	Unimplemer	nted: Read as	· '0'					
Note 1: This I	bit may be writ juration.	tten while EN	= 0 (CWG10	CON0 register) to place the	outputs into	the shutdow	

REGISTER 31-5: CWG1AS0: CWG1 AUTO-SHUTDOWN CONTROL REGISTER 0

2: The outputs will remain in auto-shutdown state until the next rising edge of the input signal after this bit is cleared.

32.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- · Data selection
- · Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

32.1.1 DATA SELECTION

There are 40 signals available as inputs to the configurable logic. Four 40-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 32-2. Data inputs in the figure are identified by a generic numbered input name.

Table 32-2 correlates the generic input name to the actual signal for each CLC module. The column labeled 'LCxDyS<5:0> Value' indicates the MUX selection code for the selected data input. LCxDyS is an abbreviation to identify specific multiplexers: LCxD1S<5:0> through LCxD4S<5:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 32-3 through Register 32-6).

TABLE 32-2: CLC	DATA INPUT	SELECTION
-----------------	-------------------	-----------

LCxDyS<5:0> Value	CLCx Input Source
100101 to 111111	Reserved
100100	EUSART2 (TX/CK) output
100011	EUSART2 (DT) output
100010	CWG1B output
100001	CWG1A output
100000	RTCC seconds
011111	MSSP1 SCK output
011110	MSSP1 SDO output
011101	EUSART1 (TX/CK) output
011100	EUSART1 (DT) output
011011	CLC4 output
011010	CLC3 output
011001	CLC2 output
011000	CLC1 output
010111	IOCIF
010110	ZCD output
010101	C2OUT
010100	C10UT
010011	PWM4 output
010010	PWM3 output
010001	CCP2 output
010000	CCP1 output
001111	SMT overflow
001110	Timer4 overflow
001101	Timer2 overflow
001100	Timer1 overflow
001011	Timer0 overflow
001010	ADCRC
001001	SOSC
001000	MFINTOSC (32 kHz)
000111	MFINTOSC (500 kHz)
000110	LFINTOSC
000101	HFINTOSC
000100	FOSC
000011	CLCIN3PPS
000010	CLCIN2PPS
000001	CLCIN1PPS
000000	CLCIN0PPS

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	_	_	_	
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	_	_	_	
115.2k	—		_	_	_	_	115.2k	0.00	1	_	—	_	

TABLE 34-4: BAUD RATE FOR ASYNCHRONOUS MODES (CONTINUED)

				SYNC = 0	= 1, BRG16	5 = 1 or SYNC = 1, BRG16 = 1						
BAUD	Fosc = 32.000 MHz		Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc = 8.000 MHz		Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	_	_

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0						
WFT		LCDA	WA	LP<3:0>									
bit 7	·						bit (
Legend:													
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'							
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown						
L:1 7													
bit 7		WFT: Waveform Type Select bit											
	 1 = Type-B waveform (phase changes on each frame boundary) 0 = Type-A waveform (phase changes within each common type) 												
bit 6	Reserved:		c changes w		on type)								
bit 5		Active Status bi	t										
bit o	_	iver module is ac											
		iver module is in											
bit 4	WA: LCD Write Allow Status bit												
	This Status bit reflects the value of write_allow signal.												
	1 = Writes into the LCDDATAx registers are allowed												
	0 = Writes i	into the LCDDAT	Ax registers	are not allowed									
bit 3-0		CD Prescaler Se											
	Work with LMUX<3:0> bits to select frame clock prescaler value. 4-Bit Programmable Prescaler = (LP<3:0> + 1)												
	4-ыс Fiogra 1111 = 1:16		ei – (LFN3.0	> + 1)									
	1111 – 1.10 1110 = 1 :15												
	1101 = 1:14												
	1100 = 1:13												
	1011 = 1:12												
	1010 = 1:11												
	1001 = 1:10 1000 = 1:9												
	0111 = 1:8												
	0110 = 1:7												
	0101 = 1:6												
	0100 = 1:5												
	0011 = 1:4 0010 = 1:3												
	0010 = 1.3 0001 = 1.2												
	0000 = 1:1												

REGISTER 35-2: LCDPS: LCD PHASE REGISTER

Standar	d Operati	ng Conditions (unless otherwise stated)				\sim
Param. No.	Sym.	Conditions					
High Vo	ltage Entr	y Programming Mode Specifications				/	
MEM01	V _{IHH}	Voltage on MCLR/VPP pin to enter pro- gramming mode	8	—	9		(Note 2 Note 3)
MEM02	I _{PPGM}	Current on MCLR/VPP pin during pro- gramming mode	—	1	—	mA	(Note 2)
Program	nming Mo	de Specifications					\sim
MEM10	V_{BE}	VDD for Bulk Erase	—	2.7	$7 \neq 7$	∖-y `	
MEM11	I _{DDPGM}	Supply Current during Programming operation	_	-	10	/mA	
Data EE	PROM Me	mory Specifications				$\langle \rangle$	
MEM20	ED	DataEE Byte Endurance	100k	\sim	$\langle \rangle$	₩.W	$-40^\circ C \leq T A \leq +85^\circ C$
MEM21	TD-RET	Characteristic Retention		40		Year	Provided no other specifications are violated
MEM22	ND_REF	Total Erase/Write Cycles before Refresh			700k	E/W	
MEM23	VD_RW	Vdd for Read or Erase/Write operation	VORMIN	\sim	VDDMAX	V	
MEM24	TD_BEW	Byte Erase and Write Cycle Time		4.0	5.0	ms	
Program	n Flash M	emory Specifications	\mathcal{I}	\checkmark			
MEM30	E _P	Flash Memory Cell Endurance	hak /	—	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
MEM32	T _{P_RET}	Characteristic Retention	\geq	40	_	Year	Provided no other specifications are violated
MEM33	$V_{P_{RD}}$	VDD for Read operation	VDDMIN	—	VDDMAX	V	
MEM34	$V_{P_{REW}}$	VDD for Row Erase or Write operation	VDDMIN	—	VDDMAX	V	
MEM35	T _{P_REW}	Self-Timed Row Erase of Self-Timed	—	2.0	2.5	ms	

Data in "Typ" column is at 3.0/, 28°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: Flash/Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

Required only if CONFIG4, bit LVP is disabled. 2:

The MPLAB® TCD2 does not support variable VPP output. Circuitry to limit the ICD2 VPP voltage must be placed 3: between the CD2 and target system when programming or debugging with the ICD2.