

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19156-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RB3/C1IN2-/C2IN2-/IOCB3/ANB3/SEG11/COM6/	RB3	TTL/ST	CMOS/OD	General purpose I/O.
SEGCFLY2	C1IN2-	AN	_	Comparator negative input.
	C2IN2-	AN	_	Comparator negative input.
	IOCB3	TTL/ST	_	Interrupt-on-change input.
	ANB3	AN	—	ADC Channel input.
	SEG11	_	AN	LCD Analog output.
	COM6	_	AN	LCD Driver Common Outputs.
	SEGCFLY2	AN	_	LCD Drive Charge Pump Capacitor Inputs
RB4/ADCACT ⁽¹⁾ /IOCB4/ANB4/COM0	RB4	TTL/ST	CMOS/OD	General purpose I/O.
	ADCACT ⁽¹⁾	TTL/ST	-	ADC Auto-Conversion Trigger input
	IOCB4	TTL/ST	—	Interrupt-on-change input.
	ANB4	AN	—	ADC Channel input.
	COM0		AN	LCD Driver Common Outputs.
RB5/T1G ⁽¹⁾ /IOCB5/ANB5/SEG13/COM1	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	T1G ⁽¹⁾	—	_	Timer1 Gate input.
	IOCB5	TTL/ST	_	Interrupt-on-change input.
	ANB5	AN	_	ADC Channel input.
	SEG13	_	AN	LCD Analog output.
	COM1	_	AN	LCD Driver Common Outputs.
RB6/CK2 ⁽³⁾ /TX2 ⁽¹⁾ /CLCIN2 ⁽¹⁾ /IOCB6/ANB6/SEG14/	RB6	TTL/ST	CMOS/OD	General purpose I/O.
ICSPCLK	CK2 ⁽³⁾	_	—	EUSART synchronous clock out
	TX2 ⁽¹⁾	_	_	EUSART asynchronous TX data out
	CLCIN2 ⁽¹⁾	_	_	Configurable Logic Cell source input.
	IOCB6	TTL/ST	_	Interrupt-on-change input.
	ANB6	AN	_	ADC Channel input.
	SEG14	_	AN	LCD Analog output.
	ICSPCLK	ST	_	In-Circuit Serial Programming™ and debugging clock input.
RB7/DK2 ⁽³⁾ /RX2 ⁽¹⁾ /CLCIN3 ⁽¹⁾ /IOCB7/ANB7/SEG15/	RB7	TTL/ST	CMOS/OD	General purpose I/O.
DAC1OUT2/ICSPDAT	DK2 ⁽³⁾	_	_	EUSART synchronous data output
	RX2 ⁽¹⁾	_	_	EUSART receive input.
	CLCIN3 ⁽¹⁾		_	Configurable Logic Cell source input.
	IOCB7	TTL/ST	_	Interrupt-on-change input.
	ANB7	AN	_	ADC Channel input.
	SEG15	_	AN	LCD Analog output.
	DAC1OUT2	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	TTL/ST	TTL/ST	In-Circuit Serial Programming™ and debugging data input/output.

TABLE 1-2: PIC16(L)F19155/56 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output TTL = TTL compatible input' HV = High Voltage

ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 14-2 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 14-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

XTAL = Crystal levels

TABLE 4-5:GENERAL PURPOSE RAMSIZE AND BANK LOCATION

Device	General Purpose RAM Size (Bytes)
PIC16(L)F19155	1024
PIC16(L)F19175	1024
PIC16(L)F19185	1024
PIC16(L)F19156	2048
PIC16(L)F19176	2048
PIC16(L)F19186	2048

4.3.4.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 4.6.2** "**Linear Data Memory**" for more information.

4.3.5 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

4.3.6 DEVICE MEMORY MAPS

The memory maps are as shown in Table 4-6 through Table 4-12.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 4	•							•		•	
				CPU	CORE REGISTERS	S; see Table 4-3 for	specifics				
20Ch	TMR1L	TMR1L7	TMR1L6	TMR1L5	TMR1L4	TMR1L3	TMR1L2	TMR1L1	TMR1L0	0000 0000	uuuu uuu
			TMR1L							0000 0000	uuuu uuu
20Dh	TMR1H	TMR1H7	TMR1H6	TMR1H5	TMR1H4	TMR1H3	TMR1H2	TMR1H1	TMR1H0	0000 0000	uuuu uuu
					TMF	1H				0000 0000	uuuu uuu
20Eh	T1CON	_	_	CKP	S<1:0>	_	SYNC	RD16	ON	0000 0000	uu -u0
20Fh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	_	0000 0x	uuuu ux-
210h	T1GATE	_	_	_		GSS<4:0>				0000	u uuu
211h	T1CLK	_	—	—	—	CS<3:0>				0000	uuu
212h	—				Unimplemented						
213h	—		Unimplemented								
214h	_				Unimple	mented					
215h	—				Unimple	mented					
216h	_				Unimple	mented					
217h	—				Unimple	mented					
218h	—				Unimple	mented					
219h	_				Unimple	mented					
21Ah	_				Unimple	mented					
21Bh	_				Unimple	mented					
21Ch	_				Unimple	mented					
21Dh	_			-	Unimple	mented		•			
21Eh	CCPTMRS0	P4TS	EL<1:0>	P3T5	SEL1:0>	C2TSE	L<1:0>	C1TS	EL<1:0>	0101 0101	0101 010
21Fh	—				Unimple	mented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

DS40001923A-page 65

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 6											
				CPU	CORE REGISTERS	; see Table 4-3 for	specifics				
30Ch	CCPR1L				RI	-				xxxx xxxx	uuuu uuuu
30Dh	CCPR1H				Rł	1				xxxx xxxx	uuuu uuuu
30Eh	CCP1CON	CCP1EN	_	CCP10UT	CCP1FMT		CCP1M0	DDE<3:0>		0000 0000	0000 0000
		_		—	_	CCP1MODE3	CCP1MODE2	CCP1MODE1	CCP1MODE0	0000 0000	0000 0000
30Fh	CCP1CAP				CCP1	СТЅ				0000 0000	0000 0000
		_	_	—	_	_	CCP1CTS2	CCP1CTS1	CCP1CTS0	0000 0000	0000 0000
310h	CCPR2L		RL								uuuu uuuu
311h	CCPR2H				Rŀ	1			XXXX XXXX	սսսս սսսս	
312h	CCP2CON	CCP2EN	_	CCP2OUT	CCP2FMT		CCP2MODE<3:0>			0000 0000	0000 0000
		_		—	_	CCP2MODE3	CCP2MODE2	CCP2MODE1	CCP2MODE0	0000 0000	0000 0000
313h	CCP2CAP				CCP2	CCP2CTS					0000 0000
		—	_	—	_	—	CCP2CTS2	CCP2CTS1	CCP2CTS0	0000 0000	0000 0000
314h	PWM3DCL	PWM3	DC<1:0>	—		—	_	—	—	xx	uu
		PWM3DC1	PWM3DC0	—		—		—	—	xx	uu
315h	PWM3DCH				PWM	3DC				XXXX XXXX	uuuu uuuu
		PWM3DC9	PWM3DC8	PWM3DC7	PWM3DC6	PWM3DC5	PWM3DC4	PWM3DC3	PWM3DC2	xxxx xxxx	uuuu uuuu
316h	PWM3CON	PWM3EN	—	PWM3OUT	PWM3POL	—		—	—	0-00	0-00
317h	—				Unimplei	nented					
318h	PWM4DCL	PWM4	DC<1:0>	—		—		—	—	xx	uu
		PWM4DC1	PWM4DC0	—		—		—	—	xx	uu
319h	PWM4DCH				PWM	4DC				XXXX XXXX	uuuu uuuu
		PWM4DC9	PWM4DC8	PWM4DC7	PWM4DC6	PWM4DC5	PWM4DC4	PWM4DC3	PWM4DC2	XXXX XXXX	uuuu uuuu
31Ah	PWM4CON	PWM4EN		PWM4OUT	PWM4POL			—		0-00	0-00
31Bh 31Fh	_				Unimpler	mented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

5.2 Register Definitions: Configuration Words

REGISTER	CO	NFIGURATIO								
		R/P-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1			
		FCMEN		CSWEN	LCDPEN	VBATEN	CLKOUTEN			
		bit 13					bit			
			D/D 4	11.4						
U-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1			
	RSTOSC2	RSTOSC1	RSTOSC0	—	FEXTOSC2	FEXTOSC1	FEXTOSC0			
bit 7							bit			
Legend:										
R = Readable	e bit	P = Programma	ble bit	x = Bit is unkno	wn U = Un	mplemented bit,	read as '1'			
'0' = Bit is cle		'1' = Bit is set		W = Writable bi		le when blank or				
bit 13	FCMEN: Fail-S 1 = FSCM tin 0 = FSCM tin		or Enable bit							
bit 12	Unimplement	ed: Read as '1'								
bit 11	CSWEN: Cloc	k Switch Enable I	oit							
	0	NOSC and NDI								
		C and NDIV bits			ware					
bit 10		D Charge Pump N nds to enable LC			eration					
		rge Pump forced								
bit 9		AT Pin Enable bit								
		ctionality is disat								
		ictionality is enab	•	as a battery con	nected to it					
bit 8		Clock Out Enable		ablady						
		EC (high, mid or function is disable			DSC2					
		function is enable	,							
	Otherwise:									
bit 7	This bit is igno	red. ed: Read as '1'								
	•									
bit 6-4		>: Power-up Defa			oscillator first use	d by user softwa	re			
		SC operating per								
		OSC with HFFR	Q = 4'b0000							
	101 = LFINT									
	011 = Reser	100 = SOSC								
	010 = EXTO		with EXTOSC o	perating per FE	(TOSC bits					
		00 mai 1x i EE,		por a ang por r =						
	001 = HFINT	OSC with 2x PLI	_ = 32 MHz, wit	h HFFRQ = '101	' and CDIV = '00	00'				
	001 = HFIN 000 = HFIN	FOSC with 2x PLI	_ = 32 MHz, wit	h HFFRQ = '101	' and CDIV = '00)	00'				
bit 3	001 = HFIN 000 = HFIN Unimplement	TOSC with 2x PLI TOSC with OSCF ed: Read as '1'	_ = 32 MHz, wit RQ = 32 MHz a	h HFFRQ = '101 and CDIV = 1:1		00'				
bit 3 bit 2-0	001 = HFIN ⁻ 000 = HFIN ⁻ Unimplement FEXTOSC<2:	TOSC with 2x PLI TOSC with OSCF ed: Read as '1' 0>:FEXTOSC Ex	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator	h HFFRQ = '101 and CDIV = 1:1		00'				
	001 = HFIN ⁻ 000 = HFIN ⁻ Unimplement FEXTOSC<2: 111 = EC (E	FOSC with 2x PLI FOSC with OSCF ed: Read as '1' 0>:FEXTOSC Ext xternal Clock) ab	_ = 32 MHz, wit RQ = 32 MHz a rernal Oscillator ove 8 MHz	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00,				
	001 = HFIN 000 = HFIN Unimplement FEXTOSC<2: 111 = EC (E 110 = EC (E	TOSC with 2x PLI TOSC with OSCF ed: Read as '1' 0>:FEXTOSC Ex	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator ove 8 MHz 100 kHz to 8 M	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00,				
	001 = HFIN 000 = HFIN Unimplement FEXTOSC<2: 111 = EC (E 110 = EC (E 101 = EC (E 100 = Oscilla	FOSC with 2x PLI FOSC with OSCF ed: Read as '1' D>:FEXTOSC Ext xternal Clock) ab xternal Clock) for xternal Clock) be ator not enabled	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator ove 8 MHz 100 kHz to 8 M	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00,				
	001 = HFIN 000 = HFIN Unimplement FEXTOSC<2: 111 = EC (E 110 = EC (E 101 = EC (E 100 = Oscilla 011 = Oscilla	FOSC with 2x PLI FOSC with OSCF ed: Read as '1' D>:FEXTOSC Ext xternal Clock) ab xternal Clock) for xternal Clock) be ator not enabled ator not enabled	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator ove 8 MHz 100 kHz to 8 M	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00,				
	001 = HFINT 000 = HFINT Unimplement FEXTOSC<2:: 111 = EC (E 110 = EC (E 101 = EC (E 100 = Oscilla 011 = Oscilla 010 = Oscilla	FOSC with 2x PLI FOSC with OSCF ed: Read as '1' D>:FEXTOSC Ext xternal Clock) ab xternal Clock) for xternal Clock) be ator not enabled	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator ove 8 MHz 100 kHz to 8 M	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00 [,]				

REGISTER 5-1: CONFIGURATION WORD 1: OSCILLATORS

condition or the VDD level.

BOR IS ALWAYS OFF

When the BOREN bits of the Configuration Words are

programmed to '00', the BOR is off at all times. The

device start-up is not delayed by the BOR ready

8.3.4

8.3.3 BOR CONTROLLED BY SOFTWARE

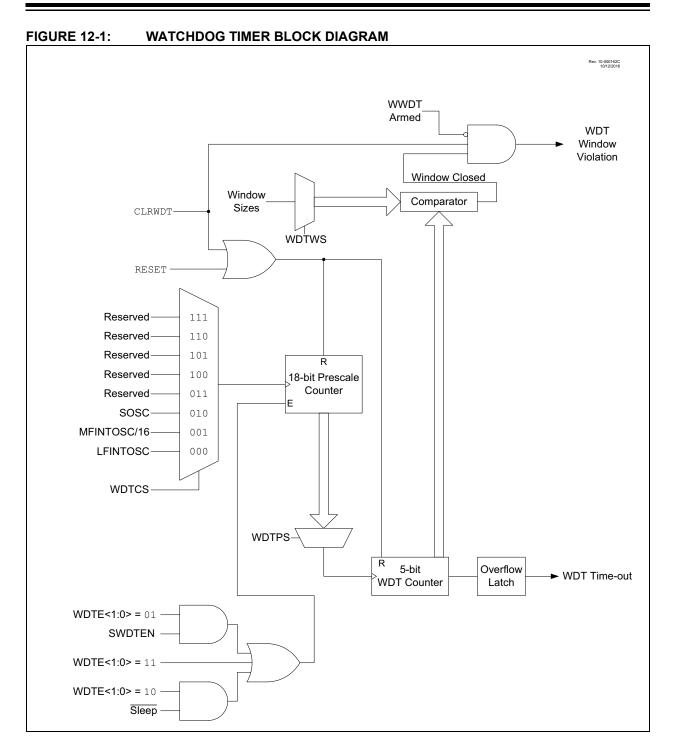
When the BOREN bits of Configuration Words are programmed to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

FIGURE 8-2: BROWN-OUT SITUATIONS

VDD VBOR Internal TPWRT(1) Reset VDD VBOR Internal < TPWR TPWRT⁽¹⁾ Reset VDD VBOR Internal TPWRT(1) Reset Note 1: TPWRT delay only if PWRTE bit is programmed to '0'.


© 2017 Microchip Technology Inc.

10.6 Register Definitions: Interrupt Control

REGISTER 10-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	/0 R/W-0/0	U-0	U-0	U-0	U-0	U-0	R/W-1/1		
GIE	PEIE	—	—	_	—	_	INTEDG		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	as '0'			
u = Bit is	= Bit is unchanged x = Bit is unknown			-n/n = Value	at POR and BO	R/Value at all	other Resets		
'1' = Bit is set '0' = Bit is cleared									
bit 7	GIE: Global I	nterrupt Enable	e bit						
	1 = Enables	all active interru	active interrupts						
	0 = Disables	all interrupts							
bit 6		eral Interrupt E							
		all active periph all peripheral ir		6					
bit 5-1		nted: Read as '	•						
bit 0	•								
		errupt Edge Sel on rising edge							
		on falling edge							
Note:	Interrupt flag bits a								
	condition occurs, r its corresponding	•							
	Enable bit, GIE, o								
	User software	should ensu	•						
	appropriate interr		are clear						
	prior to enabling a	in interrupt.							

PIC16(L)F19155/56/75/76/85/86

© 2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	229
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	229
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	230
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	230
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	231
ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	231
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	232
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	232
HIDRVB	_	_		—	—	—	HIDB1	—	232

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value at POR and BOR/Value at all other Re			other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 14-43: LATF: PORTF DATA LATCH REGISTER

bit 7-0 LATF<7:0>: RF<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTF are actually written to corresponding LATF register. Reads from PORTF register is return of actual I/O pin values.

REGISTER 14-44: ANSELF: PORTF ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSF7 | ANSF6 | ANSF5 | ANSF4 | ANSF3 | ANSF2 | ANSF1 | ANSF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSF<7:0>**: Analog Select between Analog or Digital Function on pins RF<7:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 14-45: WPUF: WEAK PULL-UP PORTF REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUF7 | WPUF6 | WPUF5 | WPUF4 | WPUF3 | WPUF2 | WPUF1 | WPUF0 |
| bit 7 | • | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUF<7:0>: Weak Pull-up Register bits⁽¹⁾

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

19.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO bit is set by hardware.

The Auto-conversion Trigger source is selected by the ADACT register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Register 19-33 for auto-conversion sources.

19.2.6 ADC CONVERSION PROCEDURE (BASIC MODE)

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRISx register)
 - Configure pin as analog (Refer to the ANSELx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Select voltage reference
 - Select ADC input channel
 - Precharge and acquisition
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable global interrupt (GIE bit)⁽¹⁾
- If ADACQ = 0, software must wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - · Polling the GO bit
 - Polling the ADIF bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

> 2: Refer to Section 19.3 "ADC Acquisition Requirements".

R-0/0	R-0/0	R-0/0 R/HS/HC		/0 R-0/0 R/HS/HC-0/0 U-0 R-0/0			R-0/0	R-0/0	R-0/0
OV	UTHR	LTHR	MATH	-		STAT<2:0>			
bit 7							bit		
Legend:									
R = Readable bit W = Writable bit					mented bit, rea				
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets		
'1' = Bit is se	et	'0' = Bit is cle	eared	HS/HC = Bit	is set/cleared b	y hardware			
bit 7		cumulator Ove	rflow bit RR calculation h	ave overflowe	h				
			ERR calculation						
bit 6	UTHR: ADC	Module Greate	er-than Upper Tl	hreshold Flag	bit				
	1 = ERR >U								
	0 = ERR ≤UT								
bit 5	1 = ERR <lt< td=""><td></td><td>han Lower Three</td><td>shold Flag bit</td><td></td><td></td><td></td></lt<>		han Lower Three	shold Flag bit					
	$1 = ERR \ge LT$								
bit 4	MATH: ADC	Module Comp	utation Status bi	t					
			UTH, LTH and th		updating or ha	ive already upo	lated		
	0 = Associate	ed registers/bit	s have not chan	ged since this	bit was last cle	ared			
bit 3	Unimplemer	nted: Read as	'0'						
bit 2-0			Cycle Multistage						
			^d conversion sta						
		.0 = ADC module is in 2 nd acquisition stage 01 = ADC module is in 2 nd precharge stage							
		100 = Not used							
		1 = ADC module is in 1 st conversion stage							
			t acquisition stag						
			^t precharge stag	е					
	000 = ADC n	nodule is not c	onverting						
	CS = 1 and FO	sc <fre td="" these<=""><td>hits may be inv</td><td>alid</td><td></td><td></td><td></td></fre>	hits may be inv	alid					

REGISTER 19-5: ADSTAT: ADC STATUS REGISTER

Note 1: If CS = 1, and FOSC<FRC, these bits may be invalid.

REGISTER 19-15: ADCNT: ADC REPEAT COUNTER REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
CNT<7:0>									
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0 **CNT<7:0>**: ADC Repeat Count bits Counts the number of times that the ADC has been triggered and is used along with RPT to determine when the error threshold is checked when the computation is Low-pass Filter, Burst Average, or Average modes. See Table 19-2 for more details.

REGISTER 19-16: ADFLTRH: ADC FILTER HIGH BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
FLTR<15:8>								
bit 7 b								

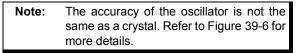
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **FLTR<15:8**>: ADC Filter Output Most Significant bits

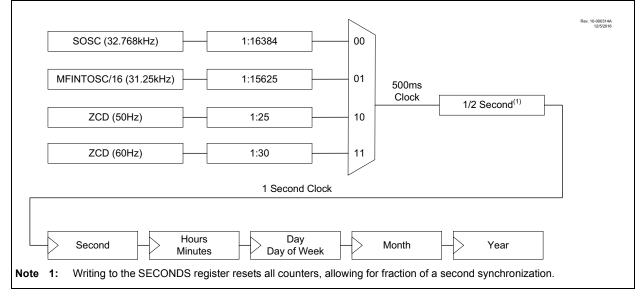
In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

REGISTER 19-17: ADFLTRL: ADC FILTER LOW BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x		
FLTR<7:0>									
bit 7							bit 0		
Legend:									


J		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **FLTR<7:0>**: ADC Filter Output Least Significant bits In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.


24.1.3 CLOCK SOURCES

The RTCC module can be clocked by either an external Real-Time Clock crystal oscillating at 32.768 kHz, MFINTOSC/16 (31.25 kHz) or via the ZCD at 50 Hz or 60 Hz. Each clock selection has a fixed prescaler in order to generate the required half-second clock needed by the RTCC. They are as following:

- SOSC (32.768 kHz) = 1:16384
- MFINTOSC/16 (31.25 kHz) = 1:15625
- ZCD (50 Hz) = 1:25
- ZCD (60 Hz) = 1:30

FIGURE 24-4: CLOCK SOURCE MULTIPLEXING

24.1.4 DIGIT CARRY RULES

This section explains which timer values are affected when there is a rollover.

- Time of Day: From 23:59:59 to 00:00:00 with a carry to the Day and Weekday field
- Month: From 12/31 to 01/01 with a carry to the Year field
- Day of Week: From 6 to 0 with no carry (see Table 24-1)
- Year Carry: From 99 to 00; this also surpasses the use of the RTCC

For the day to month rollover schedule, see Table 24-2.

Because the values are in BCD format, the carry to the upper BCD digit will occur at a count of 10 and not at 16 (SECONDS, MINUTES, HOURS, WEEKDAY, DAYS and MONTHS).

TABLE 24-1: DAY OF WEEK SCHEDULE

Day of Week							
Sunday	0						
Monday	1						
Tuesday	2						
Wednesday	3						
Thursday	4						
Friday	5						
Saturday	6						

Calibration of the RTCC can be performed to yield an error of three seconds or less per month (see **Section 24.1.7 "Calibration"** for further details).

PIC16(L)F19155/56/75/76/85/86

FIGURE 26-6:	TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE	
TMRxGE		
TxGPOL		
TxGSPM		
TxGTM		
TxGG <u>O/</u> DONE	Set by software Cleared by hardware or falling edge of TxGVAL Counting enabled on	I
selected gate source	rising edge of selected source	
ТхСКІ		
TxGV <u>AL</u>		
TMRxH:TMRxL Count	N N + 1 N + 2 N + 3 N + 4	
TMRxGIF	— Cleared by software — Cleared by software falling edge of TxGVAL → Cleared by software	

26.11 Peripheral Module Disable

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bit for Timer1 (TMR1MD) are in the PMD1 register. See **Section 16.0 "Peripheral Module Disable (PMD)"** for more information.

31.9 CWG Steering Mode

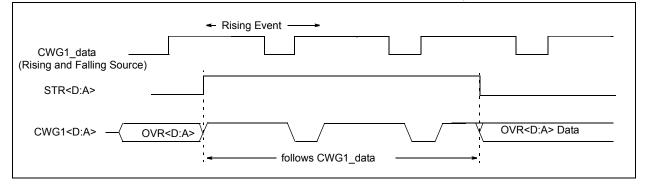
In Steering mode (MODE = 00x), the CWG allows any combination of the CWG1x pins to be the modulated signal. The same signal can be simultaneously available on multiple pins, or a fixed-value output can be presented.

When the respective STRx bit of CWG10CON0 is '0', the corresponding pin is held at the level defined. When the respective STRx bit of CWG10CON0 is '1', the pin is driven by the input data signal. The user can assign the input data signal to one, two, three, or all four output pins.

The POLx bits of the CWG1CON1 register control the signal polarity only when STRx = 1.

The CWG auto-shutdown operation also applies in Steering modes as described in **Section 31.10** "**Auto-Shutdown**". An auto-shutdown event will only affect pins that have STRx = 1.

31.9.1 STEERING SYNCHRONIZATION


Changing the MODE bits allows for two modes of steering, synchronous and asynchronous.

When MODE = 000, the steering event is asynchronous and will happen at the end of the instruction that writes to STRx (that is, immediately). In this case, the output signal at the output pin may be an incomplete waveform. This can be useful for immediately removing a signal from the pin.

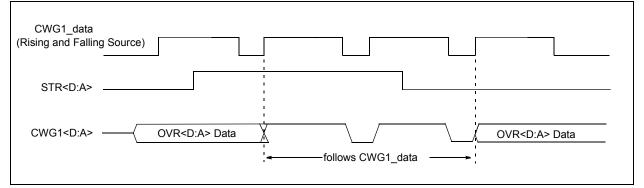

When MODE = 001, the steering update is synchronous and occurs at the beginning of the next rising edge of the input data signal. In this case, steering the output on/off will always produce a complete waveform.

Figure 31-10 and Figure 31-11 illustrate the timing of asynchronous and synchronous steering, respectively.

FIGURE 31-11: EXAMPLE OF STEERING EVENT (MODE<2:0> = 001)

32.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 32-3 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

TABLE 32-3: DATA GATING LOGIC EXAMPLES

CLCxGLSy	LCxGyPOL	Gate Logic
0x55	1	4-input AND
0x55	0	4-input NAND
0xAA	1	4-input NOR
0xAA	0	4-input OR
0x00	0	Logic 0
0x00	1	Logic 1

It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 32-7)
- Gate 2: CLCxGLS1 (Register 32-8)
- Gate 3: CLCxGLS2 (Register 32-9)
- Gate 4: CLCxGLS3 (Register 32-10)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register. Data gating is indicated in the right side of Figure 32-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

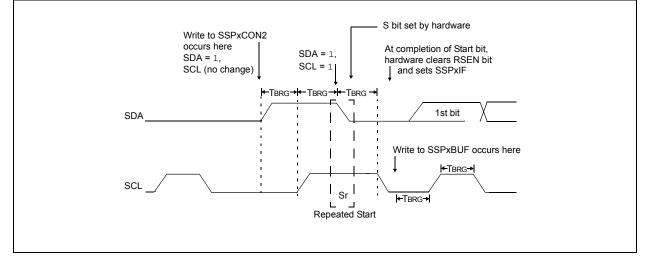
32.1.3 LOGIC FUNCTION

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- · Transparent Latch with Set and Reset

Logic functions are shown in Figure 32-2. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

32.1.4 OUTPUT POLARITY

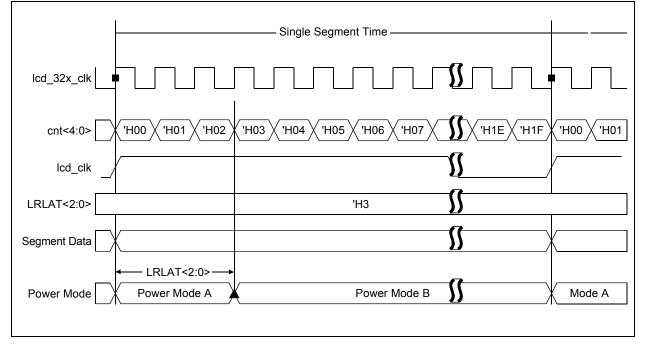

The last stage in the Configurable Logic Cell is the output polarity. Setting the LCxPOL bit of the CLCxPOL register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

33.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 33-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 33-27: REPEATED START CONDITION WAVEFORM


35.5.2 AUTOMATIC POWER MODE SWITCHING

Each segment within an LCD display is perceived electrically like a small capacitor. Due to this fact, power is mainly consumed during the transition periods when voltage is being supplied to the segments. So in order to manage total current consumption, the LCD reference ladder can be used in different power modes during these transition periods. Control of the LCD reference ladder is done through the LCDRL register (see Register 35-7).

The automatic power switching using Type-A/Type-B, can optimize the power consumption for a given contrast. As shown in Figure 35-3, Power Mode A is active for a programmable time, beginning when the LCD segment waveform is transitioning. The LRLAT<2:0> bits (LCDRL<2:0>) select how long Mode A is active. Power mode B is active for the remaining time before the segments or commons change again.

As shown in Figure 35-3, there are 32 counts in a single segment time. Type-A is used when the wave form is in transition. Type-B can be used when the segment voltage is stable or not in transition.

PIC16(L)F19155/56/75/76/85/86

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
78Ch					Unimpl	emented				
78Dh					Unimpl	emented				
78Eh	—				Unimpl	emented				
78Fh	—				Unimpl	emented				
790h	—		Unimplemented							
791h	—		Unimplemented							
792h	—		Unimplemented							
793h	—		Unimplemented							
794h					Unimpl	emented				
795h	—			1	Unimpl	emented		1		
796h	PMD0	SYSCMD	FVRMD	ACTMD	—	_	NVMMD	—	IOCMD	269
797h	PMD1	—	—	—	TMR4MD	_	TMR2MD	TMR1MD	TMR0MD	270
798h	PMD2	RTCCMD	DACMD	ADCMD	—	—	CMP2MD	CMP1MD	ZCDMD	271
799h	PMD3	—	—	—	—	PWM4MD	PWM3MD	CCP2MD	CCP1MD	272
79Ah	PMD4	UART2MD	UART1MD	—	MSSP1MD	—	—	—	CWG1MD	273
79Bh	PMD5	—	SMT1MD	LCDMD	CLC4MD	CLC3MD	CLC2MD	CLC1MD		274
79Ch					Unimpl	emented				
79Dh	_				Unimpl	emented				
79Eh	_				Unimpl	emented				
79Fh	_			-	Unimpl	emented				
80Ch	WDTCON0	—	—			WDTPS<4:0>			SWDTEN	196
80Dh	WDTCON1	—		WDTCS<2:0>		_		WINDOW<2:0	>	197
80Eh	WDTPSL				PS	CNT				198
80Fh	WDTPSH				PS	CNT				198
810h	WDTTMR	_		WDTTM	1R<3:0>		STATE	PSCNT17	PSCNT16	198
811h	BORCON	SBOREN	_	_	_	_	_	—	BORRDY	135
812h	VREGCON	_	_	_	_	_	_	VREGPM	_	189
813h	PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	140
814h	PCON1	_		_	—	_	_	MEMV	VBATBOR	141
815h	_				Unimpl	emented				
816h	_				Unimpl	emented				
817h	_				Unimpl	emented				
818h	_				Unimpl	emented				
819h	_				Unimpl	emented				
81Ah	NVMADRL	NVMADR7	NVMADR6	NVMADR5	NVMADR4	NVMADR3	NVMADR2	NVMADR1	NVMADR0	216
81Bh	NVMADRH	_	NVMADR14	NVMADR13	NVMADR12	NVMADR11	NVMADR10	NVMADR9	NVMADR8	216
81Ch	NVMDATL	NVMDAT7	NVMDAT6	NVMDAT5	NVMDAT4	NVMDAT3	NVMDAT2	NVMDAT1	NVMDAT0	216
81Dh	NVMDATH			NVMDAT13	NVMDAT12	NVMDAT11	NVMDAT10	NVMDAT9	NVMDAT8	216
81Eh	NVMCON1	_	NVMREGS	LWLO	FREE	WRERR	WREN	WR	RD	217
81Fh	NVMCON2				NVMCC)N2<7:0>				218
88Ch	CPUDOZE	IDLEN	DOZEN	ROI	DOE	_	DOZE2	DOZE1	DOZE0	190
88Dh	OSCCON1	_		NOSC<2:0>				V<3:0>		152
88Eh	OSCCON2	_		COSC<2:0>			CDI	V<3:0>		152
88Fh	OSCCON3	CSWHOLD	SOSCPWR		ORDY	NOSCR			_	154
890h	OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	_	PLLR	155
Legend:	x = unknown,	u = unchange	d, g = depends	on condition, -	= unimplemented	l, read as '0', r	= reserved. Sh	naded locations	unimplemented,	read as '0'.

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Note 1: Unimplemented data memory locations, read as '0'.