

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19156-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F19155/56/75/76/85/86 are described within this data sheet. The PIC16(L)F19155/56/75/76/85/86 devices are available in 48-pin TQFP and UQFN, 44-pin TQFP and UQFN, 40-pin PDIP and 28-pin SPDIP, SOIC, SSOP and UQFN packages. Figure 1-1 shows a block diagram of the PIC16(L)F19155/56/75/76/85/86 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

SUMMARY			
Peripheral		PIC16(L)F19155/56/75/76/85/86	
Analog-to-Digital Converter with Computation	on (ADC ²)	٠	
Digital-to-Analog Converter (DAC1)		٠	
Fixed Voltage Reference (FVR)		•	
Enhanced Universal Synchronous/Asynchron Transmitter (EUSART1 and EUSART2)	nous Receiver/	٠	
Temperature Indicator Module (TIM)		٠	
Zero-Cross Detect (ZCD1)		٠	
Real-Time Calendar and Clock (RTCC)			
Liquid Crystal Display (LCD)		٠	
Capture/Compare/PWM Modules (CCP)			
	CCP1	٠	
Composition Markela (Oci)	CCP2	٠	
Comparator Module (Cx)	C1	•	
	C1	•	
Configurable Logic Cell (CLC)	01		
	CLC1	•	
	CLC2	•	
	CLC3	•	
	CLC4	٠	
Complementary Waveform Generator (CWG)			
	CWG1	•	
Master Synchronous Serial Ports (MSSP)			
	MSSP1	٠	
Pulse-Width Modulator (PWM)		1	
	PWM3	٠	
	PWM4	٠	
Signal Measure Timer (SMT)			
	SMT1	٠	
Timers			
	Timer0	٠	
	Timer1	٠	
	Timer2	٠	
	Timer4	٠	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 20											
				CPU	CORE REGISTERS	6; see Table 4-3 for	rspecifics				
A0Ch	u — Unimplemented										
A0Dh	_				Unimple	mented					
A0Eh	_				Unimple	mented					
A0Fh	_				Unimple	mented					
A10h	_				Unimple	mented					
A11h	_				Unimple	mented					
A12h	_				Unimple	mented					
A13h	_				Unimple	mented					
A14h	—				Unimple	mented					
A15h	—				Unimple	mented					
A16h	—				Unimple	mented					
A17h	—				Unimple	mented					
A18h	—				Unimple	mented					
A19h	RC2REG				RC2F	REG				0000 0000	0000 0000
A1Ah	TX2REG				TX2F	REG				0000 0000	0000 000
A1Bh	SP2BRGL				SP2B	RGL				0000 0000	0000 0000
A1Ch	SP2BRGH				SP2B	RGH				0000 0000	0000 000
A1Dh	RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 000
A1Eh	TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 001
A1Fh	BAUD2CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-0

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

r						. ,				,	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 63 (Continued)											
1FD0h	_		Unimplemented								
1FD1h	_				Unimpler	nented					
1FD2h	_				Unimpler	nented					
1FD3h	_				Unimpler	nented					
1FD4h	_				Unimpler	nented					
1FD5h	_				Unimpler	nented					
1FD6h	_				Unimpler	nented					
1FD7h	_		Unimplemented								
1FD8h	_				Unimpler	nented					
1FD9h	—				Unimpler	nented					
1FDAh	—				Unimpler	nented					
1FDBh	—				Unimpler	nented					
1FDCh	—				Unimpler	nented					
1FDDh	—				Unimpler	mented					
1FDEh	—				Unimpler	mented					
1FDFh	—				Unimpler	mented					
1FE0h	—				Unimpler	mented					
1FE1h	—		Unimplemented								
1FE2h	—				Unimpler	mented					
1FE3h	—				Unimpler	mented					

Note 1: Unimplemented data memory locations, read as '0'.

Preliminary

8.15 Power Control (PCON) Registers

The Power Control (PCON) registers contain flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Watchdog Timer Window Violation Reset
 (WDTWV)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)
- Memory Violation Reset (MEMV)
- VBAT Reset (VBATBOR)

The PCON0 register bits are shown in Register 8-2.

The PCON1 register bits are shown in Register 8-3.

Hardware will change the corresponding register bit during the Reset process; if the Reset was not caused by the condition, the bit remains unchanged (Table 8-4).

Software should reset the bit to the inactive state after the restart (hardware will not reset the bit).

Software may also set any PCON bit to the active state, so that user code may be tested, but no reset action will be generated.

All bits in PCON1 and PCON0 will maintain their state when either VDD or VBAT is powered.

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0		
		TMR0IF	IOCIF	_	_	_	INTF ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'			
u = Bit is u	nchanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is :	set	'0' = Bit is clea	ared	HS= Hardwa	re Set				
bit 7-6	Unimplemer	nted: Read as 'o)'						
bit 5		er0 Overflow In							
		register has ove register did not		t be cleared in	software)				
bit 4	IOCIF: Interr	upt-on-Change	Interrupt Flag	bit (read-only)	(2)				
		more of the IOC d by the IOC mo		gister bits are o	currently set, ind	icating an ena	bled edge was		
		f the IOCAF-IOC		oits are current	ly set				
bit 3-1	Unimplemer	nted: Read as 'o)'						
bit 0	INTF: INT EX	ternal Interrupt	Flag bit ⁽¹⁾						
	 1 = The INT external interrupt occurred (must be cleared in software) 0 = The INT external interrupt did not occur 								
 Note 1: The External Interrupt GPIO pin is selected by INTPPS (Register 15-1). 2: The IOCIF bit is the logical OR of all the IOCAF-IOCEF flags. Therefore, to clear the IOCIF flag, application firmware must clear all of the lower level IOCAF-IOCEF register bits. 									

REGISTER 10-11:	PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0
-----------------	--

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of							
	its corresponding enable bit or the Global							
	Enable bit, GIE, of the INTCON register.							
	User software should ensure the							
	appropriate interrupt flag bits are clear							
	prior to enabling an interrupt.							

REGISTER 10-13: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

U-0	R/W/HS-0/0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
_	ZCDIF			_	_	C2IF	C1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7	Unimplemented: Read as '0'
bit 6	ZCDIF: Zero-Cross Detect (ZCD1) Interrupt Flag bit
	 1 = An enabled rising and/or falling ZCD1 event has been detected (must be cleared in software) 0 = No ZCD1 event has occurred
bit 5-2	Unimplemented: Read as '0'
bit 1	C2IF : Comparator C2 Interrupt Flag bit 1 = Comparator 2 interrupt asserted (must be cleared in software) 0 = Comparator 2 interrupt not asserted
bit 0	C1IF: Comparator C1 Interrupt Flag bit 1 = Comparator 1 interrupt asserted (must be cleared in software) 0 = Comparator 1 interrupt not asserted
Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of

Note:	Interrupt flag bits are set when an interrupt							
	condition occurs, regardless of the state of							
	its corresponding enable bit or the Global							
	Enable bit, GIE, of the INTCON register.							
	User software should ensure the							
	appropriate interrupt flag bits are clear							
	prior to enabling an interrupt.							

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	222
TRISA	TRISA7	TRISA6	(1)	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	222
LATA	LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0	223
ANSELA	ANSA7	ANSA6	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	223
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	224
ODCONA	ODCA7	ODCA6	—	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	224
SLRCONA	SLRA7	SLRA6	—	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	225
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	225

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: Unimplemented, read as '1'.

-n/n = Value at POR and BOR/Value at all other Resets

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimpler	mented bit, read	as '0'		

REGISTER 14-11: LATB: PORTB DATA LATCH REGISTER

bit 7-0 LATB<7:0>: RB<7:0> Output Latch Value bits⁽¹⁾

u = Bit is unchanged

'1' = Bit is set

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 14-12: ANSELB: PORTB ANALOG SELECT REGISTER

x = Bit is unknown

'0' = Bit is cleared

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSB7 | ANSB6 | ANSB5 | ANSB4 | ANSB3 | ANSB2 | ANSB1 | ANSB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ANSB<7:0>: Analog Select between Analog or Digital Function on pins RB<7:0>, respectively

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

SLRE7 SLRE6 SLRE5 SLRE4 SLRE3 — SLRE1 bit 7 Legend:	R/W-1/1				
bit 7 Legend:					
Legend:	SLRE0				
-	bit C				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all othe	er Resets				
'1' = Bit is set '0' = Bit is cleared					

REGISTER 14-39: SLRCONE: PORTE SLEW RATE CONTROL REGISTER

bit 7-3	SLRE<7:3>: PORTE Slew Rate Enable bits
	For RE<7:0> pins, respectively
	1 = Port pin slew rate is limited
	0 = Port pin slews at maximum rate
bit 2	Unimplemented: Read as '0'
bit 1-0	SLRE<1:0>: PORTE Slew Rate Enable bits
bit 1-0	SLRE<1:0>: PORTE Slew Rate Enable bits For RE<1:0> pins, respectively

0 = Port pin slews at maximum rate

REGISTER 14-40: INLVLE: PORTE INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1
INLVLE7	INLVLE6	INLVLE5	INLVLE4	INLVLE3	—	INLVLE1	INLVLE0
bit 7				•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	INLVLE<7:3>: PORTE Input Level Select bits
	For RE<7:3> pins, respectively
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change
bit 2	Unimplemented: Read as '0'
bit 1-0	INLVLE<1:0>: PORTE Input Level Select bits
	For RE<1:0> pins, respectively
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change

REGISTER 19-20: ADRESH: ADC RESULT REGISTER HIGH, FM = 1

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—	ADRES<11:8>			
bit 7			•				bit 0
Legend:							

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is cleared

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ADRES<11:8>: ADC Sample Result bits. Upper four bits of 12-bit conversion result.

REGISTER 19-21: ADRESL: ADC RESULT REGISTER LOW, FM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<7:0>							
bit 7 bit							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADRES<7:0>**: ADC Result Register bits. Lower eight bits of 12-bit conversion result.

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	MINH<2:0>			MINL<3:0>				
bit 7	bit						bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as					as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

REGISTER 24-8: MINUTES⁽¹⁾: MINUTE VALUE REGISTER

bit 7 Unimplemented: Read as '0'

bit 6-4 MINH<2:0>: Binary Coded Decimal value of minutes '10' digit; valid values from 0 to 5
--

bit 3-0 MINL<3:0>: Binary Coded Decimal value of minutes '1' digit; valid values from 0 to 9

Note 1: Writes to the MINUTE registers are only allowed when RTCWREN = 1.

REGISTER 24-9: SECONDS⁽¹⁾: SECOND VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—		SECH<2:0>			SECL<3:0>				
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

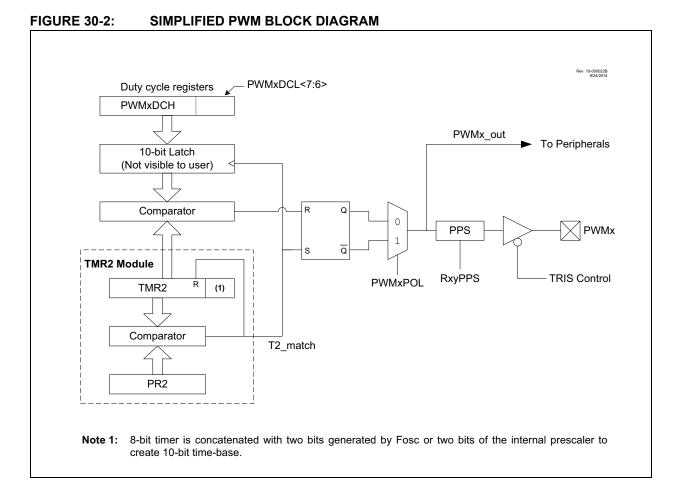
bit 7 Unimplemented: Read as '0'

bit 6-4 SECH<2:0>: Binary Coded Decimal value of seconds '10' digit; valid values from 0 to 5

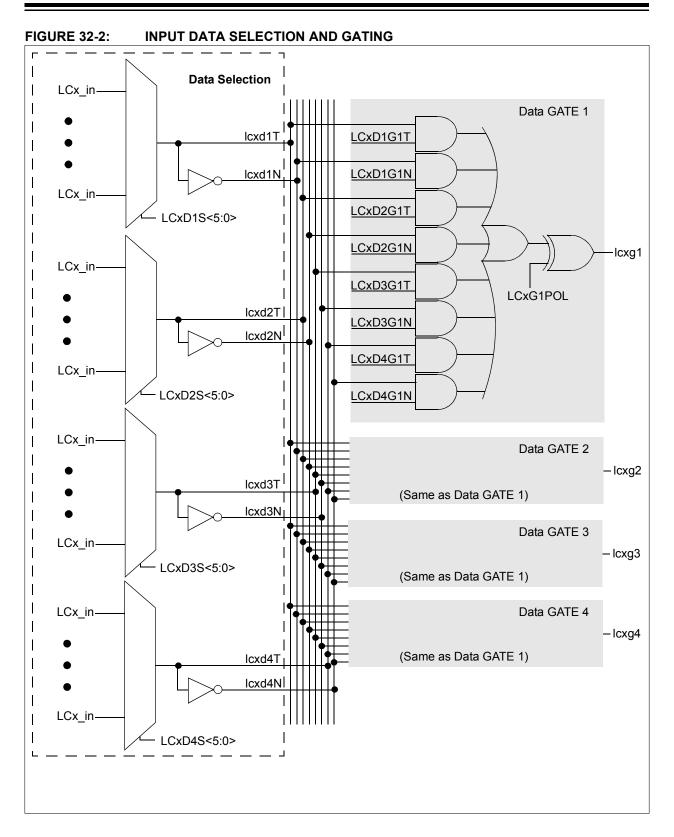
bit 3-0 SECL<3:0>: Binary Coded Decimal value of seconds '1' digit; valid values from 0 to 9

Note 1: Writes to the SECOND registers are only allowed when RTCWREN = 1.

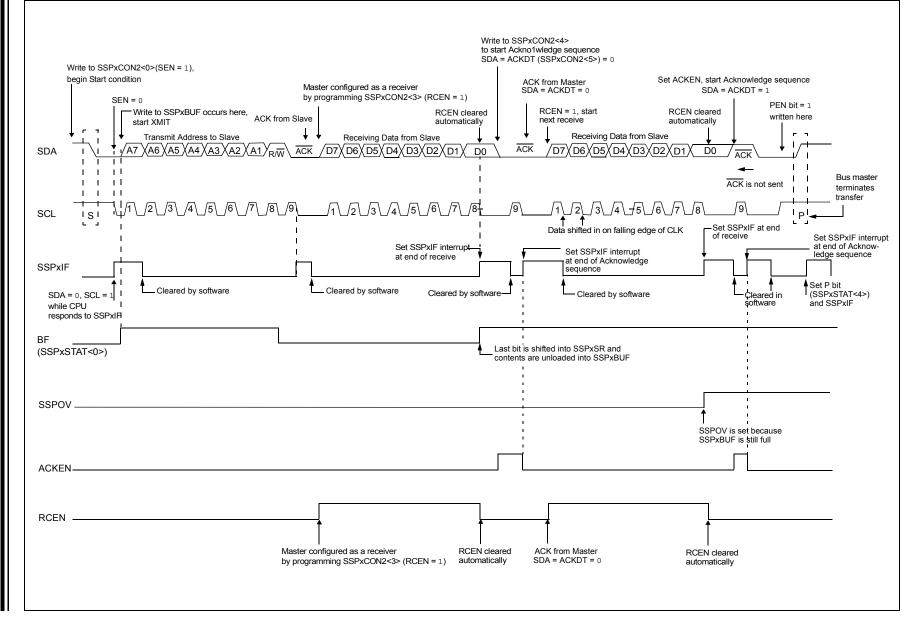
30.1 Standard PWM Mode

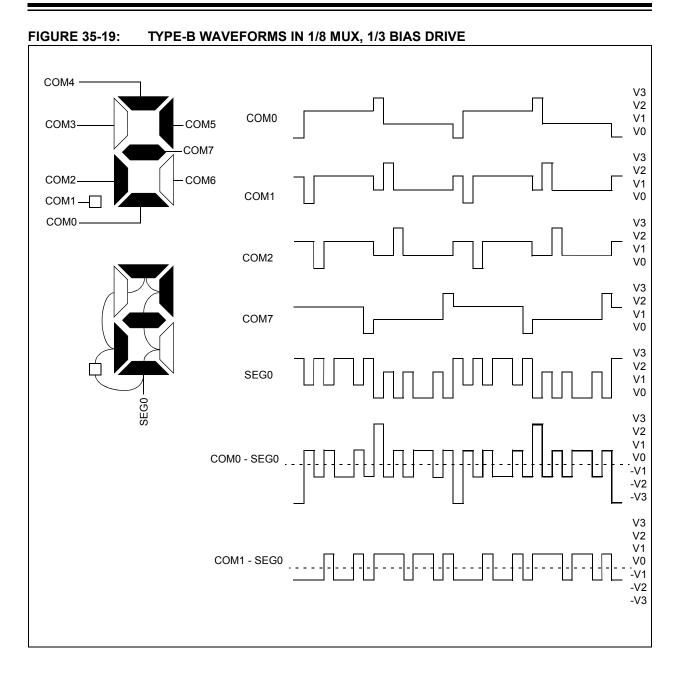

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the PWMx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- TMR2 register
- PR2 register
- PWMxCON registers
- PWMxDCH registers
- PWMxDCL registers


Figure 30-2 shows a simplified block diagram of PWM operation.

If PWMPOL = 0, the default state of the output is '0'. If PWMPOL = 1, the default state is '1'. If PWMEN = 0, the output will be the default state.


- Note 1: The corresponding TRIS bit must be cleared to enable the PWM output on the PWMx pin.
 - 2: Two identical Timer2 modules are implemented on this device. The timers are named Timer2 and Timer4. All references to Timer2 apply as well to Timer4. All references to T2PR apply as well to T4PR.



© 2017 Microchip Technology Inc.

FIGURE 33-29: I²C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
1E95h	_				Unimpl	emented					
1E96h	_				Unimpl	emented					
1E97h	_		Unimplemented								
1E98h	_		Unimplemented								
1E99h	_		Unimplemented								
1E9Ah	_		Unimplemented								
1E9Bh	_		Unimplemented								
1E9Ch	T2AINPPS	_	_	_			T2INPPS<4:0	>		264	
1E9Dh	T4AINPPS	—	_	_			T4INPPS<4:0	>		264	
1E9Eh	_				Unimpl	emented					
1E9Fh	-				Unimpl	emented					
1EA0h	-				Unimpl	emented					
1EA1h	CCP1PPS	_	—	_			CCP1PPS<4:0	>		264	
1EA2h	CCP2PPS	_	—	_			CCP2PPS<4:0	>		264	
1EA3h	_			•	Unimpl	emented					
1EA4h	_		Unimplemented								
1EA5h	_		Unimplemented								
1EA6h	_	Unimplemented									
1EA7h	_	Unimplemented									
1EA8h	_				Unimpl	emented					
1EA9h	SMT1WINPPS	_	_	_		S	MT1WINPPS<4	1:0>		264	
1EAAh	SMT1SIGPPS	_	_	_		S	MT1SIGPPS<4	:0>		264	
1EABh	_				Unimpl	emented					
1EACh	_				Unimpl	emented					
1EADh	_				Unimpl	emented					
1EAEh	_				Unimpl	emented					
1EAFh	_				Unimpl	emented					
1EB0h	-				Unimpl	emented					
1EB1h	CWG1PPS	_	_	_			CWG1PPS<4:0)>		264	
1EB2h	_				Unimpl	emented					
1EB3h	_				Unimpl	emented					
1EB4h	_				Unimpl	emented					
1EB5h	_				Unimpl	emented					
1EB6h	_				Unimpl	emented					
1EB7h	_				Unimpl	emented					
1EB8h	_				Unimpl	emented					
1EB9h					· · · · · · · · · · · · · · · · · · ·	emented					
1EBAh	_				•	emented					
1EBBh	CLCIN0PPS	_	_	_			CLCIN0PPS<4:	0>		264	
1EBCh	CLCIN1PPS	_	_	_			CLCIN1PPS<4:			264	
1EBDh	CLCIN2PPS	_		_			CLCIN2PPS<4:			264	

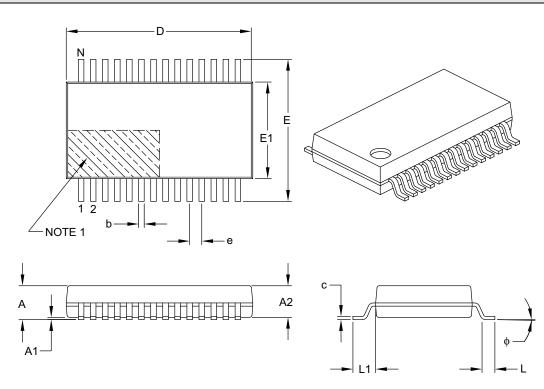
TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
1FD0h	—		Unimplemented								
1FD1h	—		Unimplemented								
1FD2h	—				Unimpl	emented					
1FD3h	—				Unimpl	emented					
1FD4h	—				Unimpl	emented					
1FD5h	—				Unimpl	emented					
1FD6h	—				Unimpl	emented					
1FD7h	—				Unimpl	emented					
1FD8h	—				Unimpl	emented					
1FD9h	—				Unimpl	emented					
1FDAh	—				Unimpl	emented					
1FDBh	—		Unimplemented								
1FDCh	—		Unimplemented								
1FDDh	—		Unimplemented								
1FDEh	—		Unimplemented								
1FDFh	—	Unimplemented									
1FE0h	—		Unimplemented								
1FE1h	—		Unimplemented								
1FE2h	—		Unimplemented								
1FE3h	—		Unimplemented								
1FE4h	STATUS_SHAD	—	Z_SHAD DC_SHAD C_SHAD								
1FE5h	WREG_SHAD				WREG_S	SHAD<7:0>					
1FE6h	BSR_SHAD	_	BSR SHAD<4:0>								
1FE7h	PCLATH_SHAD	_			PC	LATH_SHAD<	6:0>				
1FE8h	FSR0L_SHAD		FSR0L_SHAD<7:0>								
1FE9h	- FSR0H SHAD		FSR0H SHAD<7:0>								
1FEAh	FSR1L SHAD		FSR1L SHAD<7:0>								
1FEBh	 FSR1H_SHAD		FSR1H SHAD<7:0>								
1FECh	_					emented					
1FEDh	STKPTR	_	_	_			STKPTR<4:0	>			
1FEEh	TOSL			1	TOS	_<7:0>				1	
1FEFh	TOSH	_			100	TOSH<6:0>					
Legend:			I	on condition			= received S	haded locations	unimplemented.	road as '0'	

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES


Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

The following sections give the technical details of the packages.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

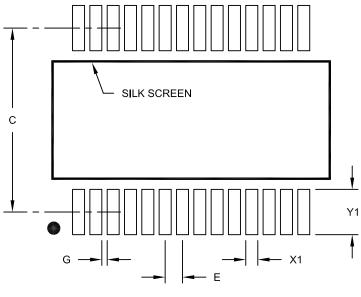
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	e		0.65 BSC			
Overall Height	A	_	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	9.90	10.20	10.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	С	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.


- 3. Dimensioning and tolerancing per ASME 114.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

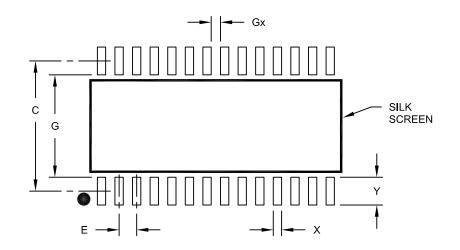
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	MILLIMETERS			
Dimension	Dimension Limits				
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	C 7.20				
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	MILLIMETERS			
Dimension	MIN	NOM	MAX		
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width (X28)	X			0.60	
Contact Pad Length (X28)	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A