

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХГ

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19156t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 62											
				CPU	CORE REGISTERS	; see Table 4-3 for	specifics				
1F0Ch	_				Linimalo	mantad				·	
1F0Ch					Unimpler Unimpler						
1F0Eh					Unimpler						
1F0Fh					Unimpler						
1F10h	RA0PPS	_	_		RA0PPS4	RA0PPS3	RA0PPS2	RA0PPS1	RA0PPS0	0000 0000	uu uuuu
1F11h	RAIPPS	_			RA1PPS4	RAIPPS3	RAIPPS2	RAIPPS1	RAIPPS0	0000 0000	uu uuuu
1F12h	RAIPPS RA2PPS				RA1FF34 RA2PPS4	RAIPPS3 RA2PPS3	RAIPPS2 RA2PPS2	RAIPPS1 RA2PPS1	RAIPPS0 RA2PPS0	0000 0000	
1F12h	RA3PPS				RA2FF34 RA3PPS4	RA3PPS3	RA3PPS2	RA3PPS1	RA3PPS0	0000 0000	uu uuuu
1F13h	RA3PPS				RA4PPS4	RA3PPS3 RA4PPS3	RA3PPS2 RA4PPS2	RA3PPS1	RA3PPS0 RA4PPS0	0000 0000	uu uuuu uu uuuu
1F15h	RASPPS	_		_	RA5PPS4	RA5PPS3	RA5PPS2	RA5PPS1	RA5PPS0	0000 0000	uu uuuu
1F16h	RA6PPS	_		_	RA6PPS4	RA6PPS3	RA6PPS2	RA6PPS1	RA6PPS0	0000 0000	uu uuuu
1F17h	RA7PPS	_	_	_	RA7PPS4	RA7PPS3	RA7PPS2	RA7PPS1	RA7PPS0	0000 0000	uu uuuu
1F18h	RB0PPS	_		_	RB0PPS4	RB0PPS3	RB0PPS2	RB0PPS1	RB0PPS0	0000 0000	uu uuuu
1F19h	RB1PPS		_	_	RB1PPS4	RB1PPS3	RB1PPS2	RB1PPS1	RB1PPS0	0000 0000	uu uuuu
1F1Ah	RB2PPS		_	_	RB2PPS4	RB2PPS3	RB2PPS2	RB2PPS1	RB2PPS0	0000 0000	uu uuuu
1F1Bh	RB3PPS	_			RB3PPS4	RB3PPS3	RB3PPS2	RB3PPS1	RB3PPS0	0000 0000	uu uuuu
1F1Ch	RB4PPS	_			RB4PPS4	RB4PPS3	RB4PPS2	RB4PPS1	RB4PPS0	0000 0000	uu uuui
1F1Dh	RB5PPS	_	_		RB5PPS4	RB5PPS3	RB5PPS2	RB5PPS1	RB5PPS0	0000 0000	uu uuui
1F1Eh	RB6PPS	_			RB6PPS4	RB6PPS3	RB6PPS2	RB6PPS1	RB6PPS0	0000 0000	uu uuuu
1F1Fh	RB7PPS	_	_	_	RB7PPS4	RB7PPS3	RB7PPS2	RB7PPS1	RB7PPS0	0000 0000	uu uuui

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

5.6 Device ID and Revision ID

The 14-bit Device ID word is located at 8006h and the 14-bit Revision ID is located at 8005h. These locations are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID, Revision ID and Configuration Words. These locations can also be read from the NVMCON register.

5.7 Register Definitions: Device and Revision

REGISTER 5-6: DEVID: DEVICE ID REGISTER

		R	R	R	R	R	R
				DEV<	:13:8>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
			DEV	<7:0>			
bit 7							bit 0
Legend:							
	1.11						

R = Readable bit '1' = Bit is set

et '0' = Bit is cleared

bit 13-0 **DEV<13:0>:** Device ID bits

Device		D	EVID<	13:0>`	Values
PIC16F19155/56	11	0000	1001	1110	(309Eh)
PIC16LF19155/56	11	0000	1001	1111	(309Fh)
PIC16F19175/76	11	0000	1010	0000	(30A0h)
PIC16LF19175/76	11	0000	1010	0001	(30A1h)
PIC16F19185/86	11	0000	1010	0010	(30A2h)
PIC16LF19185/86	11	0000	1010	0011	(30A3h)

R/W-0/0	R/W/HC/HS-0/0	R/W-0/0	R/W/HC/HS-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
IDLEN	DOZEN ^(1,2) ROI DOE			— DOZE<2:0>				
bit 7							bit C	
Legend:								
R = Readab	ole bit	W = Writabl	e bit	U = Unimpl	emented bit, re	ead as '0'		
u = Bit is un	changed	x = Bit is un	known	-n/n = Value Resets	e at POR and I	BOR/Value at a	all other	
'1' = Bit is se	et	'0' = Bit is c	leared		ware clear-able ware set-able	e		
bit 7		truction plac	es device into Idle es the device into		ode			
bit 6	DOZEN: Doze En 1 = Places the C 0 = Places the C	PU into DO	ZE mode mal mode of opera	tion				
bit 5	ROI: Recover-on 1 = Entering the 0 = Entering ISR	Interrupt Se	rvice Routine (ISR) makes DO	ZEN = 0			
bit 4	DOE: Doze on E 1 = Exiting ISR r 0 = Exiting ISR (makes DOZE						
bit 3	Unimplemented	: Read as '0	,					
bit 2-0	DOZE<2:0>: Rat 111 =1:256 110 =1:128 101 =1:64 100 =1:32 011 =1:16 010 =1:8 001 =1:4 000 =1:2	io of CPU In	struction Cycles to	Peripheral	Instruction Cyc	les		

Note 1: Refer to Table 11-1 for more information.

R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
UART2MD	UART1MD	—	MSSP1MD	—	—	—	CWG1MD
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	t POR and BOR	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ired	q = Value dep	ends on conditio	on	
bit 7 bit 6 bit 5	1 = EUSART2 module disabled 0 = EUSART2 module enabled						
bit 4							
bit 3-1 bit 0	-	ted: Read as '0 sable CWG1 bi					
	1 = CWG1 m	odule disabled odule enabled	-				

REGISTER 16-5: PMD4: PMD CONTROL REGISTER 4

19.2 ADC Operation

19.2.1 STARTING A CONVERSION

To enable the ADC module, the ON bit of the ADCON0 register must be set to a '1'. A conversion may be started by any of the following:

- Software setting the GO bit of ADCON0 to '1'
- An external trigger (selected by Register 19-3)
- A continuous-mode retrigger (see section Section 19.5.8 "Continuous Sampling mode")

Note: The GO bit should not be set in the same instruction that turns on the ADC. Refer to Section 19.2.6 "ADC Conversion Procedure (Basic Mode)".

19.2.2 COMPLETION OF A CONVERSION

When any individual conversion is complete, the value already in ADRES is written into PREV (if ADPSIS = 1) and the new conversion results appear in ADRES. When the conversion completes, the ADC module will:

- Clear the GO bit (unless the CONT bit of ADCON0 is set)
- · Set the ADIF Interrupt Flag bit
- Set the ADMATH bit
- Update ACC

When ADDSEN = 0 then after every conversion, or when ADDSEN = 1 then after every other conversion, the following events occur:

- ERR is calculated
- ADTIF is set if ERR calculation meets threshold comparison

Importantly, filter and threshold computations occur after the conversion itself is complete. As such, interrupt handlers responding to ADIF should check ADTIF before reading filter and threshold results.

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

19.2.3 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the ADCRC option. When the ADCRC oscillator source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ON bit remains set.

19.2.4 EXTERNAL TRIGGER DURING SLEEP

If the external trigger is received during sleep while ADC clock source is set to the FRC, ADC module will perform the conversion and set the ADIF bit upon completion.

If an external trigger is received when the ADC clock source is something other than FRC, the trigger will be recorded, but the conversion will not begin until the device exits Sleep.

© 2017 Microchip Technology Inc.

REGISTER 19-27: ADSTPTH: ADC THRESHOLD SETPOINT REGISTER HIGH

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			STPT•	<15:8>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets

bit 7-0 **STPT<15:8>**: ADC Threshold Setpoint MSB. Upper byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 19-29 for more details.

REGISTER 19-28: ADSTPTL: ADC THRESHOLD SETPOINT REGISTER LOW

'0' = Bit is cleared

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | STPT | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **STPT<7:0>**: ADC Threshold Setpoint LSB. Lower byte of ADC threshold setpoint, depending on ADCALC, may be used to determine ERR, see Register 19-30 for more details.

REGISTER 19-29: ADERRH: ADC SETPOINT ERROR REGISTER HIGH

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			ERR<	15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ERR<15:8>**: ADC Setpoint Error MSB. Upper byte of ADC Setpoint Error. Setpoint Error calculation is determined by ADCALC bits of ADCON3, see Register 19-4 for more details.

© 2017 Microchip Technology Inc.

'1' = Bit is set

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	ALRMHMONTH		ALRMLMO	NTH <3:0>	
bit 7							bit 0

REGISTER 24-12: ALRMMTH: ALARM MONTH CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4 ALRMHMONTH: Binary Coded Decimal value of months '10' digit; valid value from 0 to 1

bit 3-0 ALRMLMONTH<3:0>: Binary Coded Decimal value of months '1' digit; valid value from 0 to 9

REGISTER 24-13: ALRMWD: ALARM WEEKDAY CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	_	—	—	AL	RMLWDAY<2:0)>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Read as '0'

bit 2-0 ALRMLWDAY<2:0>: Binary Coded Decimal value of weekdays '1' digit; valid values from 0 to 6.

REGISTER 24-14: ALRMDAY: ALARM DAY CONTROL REGISTER

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	ALRMHDAY<1:0>		ALRMLDAY<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-4 ALRMHDAY<1:0>: Binary Coded Decimal value of days '10' digit; valid value from 0 to 3

bit 3-0 ALRMLDAY<3:0>: Binary Coded Decimal value of days '1' digit; valid value from 0 to 9

27.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)
- Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

28.2 SMT Operation

The core of the module is the 24-bit counter, SMTxTMR combined with a complex data acquisition front-end. Depending on the mode of operation selected, the SMT can perform a variety of measurements summarized in Table .

28.2.1 CLOCK SOURCES

Clock sources available to the SMT include:

- Fosc
- Fosc/4
- HFINTOSC
- MFINTOSC (500 kHz and 31.25 kHz)
- LFINTOSC
- SOSC

The SMT clock source is selected by configuring the CSEL<2:0> bits in the SMTxCLK register. The clock source can also be prescaled using the PS<1:0> bits of the SMTxCON0 register. The prescaled clock source is used to clock both the counter and any synchronization logic used by the module.

28.2.2 PERIOD MATCH INTERRUPT

Similar to other timers, the SMT triggers an interrupt when SMTxTMR rolls over to '0'. This happens when SMTxTMR = SMTxPR, regardless of mode. Hence, in any mode that relies on an external signal or a window to reset the timer, proper operation requires that SMTxPR be set to a period larger than that of the expected signal or window.

28.3 Basic Timer Function Registers

The SMTxTMR time base and the SMTxCPW/SMTxPR/SMTxCPR buffer registers serve several functions and can be manually updated using software.

28.3.1 TIME BASE

The SMTxTMR is the 24-bit counter that is the center of the SMT. It is used as the basic counter/timer for measurement in each of the modes of the SMT. It can be reset to a value of 24'h00_0000 by setting the RST bit of the SMTxSTAT register. It can be written to and read from software, but it is not guarded for atomic access, therefore reads and writes to the SMTxTMR should only be made when the GO = 0, or the software should have other measures to ensure integrity of SMTxTMR reads/writes.

28.3.2 PULSE-WIDTH LATCH REGISTERS

The SMTxCPW registers are the 24-bit SMT pulse width latch. They are used to latch in the value of the SMTxTMR when triggered by various signals, which are determined by the mode the SMT is currently in.

The SMTxCPW registers can also be updated with the current value of the SMTxTMR value by setting the CPWUP bit of the SMTxSTAT register.

28.3.3 PERIOD LATCH REGISTERS

The SMTxCPR registers are the 24-bit SMT period latch. They are used to latch in values of the SMTxTMR when triggered by various other signals, which are determined by the mode the SMT is currently in.

The SMTxCPR registers can also be updated with the current value of the SMTxTMR value by setting the CPRUP bit in the SMTxSTAT register.

28.4 Halt Operation

The counter can be prevented from rolling-over using the STP bit in the SMTxCON0 register. When halting is enabled, the period match interrupt persists until the SMTxTMR is reset (either by a manual Reset, **Section 28.3.1 "Time Base"**) or by clearing the SMTxGO bit of the SMTxCON1 register and writing the SMTxTMR values in software.

28.5 Polarity Control

The three input signals for the SMT have polarity control to determine whether or not they are active high/positive edge or active low/negative edge signals.

The following bits apply to Polarity Control:

- WSEL bit (Window Polarity)
- SSEL bit (Signal Polarity)
- CSEL bit (Clock Polarity)

These bits are located in the SMTxCON0 register.

28.6 Status Information

The SMT provides input status information for the user without requiring the need to deal with the polarity of the incoming signals.

28.6.1 WINDOW STATUS

Window status is determined by the WS bit of the SMTxSTAT register. This bit is only used in Windowed Measure, Gated Counter and Gated Window Measure modes, and is only valid when TS = 1, and will be delayed in time by synchronizer delays in non-Counter modes.

28.6.2 SIGNAL STATUS

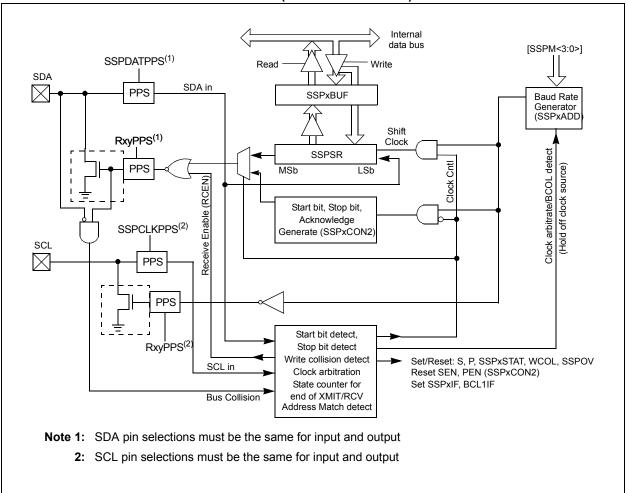
Signal status is determined by the AS bit of the SMTxSTAT register. This bit is used in all modes except Window Measure, Time of Flight and Capture modes, and is only valid when TS = 1, and will be delayed in time by synchronizer delays in non-Counter modes.

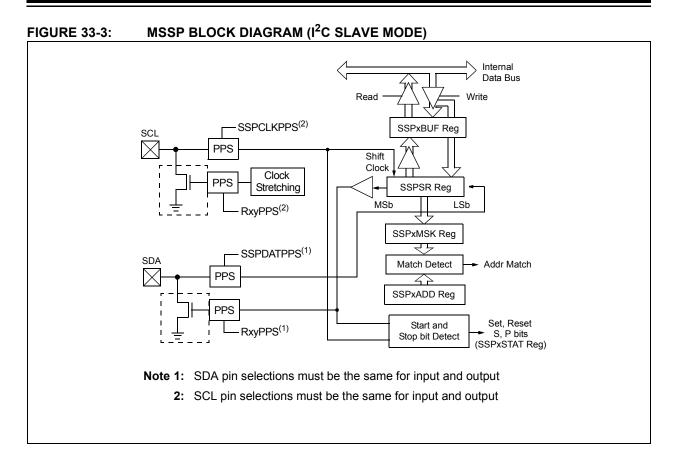
REGISTER 3 2	2-6: CLC	xSEL3: GENE	RIC CLCx D	ATA 3 SELE		R		
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	_			LCxD4	4S<5:0>			
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	anged	x = Bit is unkr	Bit is unknown -n/n = Value at POR and BOR/Value at all other R			ther Resets		
'1' = Bit is set '0' = Bit is cleared			ared					
bit 7-6 Unimplemented: Read as '0'								

bit 5-0	LCxD4S<5:0>: CLCx Data 4 Input Selection bits
	See Table 32-2.

© 2017 Microchip Technology Inc.

The $\mathsf{I}^2\mathsf{C}$ interface supports the following modes and features:


- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited multi-master support
- · 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- General call address matching
- Address masking
- Selectable SDA hold times


Figure 33-2 is a block diagram of the I^2C interface module in Master mode. Figure 33-3 is a diagram of the I^2C interface module in Slave mode.

Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSPxCON1 and SSPxCON2 registers control different operational aspects of the same module, while SSPxCON1 and SSP2CON1 control the same features for two different modules.

> 2: Throughout this section, generic references to an MSSPx module in any of its operating modes may be interpreted as being equally applicable to MSSPx or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0
SPEN ⁽¹⁾	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unki	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
h:+ 7		Port Enable bi	±(1)				
bit 7	1 = Serial po		(,,,				
		rt disabled (he	ld in Reset)				
bit 6	-	ceive Enable I	-				
	1 = Selects 9	-bit reception					
	0 = Selects 8	-bit reception					
bit 5	SREN: Single	Receive Enal	ole bit				
	Asynchronous						
		s mode – value mode – Maste					
	1 = Enables		<u>1</u> .				
		single receive					
		ared after rece	ption is compl	ete.			
	-	mode – Slave	•				
bit 4		s mode – value nuous Receive	•				
DIL 4	Asynchronous		Enable bit				
	-		eive until enal	ble bit CREN is	scleared		
		continuous red					
	Synchronous						
				ble bit CREN is	cleared (CREN	l overrides SR	EN)
bit 3		continuous reo ress Detect Er					
DIL S		<u>s mode 9-bit (F</u>					
				nterrupt and lo	ad of the receive	e buffer when t	he ninth bit in
		ve buffer is set					
				are received a	nd ninth bit can	be used as pa	rity bit
		<u>s mode 8-bit (F</u>					
bit 2	FERR: Frami	s mode – value	gnored				
DIL Z		•	indated by rea	ding RCvREG	register and rec	ceive next valio	l hvte)
	0 = No framing						i byte)
bit 1	OERR: Overr	un Error bit					
	1 = Overrun 0 = No overru		leared by clea	aring bit CREN)		
bit 0	RX9D: Ninth I	bit of Received	Data				
	This can be a	ddress/data bi	t or a parity bi	t and must be o	calculated by us	er firmware.	
	e EUSART mod sociated TRIS b				state to drive as	needed. Config	gure the

REGISTER 34-2: RCxSTA: RECEIVE STATUS AND CONTROL REGISTER

35.0 LIQUID CRYSTAL DISPLAY (LCD) CONTROLLER

The Liquid Crystal Display (LCD) driver module generates the timing control to drive a static or multiplexed LCD panel. The module drives panels with up to eight commons and up to 38 segments pins. It also provides control of the LCD pixel data.

The LCD driver module supports:

- Direct driving of LCD panel
- Two LCD clock sources with selectable prescaler
- Up to eight commons: See Table 35-1 for multiplexing options.
 - Static (One common)
 - 1/2 Multiplex (two commons)
 - 1/3 Multiplex (three commons)
 - 1/4 Multiplex (four commons)
 - 1/5 Multiplex (five commons)
 - 1/6 Multiplex (six commons)
 - 1/7 Multiplex (seven commons)
 - 1/8 Multiplex (eight commons)

- Static, 1/2 (1/2 Multiplex only) or 1/3 LCD bias (1/3 Multiplex and higher)
- On-chip bias generator with dedicated charge pump to support a range of fixed and variable bias options
- · Internal resistors for bias voltage generation
- · Software contrast control through internal biasing

A simplified block diagram of the module is shown in Figure 35-1.

Device I III Count	Number of Cold Osed		Number of 1 ossible beginents
28-Pin	1	19	19
	2	18	36
	3	17	51
	4	16	64
	5	15	75
	6	14	84
	7	13	91
	8	12	96
40-Pin, 44-Pin	1	30	30
	2	29	58
	3	28	84
	4	27	108
	5	26	130
	6	25	150
	7	24	168
	8	23	184
48-Pin	1	38	38
	2	37	74
	3	36	108
	4	35	140
	5	34	170
	6	33	198
	7	32	198
	8	31	248

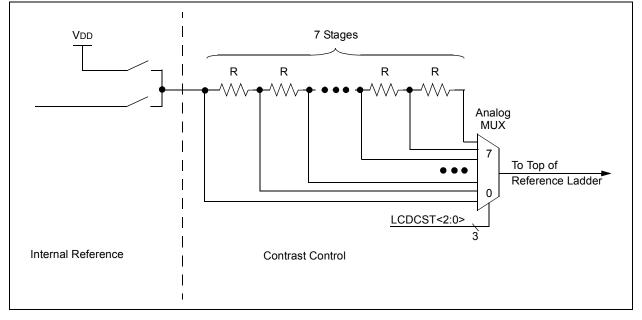

Device Pin Count Number of COM Used Number of SEG Pins Available Number of Possible Segments

TABLE 35-1: MULTIPLEXING OPTIONS

35.5.3 CONTRAST CONTROL

The LCD contrast control circuit consists of a 7-tap resistor ladder, controlled by the LCDCSTx bits (see Figure 35-4).

35.6 Bias Generation

35.6.1 INTERNAL REFERENCE

An internal reference for the LCD bias voltage can be enabled under firmware control. When enabled, the source of this voltage can be VDD, LCD charge pump or 3x FVR.

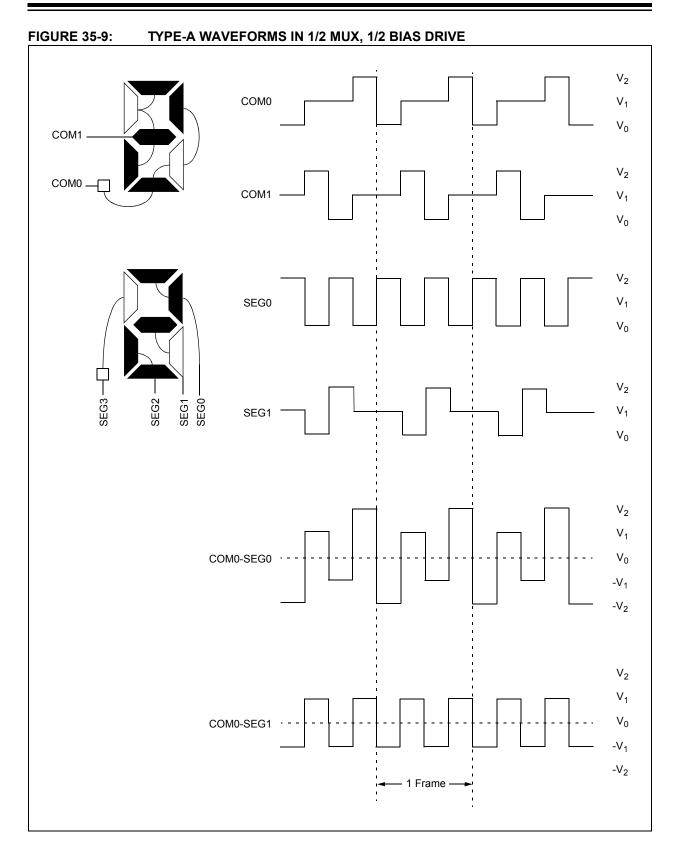
When no internal reference is selected, the LCD contrast control circuit is disabled and LCD bias must be provided externally. Whenever the LCD module is inactive (LCDA = 0), the internal reference will be turned off.

35.6.2 VLCDx PINS AND EXTERNAL BIAS

The VLCD3, VLCD2 and VLCD1 pins provide the ability for an external LCD bias network to be used instead of the internal ladder. Use of the VLCDx pins does not prevent use of the internal ladder.

35.6.3 LCD BIAS GENERATION

The LCD driver module is capable of generating the required bias voltages for LCD operation with a minimum of external components. This includes the ability to generate the different voltage levels required by the different bias types that are required by the LCD. The driver module can also provide bias voltages, both above and below microcontroller VDD, through the use of an on-chip LCD charge pump.


35.6.4 LCD CHARGE PUMP

The purpose of the LCD charge pump is to provide proper bias voltage and good contrast for the LCD, regardless of VDD levels. This module contains a charge pump and internal voltage reference. The charge pump can be configured by using external components to boost bias voltage above VDD. It can also operate a display at a constant voltage below VDD. The charge pump can also be selectively disabled to allow bias voltages to be generated by an external resistor network.

The LCD charge pump is controlled through the LCDVCONx registers.

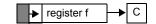
35.6.5 VLCD3 MONITORING

The ADC can be used to measure the VLCD3 voltage via a VLCD3 divided by 4 channel on the ADC. This feature is useful when active adjustment of the LCDCST<2:0> or BIAS<2:0> bits need to be made to account of contrast changes due to extreme temperatures and/or a high number of large active pixels. See Section 19.0 "Analog-to-Digital Converter with Computation (ADC2) Module" for additional details.

37.3 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.


ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

wrap-around.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>]ASRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$
Operation:	$(f<7>) \rightarrow dest<7>$ $(f<7:1>) \rightarrow dest<6:0>,$ $(f<0>) \rightarrow C,$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

ADDWFC ADD W and CARRY bit to f	ADDWFC	ADD W and CARRY bit to f	
---------------------------------	--------	--------------------------	--

Syntax:	[label] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch	BTFSS
Syntax:	[label] BRA label	Syntax:
	[<i>label</i>]BRA \$+k	Operands
Operands:	-256 ≤ label - PC + 1 ≤ 255	
	$-256 \le k \le 255$	Operation
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Aff
Status Affected:	None	Descriptic
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.	

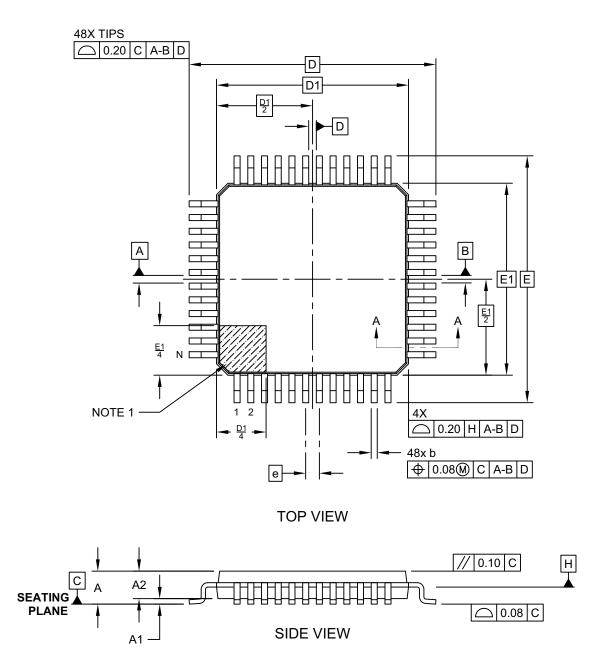
Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

X:	[label] BTFSS f,b								
ands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$								
ation:	skip if (f) = 1								
Affected:	None								
iption:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.								

Bit Test f, Skip if Set

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page			
994h	CM2CON0	ON	OUT	_	POL	-	-	HYS	SYNC	340			
995h	CM2CON1	_	—	_	—	_	—	INTP	INTN	341			
996h	CM2NSEL	_	—	_	—	_		NCH<2:0>		342			
996h		_	_	_	—	_	NCH2	NCH1	NCH0	342			
997h	CM2PSEL	_	—	—	—	_		PCH<2:0>		342			
997h		—	—	—	—	_	PCH2	PCH1	PCH0	342			
998h	—		Unimplemented										
999h	—		Unimplemented										
99Ah	_		Unimplemented										
99Bh	_		Unimplemented										
99Ch	_		Unimplemented										
99Dh	_		Unimplemented										
99Eh	_		Unimplemented										
99Fh	_		Unimplemented										
A0Ch	_		Unimplemented										
A0Dh	—		Unimplemented										
A0Eh	_		Unimplemented										
A0Fh	_		Unimplemented										
A10h	_		Unimplemented										
A11h	_		Unimplemented										
A12h	_		Unimplemented										
A13h	_		Unimplemented										
A14h	_		Unimplemented										
A15h	_		Unimplemented										
A16h	_		Unimplemented										
A17h	_		Unimplemented										
A18h	_		Unimplemented										
A19h	RC2REG		RC2REG										
A1Ah	TX2REG	TX2REG											
A1Bh	SP2BRGL	SP2BRGL											
A1Ch	SP2BRGH	SP2BRGH											
A1Dh	RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
A1Eh	TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D				
A1Fh	BAUD2CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN				
A8Ch	—				Unimpl	emented							
— A9Fh													
B0Ch		Unimplemented											
— B1Fh	_												
B8Ch													
— B9Fh	_	- Unimplemented											
Legend:	x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read a												


REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES **TABLE 38-1:**

Legend:

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: Unimplemented data memory locations, read as '0'.

48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2