

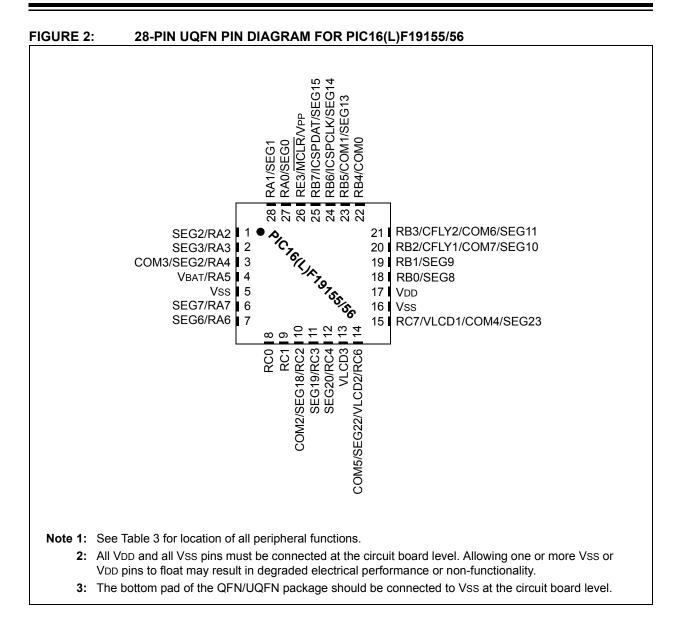
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19175-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F19155/56/75/76/85/86

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 9											
				CPU	CORE REGISTERS	: see Table 4-3 for	specifics				
	1					,				-	1
48Ch	SMT1TMRL				SMT1	ſMR				0000 0000	0000 0000
48Dh	SMT1TMRH		SMT1TMR								
48Eh	SMT1TMRU		SMT1TMR								
48Fh	SMT1CPRL				CPI	R				xxxx xxxx	XXXX XXXX
490h	SMT1CPRH				CPI	R				xxxx xxxx	XXXX XXXX
491h	SMT1CPRU				CPI	R				xxxx xxxx	xxxx xxxx
492h	SMT1CPWL		CPW								
493h	SMT1CPWH		CPW								
494h	SMT1CPWU				CP\	N				xxxx xxxx	xxxx xxxx
495h	SMT1PRL				SMT1	PR				1111 1111	1111 1111
496h	SMT1PRH				SMT1	PR				1111 1111	1111 1111
497h	SMT1PRU				SMT1	PR				1111 1111	1111 1111
498h	SMT1CON0	EN	—	STP	WPOL	SPOL	CPOL	SMT1	PS<1:0>	0-00 0000	0-00 0000
499h	SMT1CON1	SMT1GO	REPEAT	_	_		MOD	E<3:0>		00 0000	00 0000
49Ah	SMT1STAT	CPRUP	CPWUP	RST	_	_	TS	WS	AS	000000	000000
49Bh	SMT1CLK	—	—		—	—		CSEL<2:0>		0000 0000	0000 0000
49Ch	SMT1SIG								0000 0000	0000 0000	
49Dh	SMT1WIN	—	— — — WSEL<4:0>								0000 0000
49Eh					Unimpler	nented					
49Fh	_				Unimpler	nented					

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, g = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 60 (0	Continued)										
1E37h	CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	xxxx xxxx	uuuu uuuu
1E38h	RF0PPS	_	_	_	RF0PPS4	RF0PPS3	RF0PPS2	RF0PPS1	RF0PPS0	x xxxx	uu uuuu
1E39h	RF1PPS								xx xxxx	uu uuuu	
1E3Ah	RF2PPS		_	—	RF2PPS4	RF2PPS3	RF2PPS2	RF2PPS1	RF2PPS0	xx xxxx	uu uuuu
1E3Bh	RF3PPS	_	_	_	RF3PPS4	RF3PPS3	RF3PPS2	RF3PPS1	RF3PPS0	xx xxxx	uu uuuu
1E3Ch	RF4PPS		_		RF4PPS4	RF4PPS3	RF4PPS2	RF4PPS1	RF4PPS0	xx xxxx	uu uuuu
1E3Dh	RF5PPS		_		RF5PPS4	RF5PPS3	RF5PPS2	RF5PPS1	RF5PPS0	xx xxxx	uu uuuu
1E3Eh	RF6PPS	_	_	_	RF6PPS4	RF6PPS3	RF6PPS2	RF6PPS1	RF6PPS0	xx xxxx	uu uuuu
1E3Fh	RF7PPS	_	—		RF7PPS4	RF7PPS3	RF7PPS2	RF7PPS1	RF7PPS0	xx xxxx	uu uuuu
1E40h	—		Unimplemented								
1E41h	_		Unimplemented								
1E42h	_		Unimplemented								
1E43h	—				Unimplei	mented					
1E44h	—				Unimplei	mented					
1E45h	_				Unimplei	mented					
1E46h	—				Unimpler	mented					
1E47h	_				Unimplei	mented					
1E48h	_				Unimplei	mented					
1E49h	_				Unimplei	mented					
1E4Ah	—				Unimpler	mented					
1E4Bh	—		Unimplemented								
1E4Ch	—				Unimpler	mented					
1E4Dh	—				Unimpler	mented					
1E4Eh	—				Unimpler	mented					
1E4Fh	—				Unimplei	mented					

PIC16(L)F19155/56/75/76/85/86

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

5.2 Register Definitions: Configuration Words

REGISTER	CO	NFIGURATIO								
		R/P-1	U-1	R/P-1	R/P-1	R/P-1	R/P-1			
		FCMEN		CSWEN	LCDPEN	VBATEN	CLKOUTEN			
		bit 13					bit			
			D/D 4	11.4						
U-1	R/P-1	R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1			
	RSTOSC2	RSTOSC2 RSTOSC1 RSTOSC0 — FEXTOSC2 FEXTOSC1 FEXTOSC0								
bit 7							bit			
Legend:										
R = Readable	e bit	P = Programma	ble bit	x = Bit is unkno	wn U = Un	mplemented bit,	read as '1'			
'0' = Bit is cle		'1' = Bit is set		W = Writable bi		le when blank or				
bit 13	FCMEN: Fail-S 1 = FSCM tin 0 = FSCM tin		or Enable bit							
bit 12	Unimplement	ed: Read as '1'								
bit 11	CSWEN: Cloc	k Switch Enable I	oit							
	0	NOSC and NDI								
		C and NDIV bits			ware					
bit 10		Charge Pump N nds to enable I C			eration					
		 L = User intends to enable LCD Charge Pump during LCD operation D = LCD Charge Pump forced off 								
bit 9		AT Pin Enable bit								
		ctionality is disat								
		ictionality is enab	•	as a battery con	nected to it					
bit 8		Clock Out Enable		ablady						
		EC (high, mid or function is disable			DSC2					
		function is enable	,							
	Otherwise:									
bit 7	This bit is igno	red. ed: Read as '1'								
	•									
bit 6-4		>: Power-up Defa			oscillator first use	d by user softwa	re			
		SC operating per								
		OSC with HFFR	Q = 4'b0000							
	101 = LFINT									
	100 = SOSC 011 = Reser									
			with EXTOSC o	perating per FE	(TOSC bits					
	010 = EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC bits 001 = HFINTOSC with 2x PLL = 32 MHz, with HFFRQ = '101' and CDIV = '0000'									
	001 = HFINT	OSC with 2x PLI	_ = 32 MHz, wit	h HFFRQ = '101	' and CDIV = '00	00'				
	001 = HFIN 000 = HFIN	FOSC with 2x PLI	_ = 32 MHz, wit	h HFFRQ = '101	' and CDIV = '00)	00'				
bit 3	001 = HFIN 000 = HFIN Unimplement	TOSC with 2x PLI TOSC with OSCF ed: Read as '1'	_ = 32 MHz, wit RQ = 32 MHz a	h HFFRQ = '101 and CDIV = 1:1		00'				
bit 3 bit 2-0	001 = HFIN ⁻ 000 = HFIN ⁻ Unimplement FEXTOSC<2:	TOSC with 2x PLI TOSC with OSCF ed: Read as '1' 0>:FEXTOSC Ex	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator	h HFFRQ = '101 and CDIV = 1:1		00'				
	001 = HFIN ⁻ 000 = HFIN ⁻ Unimplement FEXTOSC<2: 111 = EC (E	FOSC with 2x PLI FOSC with OSCF ed: Read as '1' 0>:FEXTOSC Ext xternal Clock) ab	_ = 32 MHz, wit RQ = 32 MHz a rernal Oscillator ove 8 MHz	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00,				
	001 = HFIN 000 = HFIN Unimplement FEXTOSC<2: 111 = EC (E 110 = EC (E	TOSC with 2x PLI TOSC with OSCF ed: Read as '1' 0>:FEXTOSC Ex	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator ove 8 MHz 100 kHz to 8 M	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00,				
	001 = HFIN 000 = HFIN Unimplement FEXTOSC<2: 111 = EC (E 110 = EC (E 101 = EC (E 100 = Oscilla	FOSC with 2x PLI FOSC with OSCF ed: Read as '1' D>:FEXTOSC Ext xternal Clock) ab xternal Clock) for xternal Clock) be ator not enabled	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator ove 8 MHz 100 kHz to 8 M	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00,				
	001 = HFIN 000 = HFIN Unimplement FEXTOSC<2: 111 = EC (E 110 = EC (E 101 = EC (E 100 = Oscilla 011 = Oscilla	FOSC with 2x PLI FOSC with OSCF ed: Read as '1' D>:FEXTOSC Ext xternal Clock) ab xternal Clock) for xternal Clock) be ator not enabled ator not enabled	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator ove 8 MHz 100 kHz to 8 M	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00,				
	001 = HFINT 000 = HFINT Unimplement FEXTOSC<2:: 111 = EC (E 110 = EC (E 101 = EC (E 101 = EC (E 101 = CO (E) 011 = Oscilla 010 = Oscilla	FOSC with 2x PLI FOSC with OSCF ed: Read as '1' D>:FEXTOSC Ext xternal Clock) ab xternal Clock) for xternal Clock) be ator not enabled	_ = 32 MHz, wit RQ = 32 MHz a ternal Oscillator ove 8 MHz 100 kHz to 8 M	h HFFRQ = '101 and CDIV = 1:1 Mode Selection		00 [,]				

REGISTER 5-1: CONFIGURATION WORD 1: OSCILLATORS

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	
RC2IE	TX2IE	RC1IE	TX1IE	_	—	BCL1IE	SSP1IE	
bit 7		I					bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set	t	'0' = Bit is cle	ared					
bit 7		RT Receive Inte	arrupt Epoble	h:t				
DIL 7		the USART rec	•					
		the USART red	•					
bit 6	TX2IE: USAF	RT Transmit Inte	errupt Enable	bit				
	1 = Enables the USART transmit interrupt							
		the USART tra						
bit 5		RT Receive Inte	•					
		the USART rec the USART rec						
bit 4		RT Transmit Inte						
		the USART tra	•					
	0 = Disables	the USART tra	ansmit interrup	ot				
bit 3-2	Unimplemen	ted: Read as '	0'					
bit 1	BCL1IE: MSS	SP1 Bus Collis	ion Interrupt E	Enable bit				
		us collision inte						
h # 0		us collision inte	·					
bit 0	SSP1IE: Synchronous Serial Port (MSSP1) Interrupt Enable bit 1 = Enables the MSSP interrupt							
		the MSSP inte	•					
			I					
	t PEIE of the IN t to enable ar							
50			on apr					

REGISTER 10-5: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

controlled by PIE1-PIE8.

TABLE 15-3:	PPS OUTPUT SIGNAL ROUTING OPTIONS

	Outrast						Re	mappable to	Pins of PO	RTx					
Output Signal Name	Output Register	PIC16(L)F19155/56			PIC16(L)F19175/76						PIC16(L)	-19185/86			
	Value	PORTA	PORTB	PORTC	PORTA	PORTB	PORTC	PORTD	PORTE	PORTA	PORTB	PORTC	PORTD	PORTE	PORTF
RTCC	0x18	•		•	•		•			•		•			
ADGRDB	0x17	•		•	•		•			•					•
ADGRDA	0x16	•		•	•		•			•					•
TMR0	0x15		•	•		•	•					•			•
SDO1/SDA1	0x14		•	•		•	•				•	•			
SCK1/SCL1	0x13		•	•		•	•				•	•			
C2OUT	0x12	•		•	•				•	•				•	
C1OUT	0x11	•		•	•			•		•			•		
DT2	0x10		•	•		•		•			•		•		
TX2/CK2	0x0F		•	•		•		•			•		•		
DT1	0x0E		•	•		•	•					•			•
TX1/CK1	0x0D		•	•		•	•					•			•
PWM4OUT	0x0C		•	•		•		•			•		•		
PWM3OUT	0x0B		•	•		•		•			•		•		
CCP2	0x0A		•	•		•	•					•			•
CCP1	0x09		•	•		•	•					•			•
CWG1D	0x08		•	•		•		•			•		•		
CWG1C	0x07		•	•		•		•			•		•		
CWG1B	0x06		•	•		•		•			•		•		
CWG1A	0x05		•	•		•	•				•	•			
CLC4OUT	0x04		•	•		•		•			•		•		
CLC3OUT	0x03		•	•		•		•			•		•		
CLC2OUT	0x02	•		•	•		•			•					•
CLC1OUT	0x01	•		•	•		•			•					•

© 2017 Microchip Technology Inc.

R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
UART2MD	UART1MD	—	MSSP1MD	—	—	—	CWG1MD
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	t POR and BOR	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ired	q = Value dep	ends on conditio	on	
bit 7 bit 6 bit 5	1 = EUSART2 module disabled 0 = EUSART2 module enabled						
bit 4	MSSP1MD: D 1 = MSSP1 n	ted: Read as '0 bisable MSSP1 nodule disablec nodule enabled	bit				
bit 3-1 bit 0	-	ted: Read as '0 sable CWG1 bi					
	1 = CWG1 m	odule disabled odule enabled	-				

REGISTER 16-5: PMD4: PMD CONTROL REGISTER 4

17.6 Register Definitions: Interrupt-on-Change Control

REGISTER 17-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCAP7 | IOCAP6 | IOCAP5 | IOCAP4 | IOCAP3 | IOCAP2 | IOCAP1 | IOCAP0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCAP<7:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 17-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCAN7 | IOCAN6 | IOCAN5 | IOCAN4 | IOCAN3 | IOCAN2 | IOCAN1 | IOCAN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

bit 7-0

IOCAN<7:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 17-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

IOCAF<7:0>: Interrupt-on-Change PORTA Flag bits

- 1 = An enabled change was detected on the associated pin.
 - Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.
- 0 = No change was detected, or the user cleared the detected change.

19.5.8 CONTINUOUS SAMPLING MODE

Setting the CONT bit in the ADCON0 register automatically retriggers a new conversion cycle after updating the ADACC register. The GO bit remains set and re-triggering occurs automatically.

If ADSOI = 1, a threshold interrupt condition will clear GO and the conversions will stop.

19.5.9 DOUBLE SAMPLE OR CVD CONVERSION MODE

Double sampling is enabled by setting the ADDSEN bit of the ADCON1 register. When this bit is set, two conversions are required before the module will calculate threshold error (each conversion must still be triggered separately). The first conversion will set the ADMATH bit of the ADSTAT register and update ADACC, but will not calculate ERR or trigger ADTIF. When the second conversion completes, the first value is transferred to PREV (depending on the setting of ADPSIS) and the value of the second conversion is placed into ADRES. Only upon the completion of the second conversion is ERR calculated and ADTIF triggered (depending on the value of ADCALC). The ADACC registers will contain the difference of the two samples taken.

26.7 Timer1 Interrupts

The Timer1 register pair (TMRxH:TMRxL) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the respective PIR register is set. To enable the interrupt-on-rollover, you must set these bits:

- ON bit of the T1CON register
- TMR1IE bit of the PIE4 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note:	To avoid immediate interrupt vectoring,
	the TMR1H:TMR1L register pair should
	be preloaded with a value that is not immi-
	nently about to rollover, and the TMR1IF
	flag should be cleared prior to enabling
	the timer interrupts.

26.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- · ON bit of the T1CON register must be set
- TMR1IE bit of the PIE4 register must be set
- PEIE bit of the INTCON register must be set
- SYNC bit of the T1CON register must be set

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

26.9 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPRxH:CCPRxL register pair on a configured event.

In Compare mode, an event is triggered when the value CCPRxH:CCPRxL register pair matches the value in the TMR1H:TMR1L register pair. This event can be an Auto-conversion Trigger.

For more information, see Section 29.0 "Capture/Compare/PWM Modules".

26.10 CCP Special Event Trigger

When any of the CCPs are configured to trigger a special event, the trigger will clear the TMRxH:TMRxL register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt. In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1. Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed. In the event that a write to TMRxH or TMRxL coincides with a Special Event Trigger from the CCP, the write will take precedence.

27.4 Timer2/4 Interrupt

Timer2/4 can also generate a device interrupt. The interrupt is generated when the postscaler counter matches one of 16 postscale options (from 1:1 through 1:16), which are selected with the postscaler control bits, OUTPS<3:0> of the T2CON register. The interrupt is enabled by setting the TMR2IE interrupt enable bit of the PIE4 register. Interrupt timing is illustrated in Figure 27-3.

FIGURE 27-3: TIMER2 PRESCALER, POSTSCALER, AND INTERRUPT TIMING DIAGRAM

	Rev. 10-00205A 47/2016
CKPS	0ь010
PRx	1
OUTPS	0b0001
TMRx_clk	
TMRx	
TMRx_postscaled	
TMRxIF	(1) (2) (1)
Note 1: 2:	Synchronization may take as many as 2 instruction cycles

27.5.8 LEVEL RESET, EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODES

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

28.6.3 GO STATUS

Timer run status is determined by the TS bit of the SMTxSTAT register, and will be delayed in time by synchronizer delays in non-Counter modes.

28.7 Modes of Operation

The modes of operation are summarized in Table 28-2. The following sections provide detailed descriptions, examples of how the modes can be used. Note that all waveforms assume WPOL/SPOL/CPOL = 0. When WPOL/SPOL/CPOL = 1, all SMTSIGx, SMTWINx and SMT clock signals will have a polarity opposite to that indicated. For all modes, the REPEAT bit controls whether the acquisition is repeated or single. When REPEAT = 0 (Single Acquisition mode), the timer will stop incrementing and the SMTxGO bit will be reset upon the completion of an acquisition. Otherwise, the timer will continue and allow for continued acquisitions to overwrite the previous ones until the timer is stopped in software.

28.7.1 TIMER MODE

Timer mode is the simplest mode of operation where the SMTxTMR is used as a 16/24-bit timer. No data acquisition takes place in this mode. The timer increments as long as the SMTxGO bit has been set by software. No SMT window or SMT signal events affect the SMTxGO bit. Everything is synchronized to the SMT clock source. When the timer experiences a period match (SMTxTMR = SMTxPR), SMTxTMR is reset and the period match interrupt trips. See Figure 28-3.

MODE	Mode of Operation	Synchronous Operation	Reference
0000	Timer	Yes	Section 28.7.1 "Timer Mode"
0001	Gated Timer	Yes	Section 28.7.2 "Gated Timer Mode"
0010	Period and Duty Cycle Acquisition	Yes	Section 28.7.3 "Period and Duty-Cycle Mode"
0011	High and Low Time Measurement	Yes	Section 28.7.4 "High and Low-Measure Mode"
0100	Windowed Measurement	Yes	Section 28.7.5 "Windowed Measure Mode"
0101	Gated Windowed Measurement	Yes	Section 28.7.6 "Gated Window Measure Mode"
0110	Time of Flight	Yes	Section 28.7.7 "Time of Flight Measure Mode"
0111	Capture	Yes	Section 28.7.8 "Capture Mode"
1000	Counter	No	Section 28.7.9 "Counter Mode"
1001	Gated Counter	No	Section 28.7.10 "Gated Counter Mode"
1010	Windowed Counter	No	Section 28.7.11 "Windowed Counter Mode"
1011-1111	Reserved	—	—

TABLE 28-2: MODES OF OPERATION

31.10 Auto-Shutdown

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software. The auto-shutdown circuit is illustrated in Figure 31-12.

31.10.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External input

31.10.1.1 Software Generated Shutdown

Setting the SHUTDOWN bit of the CWG1AS0 register will force the CWG into the shutdown state.

When the auto-restart is disabled, the shutdown state will persist as long as the SHUTDOWN bit is set.

When auto-restart is enabled, the SHUTDOWN bit will clear automatically and resume operation on the next rising edge event.

31.10.2 EXTERNAL INPUT SOURCE

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Several input sources can be selected to cause a shutdown condition. All input sources are active-low. The sources are:

- Comparator C1OUT_sync
- Comparator C2OUT_sync
- Timer2 TMR2_postscaled
- CWG1IN input pin

Shutdown inputs are selected using the CWG1AS1 register (Register 31-6).

Note: Shutdown inputs are level sensitive, not edge sensitive. The shutdown state cannot be cleared, except by disabling auto-shutdown, as long as the shutdown input level persists.

31.11 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- · CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, then the CPU will go idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

32.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE5 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR5 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

32.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

32.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

32.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

32.6 CLCx Setup Steps

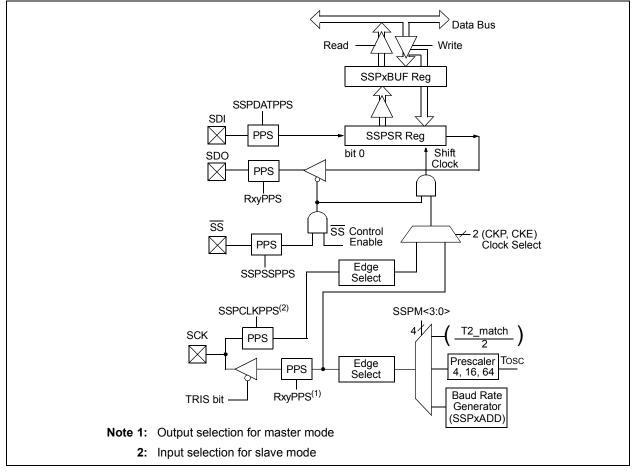
The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 32-2).
- Clear any associated ANSEL bits.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE5 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

33.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULES

33.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:


- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Polarity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 33-1 is a block diagram of the SPI interface module.

33.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

33.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

33.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCL1IF bit.

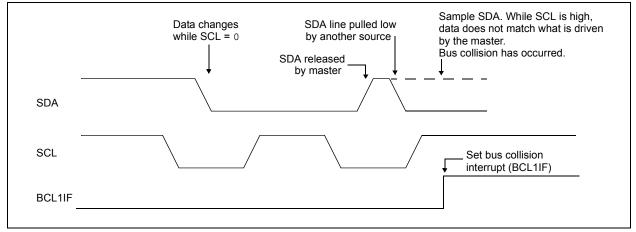
The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

33.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCL1IF and reset the I²C port to its Idle state (Figure 33-32).

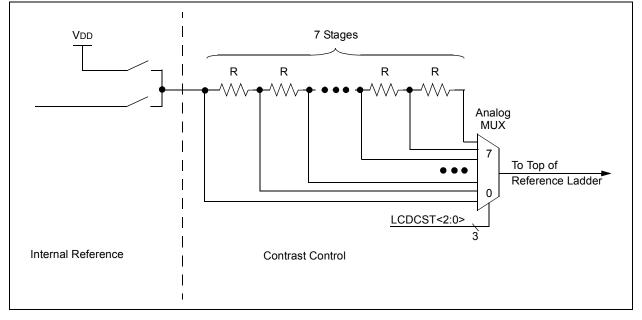
If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.


FIGURE 33-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

35.5.3 CONTRAST CONTROL

The LCD contrast control circuit consists of a 7-tap resistor ladder, controlled by the LCDCSTx bits (see Figure 35-4).

35.6 Bias Generation

35.6.1 INTERNAL REFERENCE

An internal reference for the LCD bias voltage can be enabled under firmware control. When enabled, the source of this voltage can be VDD, LCD charge pump or 3x FVR.

When no internal reference is selected, the LCD contrast control circuit is disabled and LCD bias must be provided externally. Whenever the LCD module is inactive (LCDA = 0), the internal reference will be turned off.

35.6.2 VLCDx PINS AND EXTERNAL BIAS

The VLCD3, VLCD2 and VLCD1 pins provide the ability for an external LCD bias network to be used instead of the internal ladder. Use of the VLCDx pins does not prevent use of the internal ladder.

35.6.3 LCD BIAS GENERATION

The LCD driver module is capable of generating the required bias voltages for LCD operation with a minimum of external components. This includes the ability to generate the different voltage levels required by the different bias types that are required by the LCD. The driver module can also provide bias voltages, both above and below microcontroller VDD, through the use of an on-chip LCD charge pump.

35.6.4 LCD CHARGE PUMP

The purpose of the LCD charge pump is to provide proper bias voltage and good contrast for the LCD, regardless of VDD levels. This module contains a charge pump and internal voltage reference. The charge pump can be configured by using external components to boost bias voltage above VDD. It can also operate a display at a constant voltage below VDD. The charge pump can also be selectively disabled to allow bias voltages to be generated by an external resistor network.

The LCD charge pump is controlled through the LCDVCONx registers.

35.6.5 VLCD3 MONITORING

The ADC can be used to measure the VLCD3 voltage via a VLCD3 divided by 4 channel on the ADC. This feature is useful when active adjustment of the LCDCST<2:0> or BIAS<2:0> bits need to be made to account of contrast changes due to extreme temperatures and/or a high number of large active pixels. See Section 19.0 "Analog-to-Digital Converter with Computation (ADC2) Module" for additional details.

35.8 LCD Multiplex Types

The LCD driver module can be configured into four multiplex types:

- Static (only COM0 used)
- 1/2 multiplex (COM0 and COM1 are used)
- 1/3 multiplex (COM0, COM1 and COM2 are used)1/4 multiplex (COM0, COM1, COM2 and COM3
- are used)1/5 multiplex (COM0, COM1, COM2, COM3 and COM4 are used)
- 1/6 multiplex (COM0, COM1, COM2, COM3, COM4 and COM5 are used)
- 1/7 multiplex (COM0, COM1, COM2, COM3, COM4, COM5 and COM6 are used)
- 1/8 multiplex (COM0, COM1, COM2, COM3, COM4, COM5, COM6 and COM7 are used)

The LMUX<3:0> setting (LCDCON<3:0>) decides the function of the COM pins. (For details, see Table 35-8).

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. If the pin is a COM drive, the TRIS setting of that pin is overridden.

Note: On a Power-on Reset, the LMUX<3:0> bits are '0000'.

LMUX<3:0>	COM7 Pin	COM6 Pin	COM5 Pin	COM4 Pin	COM3 Pin	COM2 Pin	COM1 Pin	COM0 Pin
1000	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
0111	I/O Pin	COM6	COM5	COM4	COM3	COM2	COM1	COM0
0110	I/O Pin	I/O Pin	COM5	COM4	COM3	COM2	COM1	COM0
0101	I/O Pin	I/O Pin	I/O Pin	COM4	COM3	COM2	COM1	COM0
0100	I/O Pin	I/O Pin	I/O Pin	I/O Pin	COM3	COM2	COM1	COM0
0011	I/O Pin	COM2	COM1	COM0				
0010	I/O Pin	COM1	COM0					
0001	I/O Pin	COM0						
0000	I/O Pin							

TABLE 35-8: COM<7:0> PIN FUNCTIONS

PIC16(L)F19155/56/75/76/85/86

LSLF	Logical Left Shift
Syntax:	[<i>label</i>] LSLF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>) → C (f<6:0>) → dest<7:1> 0 → dest<0>
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

С	◀	register f	•	-0

LSRF	Logical Right Shift
Syntax:	[<i>label</i>]LSRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	0 → register f → C

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

© 2017 Microchip Technology Inc.