

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19175-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4: PIC16(L)F19185/86 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Types	Output Types	Description		
RF7/ANF7/SEG47	RF7	TTL/ST	CMOS/OD	General purpose I/O.		
	ANF7	AN	_	ADC Channel input.		
	SEG47	_	AN	LCD Analog output.		
VLCD3	VLCD3	AN	—	LCD analog input		
Vdd	Vdd	Power	Р	Positive supply voltage input.		
Vss	Vdd	Power	Р	Ground reference.		
Legend: AN = Analog input or output CMOS = CMOS compatible input or output QD = Open-Drain						

Legend: HV = High Voltage

Note

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C

XTAL = Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. 1: Refer to Table 14-2 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as 2: described in Table 14-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

5.6 Device ID and Revision ID

The 14-bit Device ID word is located at 8006h and the 14-bit Revision ID is located at 8005h. These locations are read-only and cannot be erased or modified.

Development tools, such as device programmers and debuggers, may be used to read the Device ID, Revision ID and Configuration Words. These locations can also be read from the NVMCON register.

5.7 Register Definitions: Device and Revision

REGISTER 5-6: DEVID: DEVICE ID REGISTER

		R	R	R	R	R	R
				DEV<	:13:8>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
			DEV	<7:0>			
bit 7							bit 0
Legend:							
	1.11						

R = Readable bit '1' = Bit is set

et '0' = Bit is cleared

bit 13-0 **DEV<13:0>:** Device ID bits

Device	DEVID<13:0> Values				
PIC16F19155/56	11	0000	1001	1110	(309Eh)
PIC16LF19155/56	11	0000	1001	1111	(309Fh)
PIC16F19175/76	11	0000	1010	0000	(30A0h)
PIC16LF19175/76	11	0000	1010	0001	(30A1h)
PIC16F19185/86	11	0000	1010	0010	(30A2h)
PIC16LF19185/86	11	0000	1010	0011	(30A3h)

19.6 Register Definitions: ADC Control

REGISTER 19-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	U-0	R/W/HC-0
ON	CONT	-	CS	-	FM	-	GO
bit 7							bit (
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at al	I other Resets
'1' = Bit is s	set	'0' = Bit is cle	eared	HC = Bit is cl	leared by hardwa	are	
bit 7	ON: ADC En	able bit					
	1 = ADC is e						
bit 6	0 = ADC is d	Continuous Or	ention Enchl	ь			
					on triggor until A		
				s of the value of	on trigger until A f ADSOI)	DTF IS Set (II ADSOLIS SE
				ach conversion			
bit 5	Unimpleme	nted: Read as	'0'				
bit 4	CS: ADC Clo	ock Selection b	it				
		upplied from FF					
				ording to ADCL	K register		
bit 3	•	nted: Read as					
bit 2		sults Format/ali	•				
		and PREV dat					
bit 1		and PREV dat nted: Read as	-	ieu, zero-iilieu			
	•	nversion Statu					
bit 0				Setting this bit	starts an ADC of	conversion o	wole. The bit
				y the CONT bit			
		version comple					
Note 1:	This bit requires (ON bit to be set	t.				
2:	If cleared by softv	vare while a co	nversion is in p	progress, the re	esults of the conv	version up to	this point will

2: If cleared by software while a conversion is in progress, the results of the conversion up to this point will be transfered to ADRES and the state machine will be reset, but the ADIF interrupt flag bit will not be set; filter and threshold operations will not be performed.

REGISTER 19-33: ADUTHH: ADC UPPER THRESHOLD HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			UTH<	:15:8>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkn	own	vn -n/n = Value at POR and BOR/Value at all other I			other Resets

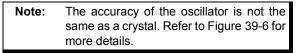
bit 7-0 **UTH<15:8>**: ADC Upper Threshold MSB. LTH and UTH are compared with ERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

REGISTER 19-34: ADUTHL: ADC UPPER THRESHOLD LOW BYTE REGISTER

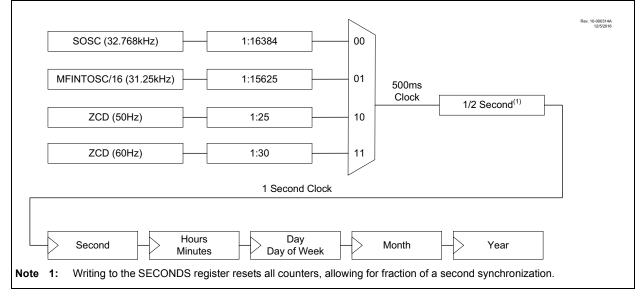
'0' = Bit is cleared

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
UTH<7:0>									
bit 7							bit 0		
Leaend:									

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-0 **UTH<7:0>**: ADC Upper Threshold LSB. LTH and UTH are compared with ERR to set the ADUTHR and ADLTHR bits of ADSTAT. Depending on the setting of ADTMD, an interrupt may be triggered by the results of this comparison.

'1' = Bit is set


24.1.3 CLOCK SOURCES

The RTCC module can be clocked by either an external Real-Time Clock crystal oscillating at 32.768 kHz, MFINTOSC/16 (31.25 kHz) or via the ZCD at 50 Hz or 60 Hz. Each clock selection has a fixed prescaler in order to generate the required half-second clock needed by the RTCC. They are as following:

- SOSC (32.768 kHz) = 1:16384
- MFINTOSC/16 (31.25 kHz) = 1:15625
- ZCD (50 Hz) = 1:25
- ZCD (60 Hz) = 1:30

FIGURE 24-4: CLOCK SOURCE MULTIPLEXING

24.1.4 DIGIT CARRY RULES

This section explains which timer values are affected when there is a rollover.

- Time of Day: From 23:59:59 to 00:00:00 with a carry to the Day and Weekday field
- Month: From 12/31 to 01/01 with a carry to the Year field
- Day of Week: From 6 to 0 with no carry (see Table 24-1)
- Year Carry: From 99 to 00; this also surpasses the use of the RTCC

For the day to month rollover schedule, see Table 24-2.

Because the values are in BCD format, the carry to the upper BCD digit will occur at a count of 10 and not at 16 (SECONDS, MINUTES, HOURS, WEEKDAY, DAYS and MONTHS).

TABLE 24-1: DAY OF WEEK SCHEDULE

Day of Week							
Sunday	0						
Monday	1						
Tuesday	2						
Wednesday	3						
Thursday	4						
Friday	5						
Saturday	6						

Calibration of the RTCC can be performed to yield an error of three seconds or less per month (see **Section 24.1.7 "Calibration"** for further details).

x = Bit is unknown

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		ALRMH	IR<1:0>	ALRMLHR<3:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

'0' = Bit is cleared

REGISTER 24-15: ALRMHR: ALARM HOUR CONTROL REGISTER

'1' = Bit is set

bit 7-6 Unimplemented: Read as '0'

-n = Value at POR

bit 5-4 ALRMHHR<1:0>: Binary Coded Decimal value of hours '10' digit; valid values from 0 to 2

bit 3-0 ALRMLHR<3:0>: Binary Coded Decimal value of hours '1' digit; valid values from 0 to 9

REGISTER 24-16: ALRMMIN: ALARM MINUTE CONTROL REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	ALRMHMIN<2:0>			ALRMLMIN<3:0>			
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7	Unimplemented: Read as '0'
bit 6-4	ALRMHMIN<2:0>: Binary Coded Decimal value of minutes '10' digit; valid values from 0 to 5
bit 3-0	ALRMLMIN<3:0>: Binary Coded Decimal value of minutes '1' digit; valid values from 0 to 9

REGISTER 24-17: ALRMSEC: ALARM SECONDS CONTROL REGISTER

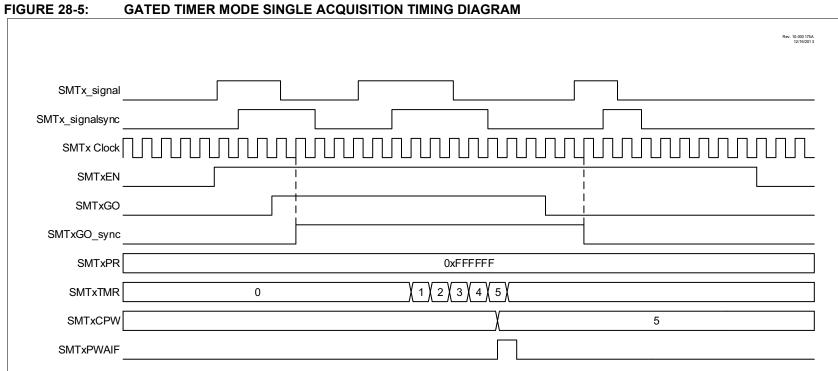
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	ALRMHSEC<2:0>				ALRMLS	EC<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 Unimplemented: Read as '0'

bit 6-4	ALRMHSEC<2:0>: Binary Coded Decimal value of seconds '10' digit; valid values from 0 to 5
---------	---

bit 3-0 ALRMLSEC<3:0>: Binary Coded Decimal value of seconds '1' digit; valid values from 0 to 9


R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	U-0	U-0	
GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	—	
bit 7							bit 0	
Louandi								
Legend: R = Readable t			h it		aantad hit raa			
		W = Writable			nented bit, read	R/Value at all o	athor Doooto	
u = Bit is uncha	ingeu	x = Bit is unkr					Siner Reseis	
'1' = Bit is set		'0' = Bit is clea	areo	HC = BILIS CI	eared by hardv	vare		
bit 7	GE: Timer1 G	ate Enable bit						
	If ON = 0:							
	This bit is igno	ored						
	$\frac{\text{If ON} = 1}{1}$							
		ounting is cont always counti		ïmer1 gate fund	tion			
bit 6		1 Gate Polarity	•					
bit o		gate is active-high (Timer1 counts when gate is high)						
	•	her 1 gate is active-light (Timer 1 counts when gate is light) her 1 gate is active-low (Timer 1 counts when gate is low)						
bit 5	GTM: Timer1	Gate Toggle M	lode bit					
	1 = Timer1 G	Fimer1 Gate Toggle mode is enabled						
		 Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared mer1 gate flip-flop toggles on every rising edge. 						
1.11.4	-		-					
bit 4		1 Gate Single-						
	 1 = Timer1 Gate Single-Pulse mode is enabled 0 = Timer1 Gate Single-Pulse mode is disabled 							
bit 3		•		cquisition Statu	s bit			
			•	s ready, waiting				
	0 = Timer1 g	ate single-puls	e acquisition h	has completed of	or has not beer	n started		
	This bit is	automatically	cleared when	GSPM is clear	ed			
bit 2		1 Gate Value S						
			-	ate that could b	e provided to T	MR1H:TMR1L		
hit 1 0	•	Timer1 Gate	. ,					
bit 1-0	ommpiemen	ted: Read as '	U					

REGISTER 26-2: T1GCON: TIMER1 GATE CONTROL REGISTER

27.7 Register Definitions: Timer2/4 Control

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_		_	_		CS<	:3:0>	
bit 7							bit (
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-4	Unimplem	ented: Read as '	0'				
bit 3-0	CS<3:0>:	Timer2/4 Clock S	elect bits				
	1111 = Re	served					
	1110 = Re						
	1101 = Re	served					
	1100 = LC	4_out					
	1011 = LC	3_out					
	1010 = LC	2_out					
	1001 = LC	1_out					
	1000 = ZC	D1_output					
	0111 = SC	DSC					
		FINTOSC (31.25					
	0101 = MFINTOSC (500 kHz)						
	0100 = LF						
		INTOSC (32 MH	z)				
	0010 = F o						
	0001 = F o						
	0000 = T2	CKIPPS					

REGISTER 27-1: TxCLKCON: TIMER2/4 CLOCK SELECTION REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
T2CON	ON		CKPS<2:0>			OUTPS<3:0>			
T2TMR		Holding Register for the 8-bit TMR2 Register					384*		
T2PR		TMR2 Period Register					384*		
RxyPPS	—	—	—	- RxyPPS<4:0>			265		
CWG1ISM	—	_	_	—		IS<	3:0>		492
CLCxSELy	—	_		LCxDyS<5:0>				503	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	222
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	235
PWM3CON	PWM3EN	_	PWM3OUT	PWM3POL	—	—	_	—	
PWM4CON	PWM4EN	_	PWM4OUT	PWM4POL	—	—	_	—	
PWM3DCL	PWM3DC1	PWM3DC0	_	_	_	_	_	_	
PWM3DCH	PWM3DC9	PWM3DC8	PWM3DC7	PWM3DC6	PWM3DC5	PWM3DC4	PWM3DC3	PWM3DC2	
PWM4DCL	PWM4DC1	PWM4DC0	—	—	—	—	—	—	
PWM4DCH	PWM4DC9	PWM4DC8	PWM4DC7	PWM4DC6	PWM4DC5	PWM4DC4	PWM4DC3	PWM4DC2	

TABLE 30-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWMx

Legend: - = Unimplemented locations, read as '0'. Shaded cells are not used by the PWMx module.

*Page provides register information.

31.9 CWG Steering Mode

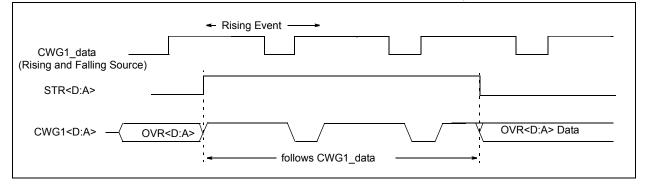
In Steering mode (MODE = 00x), the CWG allows any combination of the CWG1x pins to be the modulated signal. The same signal can be simultaneously available on multiple pins, or a fixed-value output can be presented.

When the respective STRx bit of CWG10CON0 is '0', the corresponding pin is held at the level defined. When the respective STRx bit of CWG10CON0 is '1', the pin is driven by the input data signal. The user can assign the input data signal to one, two, three, or all four output pins.

The POLx bits of the CWG1CON1 register control the signal polarity only when STRx = 1.

The CWG auto-shutdown operation also applies in Steering modes as described in **Section 31.10** "**Auto-Shutdown**". An auto-shutdown event will only affect pins that have STRx = 1.

31.9.1 STEERING SYNCHRONIZATION


Changing the MODE bits allows for two modes of steering, synchronous and asynchronous.

When MODE = 000, the steering event is asynchronous and will happen at the end of the instruction that writes to STRx (that is, immediately). In this case, the output signal at the output pin may be an incomplete waveform. This can be useful for immediately removing a signal from the pin.

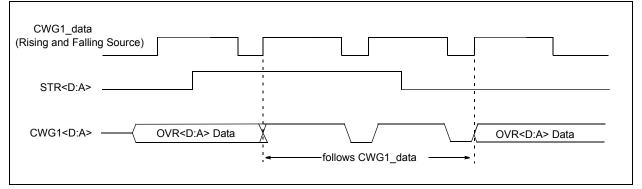

When MODE = 001, the steering update is synchronous and occurs at the beginning of the next rising edge of the input data signal. In this case, steering the output on/off will always produce a complete waveform.

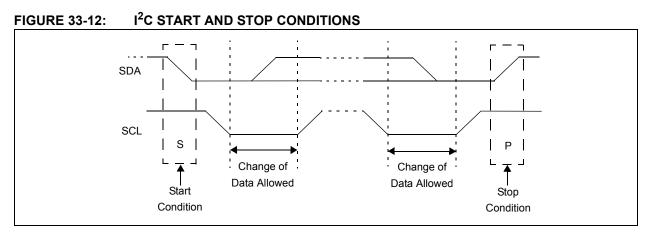
Figure 31-10 and Figure 31-11 illustrate the timing of asynchronous and synchronous steering, respectively.

FIGURE 31-11: EXAMPLE OF STEERING EVENT (MODE<2:0> = 001)

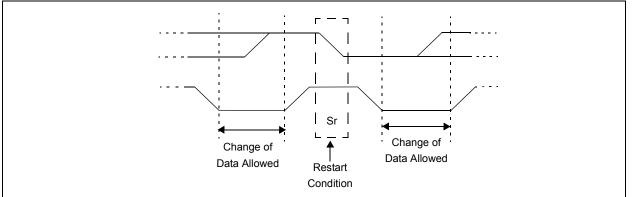
31.13 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripherals are shown in Section 1.1 "Register and Bit Naming Conventions".

REGISTER 31-1: CWG1CON0: CWG1 CONTROL REGISTER 0


R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾		—	_		MODE<2:0>	
bit 7							bit 0

Legend:		
HC = Bit is cleared by har	dware	HS = Bit is set by hardware
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition


bit 7	 EN: CWG1 Enable bit 1 = Module is enabled 0 = Module is disabled
bit 6	LD: CWG1 Load Buffer bits ⁽¹⁾ 1 = Buffers to be loaded on the next rising/falling event 0 = Buffers not loaded
bit 5-3	Unimplemented: Read as '0'
bit 2-0	MODE<2:0>: CWG1 Mode bits 111 = Reserved 110 = Reserved 101 = CWG outputs operate in Push-Pull mode 100 = CWG outputs operate in Half-Bridge mode 011 = CWG outputs operate in Reverse Full-Bridge mode 010 = CWG outputs operate in Forward Full-Bridge mode 001 = CWG outputs operate in Synchronous Steering mode 000 = CWG outputs operate in Steering mode

Note 1: This bit can only be set after EN = 1 and cannot be set in the same instruction that EN is set.

PIC16(L)F19155/56/75/76/85/86

33.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCL pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an $\overline{\text{ACK}}$ is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, the clock is stretched, allowing the slave time to change the ACK value before it is sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

33.5.2.2 7-bit Reception with AHEN and DHEN

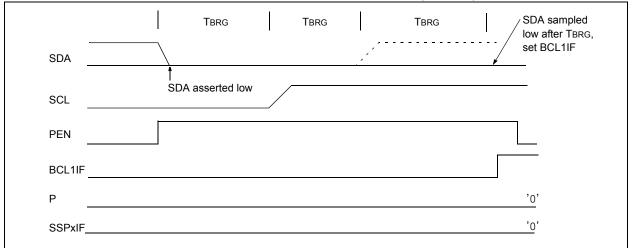
Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow time for the slave software to decide whether it wants to \overline{ACK} the receive address or data byte.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 33-16 displays a module using both address and data holding. Figure 33-17 includes the operation with the SEN bit of the SSPxCON2 register set.

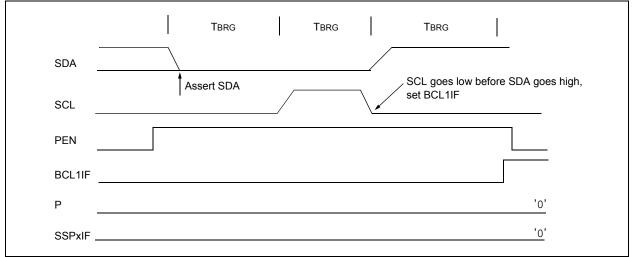
- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSPxIF.
- Slave can look at the ACKTIM bit of the SSPxCON3 register to <u>determine</u> if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an \overline{ACK} , not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSPxIF.

Note: SSPxIF is still set after the ninth falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSPxIF not set

- 11. SSPxIF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSPxSTAT register.


33.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out (Case 1).
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high (Case 2).

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to zero. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 33-38). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 33-39).

FIGURE 33-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 33-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

34.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDxCON register starts the auto-baud calibration sequence. While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPxBRG begins counting up using the BRG counter clock as shown in Figure 34-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPxBRGH, SPxBRGL register pair, the ABDEN bit is automatically cleared and the RXxIF interrupt flag is set. The value in the RCxREG needs to be read to clear the RXxIF interrupt. RCxREG content should be discarded. When calibrating for modes that do not use the SPxBRGH register the user can verify that the SPxBRGL register did not overflow by checking for 00h in the SPxBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 34-1. During ABD, both the SPxBRGH and SPxBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPxBRGH and SPxBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

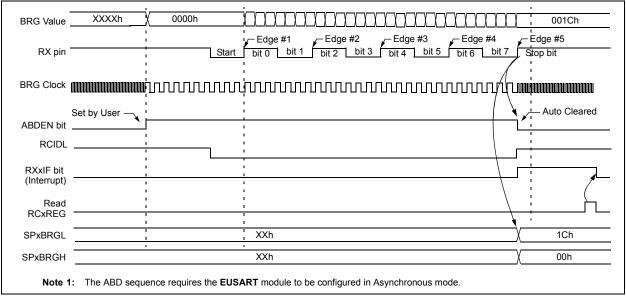
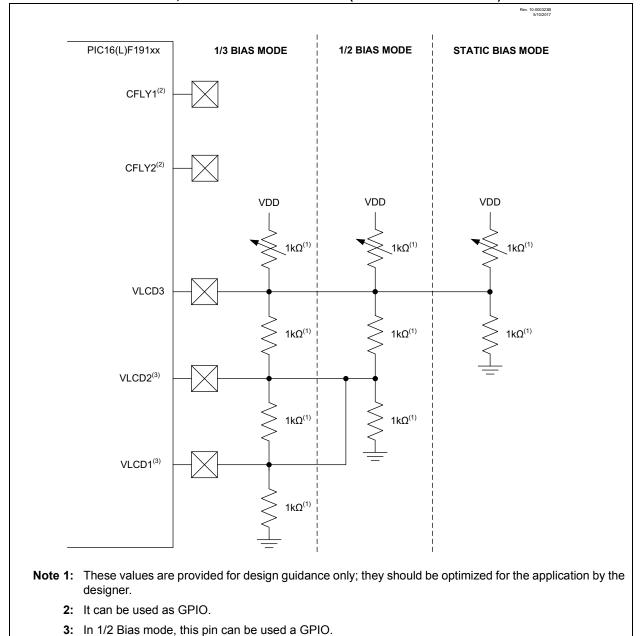

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 34.3.3 "Auto-Wake-up on Break").
 - It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at one. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPxBRGH:SPxBRGL register pair.

TABLE 34-1:BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPxBRGL and SPxBRGH registers are both used as a 16-bit counter, independent of the BRG16 setting.

FIGURE 34-6: AUTOMATIC BAUD RATE CALIBRATION



35.7.3 LCD VOLTAGE SUPPLIED FROM EXTERNAL RESISTOR LADDER

In this mode, the LCD charge pump is completely disabled. The LCD bias levels are tied to VDD and are generated using an external divider. The difference is that the internal voltage reference is also disabled and the bottom of the ladder is tied to ground (VSS); see Figure 35-6. The value of the resistors, and the difference between VSS and VDD, determine the contrast range; no software adjustment is possible. This configuration is also used where the LCD's current requirements exceed the capacity of the charge pump and the high power (HP) internal resistor ladder and the software contrast control is not needed.

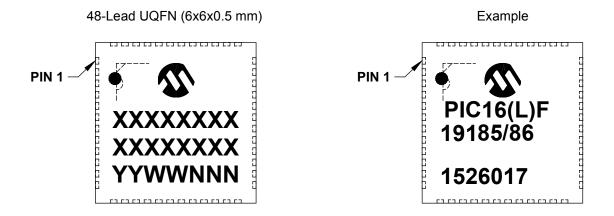
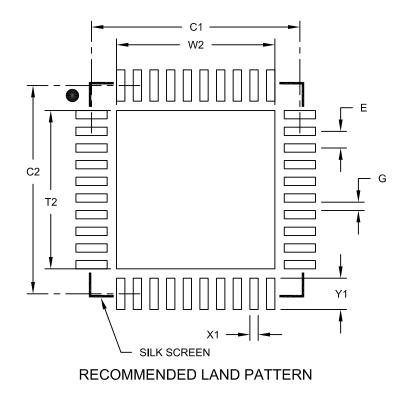

Depending on the bias type required, resistors are connected between some or all of the pins. A potentiometer can also be connected between VLCD3 and VDD to allow for hardware controlled contrast adjustment.

FIGURE 35-6: CONNECTIONS FOR LCD VOLTAGE SUPPLIED FROM EXTERNAL LADDER, STATIC, 1/2 AND 1/3 BIAS MODES (LCDVSRC<3:0> = 1000)

4: In Static mode, this pin can be used a GPIO.


42.1 Package Marking Information (Continued)

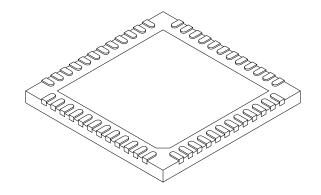
Legend:	XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC [®] designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator ((e3))
		can be found on the outer packaging for this package.
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will
		d over to the next line, thus limiting the number of available
		s for customer-specific information.

40-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 5x5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC			
Optional Center Pad Width	W2			3.80	
Optional Center Pad Length	T2			3.80	
Contact Pad Spacing	C1		5.00		
Contact Pad Spacing	C2		5.00		
Contact Pad Width (X40)	X1			0.20	
Contact Pad Length (X40)	Y1			0.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2156B

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX		
Number of Pins	N	48				
Pitch	е	0.40 BSC				
Overall Height	A	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.127 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	4.45	4.60	4.75		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	4.45	4.60	4.75		
Contact Width	b	0.15	0.20	0.25		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2