

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19175t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bank Offset Bank 0-Bank 63	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
All Banks											
x00h or x80h	INDF0				IND	F0				xxxx xxxx	XXXX XXXX
x01h or x81h	INDF1				IND	F1				xxxx xxxx	XXXX XXXX
x02h or x82h	PCL				PC	Ľ				0000 0000	0000 0000
x03h or x83h	STATUS	_	— — — <u>TO</u> <u>PD</u> <u>Z</u> <u>DC</u> <u>C</u>						1 1000	q quui	
x04h or x84h	FSR0L				FSR	ROL				0000 0000	นนนน นนนเ
x05h or x85h	FSR0H				FSR	OH				0000 0000	0000 0000
x06h or x86h	FSR1L				FSR	R1L				0000 0000	uuuu uuuu
x07h or x87h	FSR1H				FSR	1H				0000 0000	0000 0000
x08h or x88h	BSR	—	— — BSR00						00 0000	00 0000	
x09h or x89h	WREG		WREG0 0000 0000 uuuu						uuuu uuuu		
x0Ah or x8Ah	PCLATH	_									
x0Bh or x8Bh	INTCON	GIE	PEIE	_	_	_			INTEDG	001	00

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: These Registers can be accessed from any bank

© 2017 Microchip Technology Inc.

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 61 (Co	ank 61 (Continued)										
1ECFh	_				Unimpler	mented					
1ED0h	_				Unimpler	mented					
1ED1h	_				Unimpler	mented					
1ED2h	_				Unimpler	mented					
1ED3h	_				Unimpler	mented					
1ED4h	_				Unimpler	mented					
1ED5h	_				Unimpler	mented					
1ED6h	_				Unimpler	mented					
1ED7h	_		Unimplemented								
1ED8h	_		Unimplemented								
1ED9h	—				Unimpler	mented					
1EDAh	—				Unimpler	mented					
1EDBh	—				Unimpler	mented					
1EDCh	—				Unimpler	mented					
1EDDh	—				Unimpler	mented					
1EDEh	—				Unimpler	mented					
1EDFh	—		Unimplemented								
1EE0h	—		Unimplemented								
1EE1h	—		Unimplemented								
1EE2h	_				Unimpler	mented					
1EE3h	—				Unimpler	mented					
1EE4h	_				Unimpler	mented					

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

9.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use an internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> bits in the OSCCON1 register to switch the system clock source to the internal oscillator during run-time. See Section 9.3 "Clock Switching" for more information.

In **INTOSC** mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT.

The function of the CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates up to 32 MHz. The frequency of HFINTOSC can be selected through the OSCFRQ Frequency Selection register, and fine-tuning can be done via the OSCTUNE register.
- 2. The **LFINTOSC** (Low-Frequency Internal Oscillator) is factory-calibrated and operates at 31 kHz.

9.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 32 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits in Configuration Word 1 to '110' (1 MHz) or '000' (32 MHz) to set the oscillator upon device Power-up or Reset.
- Write to the NOSC<2:0> bits of the OSCCON1 register during run-time.

The HFINTOSC frequency can be selected by setting the HFFRQ<2:0> bits of the OSCFRQ register.

The MFINTOSC is an internal clock source within the HFINTOSC that provides two (500 kHz, 32 kHz) constant clock outputs. These constant clock outputs are available for selection to various peripherals, internally.

The NDIV<3:0> bits of the OSCCON1 register allow for division of the HFINTOSC output from a range between 1:1 and 1:512.

9.2.2.2 Internal Oscillator Frequency Adjustment

The internal oscillator is factory-calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 9-7).

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WWDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

9.2.2.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory calibrated 31 kHz internal clock source.

The LFINTOSC is the frequency for the Power-up Timer (PWRT), Watchdog Timer (WWDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register.

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Windowed Watchdog Timer (WWDT)
- Timer1
- Timer0
- Timer2
- Fail-Safe Clock Monitor (FSCM)
- CLC

9.2.2.4 Oscillator Status and Manual Enable

The 'ready' status of each oscillator is displayed in the OSCSTAT register (Register 9-4). The oscillators can also be manually enabled through the OSCEN register (Register 9-5). Manual enabling makes it possible to verify the operation of the EXTOSC or SOSC crystal oscillators. This can be achieved by enabling the selected oscillator, then watching the corresponding 'ready' state of the oscillator in the OSCSTAT register.

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
OSFIE	CSWIE		_			ADTIE	ADIE
bit 7	·	·				·	bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncl	hanged	x = Bit is unkn	own	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	1 = Enables t 0 = Disables	lator Fail Interru he Oscillator Fa the Oscillator F	ail Interrupt ail Interrupt				
bit 6	1 = The clock	k Switch Comp switch module switch module	interrupt is e	nabled			
bit 5-2	Unimplemen	ted: Read as ')'				
bit 1	1 = Enables t	og-to-Digital Co he ADC thresh the ADC thresh	old compare i	nterrupt	mpare Interrupt	Enable bit	
bit 0	1 = Enables t	to-Digital Con he ADC interru the ADC interru	ot	Interrupt Enabl	e bit		
se	t PEIE of the IN t to enable ar ntrolled by regis	ny peripheral	interrupt				

REGISTER 10-12:	PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1
-----------------	---

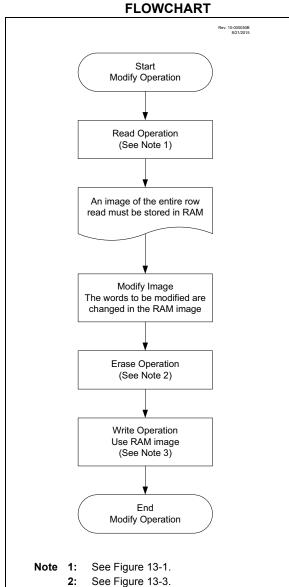

R/W/HS-0/	0 R/W/HS-0/0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	
OSFIF	CSWIF	_		_	_	ADTIF	ADIF	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
u = Bit is une	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	ther Resets	
'1' = Bit is se	et	'0' = Bit is clea	ared	HS = Hardwa	ire set			
bit 7 bit 6	1 = Oscillator 0 = No oscilla	ator Fail-Safe I fail-safe interru ator fail-safe inter k Switch Comp	upt has occuri errupt	red (must be cl	eared in softwa	re)		
bit o	1 = The clock operation	 CSWIF: Clock Switch Complete Interrupt Flag bit 1 = The clock switch module indicates an interrupt condition and is ready to complete the clock switch operation (must be cleared in software) 0 = The clock switch does not indicate an interrupt condition 						
bit 5-2	Unimplemen	ted: Read as '	0'					
bit 1	1 = An A/D m	og-to-Digital Co leasurement wa surements have	as beyond the	e configured thr	eshold (must b	t Flag bit e cleared in sof	tware)	
bit 0	1 = An A/D co	 ADIF: Analog-to-Digital Converter (ADC) Interrupt Flag bit 1 = An A/D conversion or complex operation has completed (must be cleared in software) 0 = An A/D conversion or complex operation is not complete 						
c it E u	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.							

FIGURE 13-6:

13.4.6 MODIFYING FLASH PROGRAM MEMORY

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

FLASH PROGRAM

MEMORY MODIFY

3: See Figure 13-5.

14.4.7 ANALOG CONTROL

The ANSELB register (Register 14-12) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with its TRIS bit clear and its ANSEL bit set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

14.4.8 WEAK PULL-UP CONTROL

The WPUB register (Register 14-5) controls the individual weak pull-ups for each PORT pin.

14.4.9 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions.

Each pin defaults to the PORT latch data after Reset. Other output functions are selected with the peripheral pin select logic or by enabling an analog output, such as the DAC. See **Section 15.0 "Peripheral Pin Select (PPS) Module"** for more information.

Analog input functions, such as ADC and comparator inputs are not shown in the peripheral pin select lists. Digital output functions may continue to control the pin when it is in Analog mode.

R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
UART2MD	UART1MD	—	MSSP1MD	—	_	—	CWG1MD
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	t POR and BOR	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ired	q = Value dep	ends on conditio	on	
bit 7 bit 6 bit 5	1 = EUSART2 0 = EUSART2 UART1MD : D 1 = EUSART2 0 = EUSART2	isable EUSAR ⁻ 2 module disab 2 module enabl isable EUSAR ⁻ 1 module disab 1 module enabl	led ed F1 bit led ed				
bit 4	MSSP1MD: D 1 = MSSP1 n	ted: Read as '0 bisable MSSP1 nodule disablec nodule enabled	bit				
bit 3-1 bit 0	-	ted: Read as '0 sable CWG1 bi					
	1 = CWG1 m	odule disabled odule enabled	-				

REGISTER 16-5: PMD4: PMD CONTROL REGISTER 4

REGISTER 19-11: ADACQL: ADC ACQUISITION TIME CONTROL REGISTER (LOW BYTE)

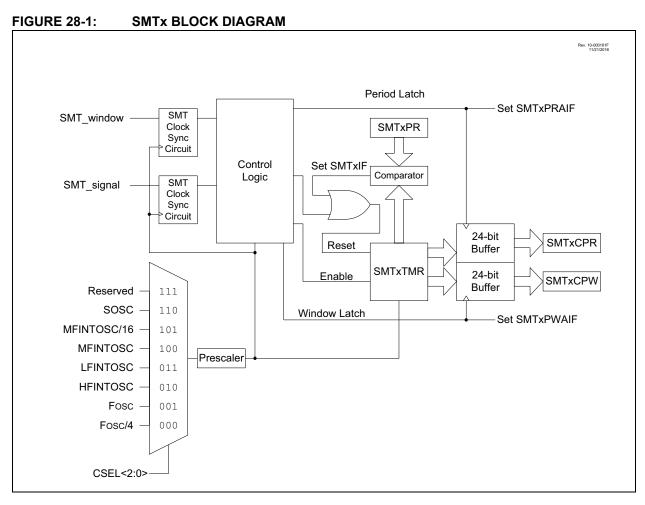
						•	,
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACQ	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	inged	x = Bit is unkne	own	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 ACQ<7:0>: Acquisition (charge share time) Select bits See Table 19-6.

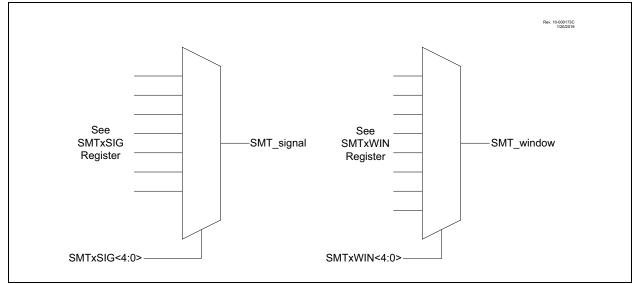
REGISTER 19-12: ADACQH: ADC ACQUISITION TIME CONTROL REGISTER (HIGH BYTE)

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—				ACQ<12:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

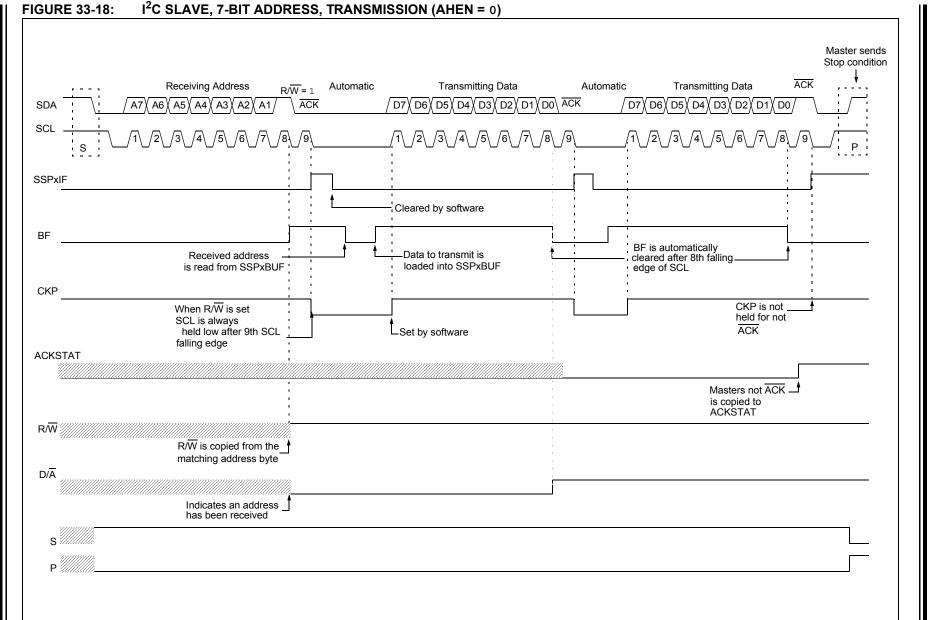

bit 7-5 Unimplemented: Read as '0'

bit 4-0 ACQ<12:8>: Acquisition (charge share time) Select bits See Table 19-6.


TABLE 19-5: ACQUISITION TIME

ADACQ	Acquisition time
1 1111 1111 1111	8191 clocks of the selected ADC clock
1 1111 1111 1110	8190 clocks of the selected ADC clock
1 1111 1111 1101	8189 clocks of the selected ADC clock
0 0000 0000 0010	2 clocks of the selected ADC clock
0 0000 0000 0001	1 clock of the selected ADC clock
0 0000 0000 0000	Not included in the data conversion cycle ⁽¹⁾

Note 1: If ADPRE is not equal to '0', then ADACQ = b' 0_0000_0000 means Acquisition time is 8192 clocks of the selected ADC clock.



© 2017 Microchip Technology Inc.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N			
bit 7							bit			
Legend:										
R = Readable		W = Writable		U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	LCxG4D4T: (Gate 3 Data 4 1	rue (non-inve	rted) bit						
		(true) is gated i								
		(true) is not gat								
bit 6	LCxG4D4N:	Gate 3 Data 4	Negated (inver	rted) bit						
		(inverted) is ga								
	0 = CLCIN3	(inverted) is no	t gated into Cl	_Cx Gate 3						
bit 5		Gate 3 Data 3 1	· ·	,						
		(true) is gated i								
1.11.4		(true) is not gat								
bit 4		Gate 3 Data 3 I								
		(inverted) is ga (inverted) is no								
bit 3		Sate 3 Data 2 1	•							
		(true) is gated i		,						
		(true) is not gat								
bit 2	LCxG4D2N:	Gate 3 Data 2 I	Negated (inver	rted) bit						
		(inverted) is ga								
	0 = CLCIN1	(inverted) is no	t gated into Cl	_Cx Gate 3						
bit 1	LCxG4D1T: (Gate 4 Data 1 1	rue (non-inve	rted) bit						
		(true) is gated i								
		(true) is not gat								
bit 0		Gate 3 Data 1	•	,						
		(inverted) is ga								
	0 = CLCINO	(inverted) is no	i gated into Cl	Lox Gate 3						

REGISTER 32-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

33.6.7 I²C MASTER MODE RECEPTION

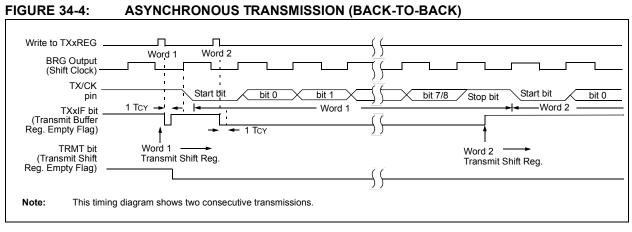
Master mode reception (Figure 33-29) is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

Note:	The MSSP module must be in an Idle								
	state before the RCEN bit is set or the								
	RCEN bit will be disregarded.								

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

33.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.


33.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

33.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

- 33.6.7.4 Typical Receive Sequence:
- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- User sets the RCEN bit of the SSPxCON2 register and the master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCL, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxBUF, clears BF.
- 11. Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Master's ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

34.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 34-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCxREG register.

34.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCxSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXxSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCxSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

34.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 34.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RXxIF interrupt flag bit of the PIR3 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCxREG register.

Note: If the receive FIFO is overrun, no additional characters will be received until the overrun condition is cleared. See Section 34.1.2.5 "Receive Overrun Error" for more information on overrun errors.

34.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

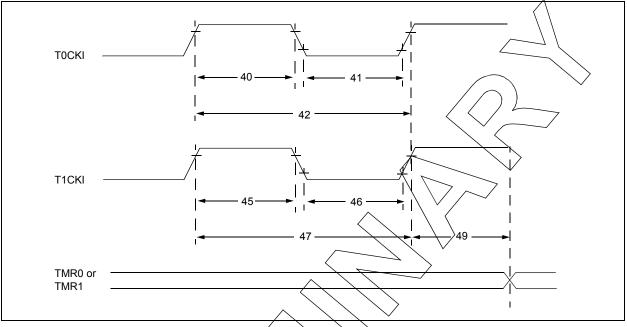
The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 9.2.2.2 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 34.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

R/W-0	R/W-0	HS/C-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
LCDEN	SLPEN	WERR	CS	LMUX3	LMUX2	LMUX1	LMUX0				
bit 7							bit 0				
Legend:		C = Clearable	e bit	HS = Bit is se	t by hardware						
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown				
bit 7	LCDEN: LCD	Enable bit									
		lule is enabled lule is disabled									
bit 6	SLPEN: LCD	Display Sleep-	Enabled bit								
		vill stop driving									
		vill continue driv									
bit 5		Write Failed Er									
		= Write failure to LCDDATA register occurred (must be reset in software)									
	0 = No LCD										
bit 4		Clock Source Select bit									
	1 = SOSC Se 0 = LFINTOS										
bit 3-0			tion hita Cna	oifice the numb	or of common	_(2)					
DIT 3-0		Common Selec	ction bits. Spe	cifies the numbe	er of commons	5(-)					
	LMUX<3	:0>		Multiplex			Bias				
	0000			All COMs off			_				
	0001			Static (COM0)			Static				
	0010		1/2	MUX (COM<1:	0>)		1/2				
	0011		1/3	MUX (COM<2:	0>)		1/3				
	0100		1/4	MUX (COM<3:	0>)		1/3				
	0101		1/5	MUX (COM<4:	0>)		1/3				
	0110		1/6	MUX (COM<5:	0>)		1/3				
	0111		1/7	MUX (COM<6:	0>)		1/3				
	1000		1/8	MUX (COM<7:	0>)		1/3				

REGISTER 35-1: LCDCON: LCD CONTROL REGISTER

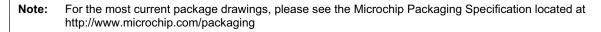
Note 1: Bit can only be set by hardware and only cleared in software by writing to zero.

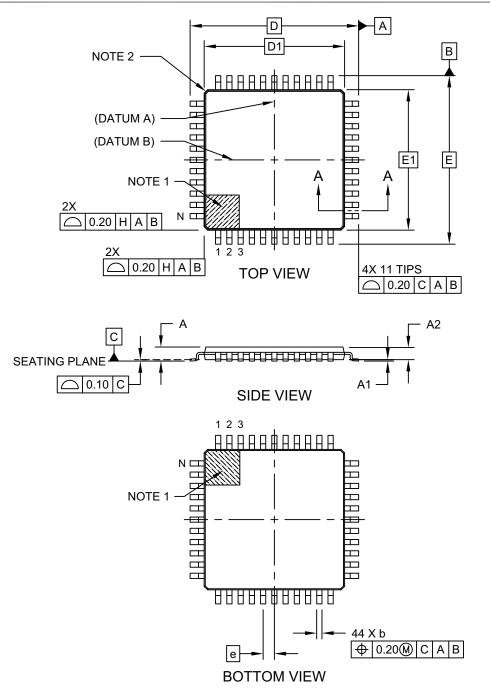

2: Cannot be changed when LCDEN = 1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
40Ch	_			•	Unimpl	emented		•				
40Dh	HIDRVB	_	_	—	_	_	—	HIDB1	_	232		
40Eh	_		Unimplemented									
40Fh	_		Unimplemented									
410h	—		Unimplemented									
411h	—		Unimplemented									
412h	_		Unimplemented									
413h	_		Unimplemented									
414h	_				Unimpl	emented						
415h	_				Unimpl	emented						
416h	_				Unimpl	emented						
417h	_				Unimpl	emented						
418h	_				Unimpl	emented						
419h	_				Unimpl	emented						
41Ah	_				Unimpl	emented						
41Bh	_		Unimplemented									
41Ch			Unimplemented									
41Dh			Unimplemented									
41Eh	_		Unimplemented									
41Fh	—		Unimplemented									
48Ch	SMT1TMRL				SMT	1TMR				416		
48Dh	SMT1TMRH		SMT1TMR									
48Eh	SMT1TMRU				SMT	1TMR				416		
48Fh	SMT1CPRL		CPR									
490h	SMT1CPRH				С	PR				417		
491h	SMT1CPRU				С	PR				417		
492h	SMT1CPWL				С	PW				418		
493h	SMT1CPWH				С	PW				418		
494h	SMT1CPWU		CPW 2									
495h	SMT1PRL					T1PR				419		
496h	SMT1PRH					Г1PR				419		
497h	SMT1PRU					Г1PR				419		
497h 498h	SMT1CON0	EN		STP	WPOL	SPOL	CPOL	CMT4	PS<1.0>	419		
49011 499h	SMT1CON0	SMT1GO	REPEAT									
				DOT	— MODE<3:0>					411		
49Ah	SMT1STAT	CPRUP	CPWUP	RST		_	TS	WS	AS	412		
49Bh	SMT1CLK							CSEL<2:0>		413 415		
49Ch	SMT1SIG	_		_	SSEL<4:0>							
49Dh Legend:	SMT1WIN				= unimplemented		WSEL<4:0>			414		

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
 Note 1: Unimplemented data memory locations, read as '0'.

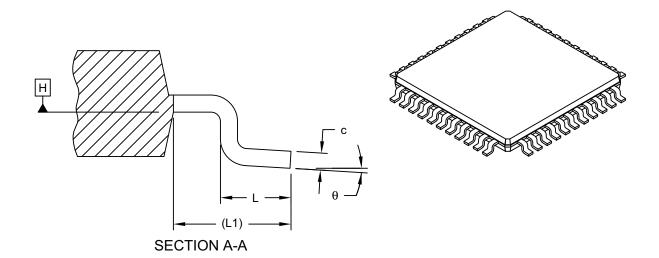

TABLE 39-19: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS


Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 Tcy + 20	—		ns	
				With Prescaler	10	_		ns	
41*	T⊤0L	TOCKI LOW P	ulse Width //	No Prescaler	0.5 Tcy + 20	_	_	ns	
		$ \rangle \rangle$	\smallsetminus	With Prescaler	10	_	_	ns	
42*	Ттор	70CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale valu
45*	TT1H	TICKI High	Synchronous, N	lo Prescaler	0.5 Tcy + 20	—	_	ns	
		Time	Śynchronous, w	vith Prescaler	15	_		ns	
			Asynchronous		30	_		ns	
46*	Tų 1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5 Tcy + 20			ns	
	$\backslash \setminus \langle \rangle$	Time	Synchronous, w	vith Prescaler	15			ns	
$\left(-\right)$		5	Asynchronous		30	_		ns	
47*	Ттір	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale valu
\sim	\searrow		Asynchronous		60	_	_	ns	
48	ET7		scillator Input Fre		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ed	2 Tosc	—	7 Tosc	—	Timers in Sync mode	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]



Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Leads	N	44				
Lead Pitch	е	0.80 BSC				
Overall Height	A	-	-	1.20		
Standoff	A1	0.05	-	0.15		
Molded Package Thickness	A2	0.95	1.00	1.05		
Overall Width	E	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Width	b	0.30	0.37	0.45		
Lead Thickness	С	0.09	-	0.20		
Lead Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	θ	0°	3.5°	7°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2