

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19176-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Τ
<u></u>
6
F
F
19
1
្រុ
5
16
5
7
5
86

TABLE 1:PIC16(L)F191XX FAMILY TYPES

Device	Data Sheet Index	Program Flash Memory (kW/KB)	DataEE (bytes)	Data SRAM (bytes)	I/O Pins	12-bit ADC (ch)	5-bit DAC	Comparator	8-bit/ (with HLT) Timer	16-bit Timer	Window Watchdog Timer (WWDT)	CCP/10-bit PWM	CWG	CLC	Zero-Cross Detect	Temperature Indicator	Memory Access Partition	Device Information Area	EUSART/ I ² C/SPI	Peripheral Pin Select	Peripheral Module Disable	Debug ⁽¹⁾	LCD Segments (Max)	LCD Charge Pump/ Bias Generator
PIC16(L)F19155	(A)	8/14	256	1024	24	20	1	2	2	2	Y	2/2	1	4	Y	Y	Y	Y	2/1	Y	Y	Ι	96	Y/Y
PIC16(L)F19156	(A)	16/28	256	2048	24	20	1	2	2	2	Y	2/2	1	4	Υ	Υ	Y	Y	2/1	Y	Y	Ι	96	Y/Y
PIC16(L)F19175	(A)	8/14	256	1024	35	31	1	2	2	2	Y	2/2	1	4	Υ	Υ	Y	Y	2/1	Y	Y	Ι	184	Y/Y
PIC16(L)F19176	(A)	16/28	256	2048	35	31	1	2	2	2	Y	2/2	1	4	Υ	Υ	Y	Y	2/1	Y	Y	Ι	184	Y/Y
PIC16(L)F19185	(A)	8/14	256	1024	43	39	1	2	2	2	Y	2/2	1	4	Υ	Υ	Y	Y	2/1	Y	Y	Ι	248	Y/Y
PIC16(L)F19186	(A)	16/28	256	2048	43	39	1	2	2	2	Y	2/2	1	4	Υ	Υ	Y	Y	2/1	Y	Y	Ι	248	Y/Y
PIC16(L)F19195	(B)	8/14	256	1024	59	45	1	2	2	2	Y	2/2	1	4	Y	Y	Y	Y	2/1	Y	Y	Ι	360	Y/Y
PIC16(L)F19196	(B)	16/28	256	2048	59	45	1	2	2	2	Y	2/2	1	4	Y	Y	Y	Y	2/1	Y	Y	Ι	360	Y/Y
PIC16(L)F19197	(B)	32/56	256	4096	59	45	1	2	2	2	Y	2/2	1	4	Y	Y	Y	Y	2/1	Y	Y	Ι	360	Y/Y

Note 1: I – Debugging integrated on chip.

Data Sheet Index (Unshaded devices are described in this document):

A. Future Release PIC16(L)F19155/56/75/76/85/86 Data Sheet, 28/40/44/48-Pin

B. DS40001873 PIC16(L)F19195/6/7 Data Sheet, Full-Featured 64-Pin Microcontrollers

Note: For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.

4.3.2.1 STATUS Register

The STATUS register, shown in Register 4-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (refer to **Section 37.0 "Instruction Set Summary"**).

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction.

REGISTER 4-1: STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
—	_	_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-Out bit
	 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-Down bit
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order

bit of the source register.

1D6Eh		1DEEh	_	1E6Eh		1EEEh		1F6Eh	_	1FEEh	TOSL
1D6Fh	_	1DEFh	_	1E6Fh	_	1EEFh	—	1F6Fh	_	1FEFh	TOSH
1D70h	Common RAM Accesses 70h-7Fh	1DF0h	Common RAM Accesses 70h-7Fh	1E70h	Common RAM Accesses 70h-7Fh	1EF0h	Common RAM Accesses 70h-7Fh	1F70h	Common RAM Accesses 70h-7Fh	1FF0h	Common RAM Accesses 70h-7Fh
1D7Fh		1DFFh		1E7Fh		1EFFh		1F7Fh		1FFFh	
Note	1: Unimplem	ented lo	cations read as '	0'.							

Unimplemented locations read as '0'. 1:

2: Present only on PIC16(L)F19156/76/86.

Present only on PIC16(L)F19185/86. 3:

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0
_	_	TMR0IF	IOCIF	_	_	_	INTF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS= Hardwa	re Set		
bit 7-6	Unimplemen	ted: Read as ')'				
bit 5	TMR0IF: Time	er0 Overflow In	terrupt Flag b	vit			
	1 = Timer0 r 0 = Timer0 r	register has ove register did not	erflowed (mus overflow	t be cleared in	software)		
bit 4	IOCIF: Interru	upt-on-Change	Interrupt Flag	bit (read-only)	(2)		
	1 = One or r detected	more of the IOC	AF-IOCEF re odule.	gister bits are o	currently set, ind	licating an ena	bled edge was
h # 0.4			,	ons are current	iy set		
DIL 3-1	Unimplemen	ited: Read as) (1)				
bit 0	INTF: IN I EX	ternal Interrupt	Flag bit("				
	 1 = The INT external interrupt occurred (must be cleared in software) 0 = The INT external interrupt did not occur 						
Note 1: The	External Interr	rupt GPIO pin is	s selected by	INTPPS (Regi	ster 15-1).		
2: The app	 The IOCIF bit is the logical OR of all the IOCAF-IOCEF flags. Therefore, to clear the IOCIF flag, application firmware must clear all of the lower level IOCAF-IOCEF register bits. 						

REGISTER 10-11:	PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0
------------------------	--

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0
CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7	CLC4IF: CLC	4 Interrupt Flag	g bit			_	
	1 = A CLC4O	UT interrupt co	ndition has oc	curred (must l	be cleared in so	ftware)	
h:+ 0							
DIT 6			g Dit Indition has as		he cleared in ce	fture and)	
	1 = A CLC3O 0 = No CLC3	interrupt event	has occurred	currea (must i	be cleared in so	itware)	
bit 5	CLC2IF: CLC	2 Interrupt Flag	g bit				
	1 = A CLC2O	UT interrupt co	ndition has oc	curred (must l	be cleared in so	ftware)	
	0 = No CLC2	interrupt event	has occurred				
bit 4	CLC1IF: CLC	1 Interrupt Flag	g bit				
	1 = A CLC10	UT interrupt co	ndition has oc	curred (must l	be cleared in so	ftware)	
	0 = No CLC1	interrupt event	has occurred				
bit 3-1	Unimplemen	ted: Read as '	0'				
bit 0	TMR1GIF: Timer1 Gate Interrupt Flag bit						
1 = The Timer1 Gate has gone inactive (the acquisition is complete)							
		ri Gate nas no	t gone inactive	3			
Note: Inte	rrupt flag bits a	re set when an	interrupt				

REGISTER 10-16: PIR5: PERIPHERAL INTERRUPT REQUEST REGISTER 5

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

13.4.3 NVMREG WRITE TO EEPROM

Writing to the EEPROM is accomplished by the following steps:

- 1. Set the NVMREGS and WREN bits of the NVMCON1 register.
- Write the desired address (address + 7000h) into the NVMADRH:NVMADRL register pair (Table 13-2).
- 3. Perform the unlock sequence as described in Section 13.4.2 "NVM Unlock Sequence".

A single EEPROM word is written with NVMDATA. The operation includes an implicit erase cycle for that word (it is not necessary to set the FREE bit), and requires many instruction cycles to finish. CPU execution continues in parallel and, when complete, WR is cleared by hardware, NVMIF is set, and an interrupt will occur if NVMIE is also set. Software must poll the WR bit to determine when writing is complete, or wait for the interrupt to occur. WREN will remain unchanged. Once the EEPROM write operation begins, clearing the WR bit will have no effect; the operation will continue to run to completion.

13.4.4 NVMREG ERASE OF PFM

Before writing to PFM, the word(s) to be written must be erased or previously unwritten. PFM can only be erased one row at a time. No automatic erase occurs upon the initiation of the write to PFM.

To erase a PFM row:

- Clear the NVMREGS bit of the NVMCON1 register to erase PFM locations, or set the NMVREGS bit to erase User ID locations.
- Write the desired address into the NVMADRH:NVMADRL register pair (Table 13-2).
- 3. Set the FREE and WREN bits of the NVMCON1 register.
- 4. Perform the unlock sequence as described in Section 13.4.2 "NVM Unlock Sequence".

If the PFM address is write-protected, the WR bit will be cleared and the erase operation will not take place.

While erasing PFM, CPU operation is suspended, and resumes when the operation is complete. Upon completion, the NVMIF is set, and an interrupt will occur if the NVMIE bit is also set.

Write latch data is not affected by erase operations, and WREN will remain unchanged.

FLOWCHART

EXAMPLE 13-5: DEVICE ID ACCESS

; This write routine assu	mes the following:
; 1. A full row of data a	re loaded, starting at the address in DATA_ADDR
; 2. Each word of data to	be written is made up of two adjacent bytes in DATA_ADDR,
; stored in little endian	format
; 3. A valid starting add	ress (the least significant bits = 00000) is loaded in ADDRH:ADDRL
; 4. ADDRH and ADDRL are	located in common RAM (locations 0x70 - 0x7F)
; 5. NVM interrupts are n	not taken into account
BANKSEL NVMADRH	
MOVF ADDRH,W	
MOVWF NVMADRH	; Load initial address
MOVE ADDRL.W	
MOVWE NVMADRI	
MOVIW LOW DATA ADDR	; Load initial data address
MOVWF FSROL	
MOVLW HIGH DATA ADDR	
MOVWE ESROH	
BCF NVMCON1 NVMREGS	: Set PFM as write location
BSE NVMCON1 WREN	: Enable writes
BSF NVMCON1 LWLO	: Load only write latches
LOOP	/ Hoad only write ratenes
MOVIW ESPO++	
MOVWE NUMDATI.	: Load first data byte
MOVIN FSP0++	, hoad filibe data byte
MOVINE NUMDATH	· Load second data bute
CALL UNLOCK SEO	· If not go load latab
INCE NUMADRI E	· In not, go load laten
MOVE NUMADRI N	/ Increment address
YODIW Orle	: Check if lower bits of address are 00000
ANDIW Orle	; check if lower bits of address are 00000
ANDLW UXIF	, and if on last of 32 addresses
COTO CTADE WEITE	· If a a write latabas into moment
GOTO STARI_WRITE	, II SO, GO WIILE TALCHES INCO MEMORY
GOIO LOOP	
SIARI_WRIIE	· Tetab united complete neurunite memory
CALL UNLOCK SEC	· Devices working up of a service memory
CALL UNLOCK_SEQ	, Perform required unfock sequence
BCF NVMCONI, LWLO	, Disable writes
UNLOCK_SEQ	
MOVEW 5511	
BCF INTCON, GIE	, Disable interrupts
MOV WF NVMCONZ	, Begin unlock sequence
MOVLW AAN	
MOVWF NVMCON2	
BSF NVMCONI,WR	
BSF INTCON, GIE	; UNIOCK sequence complete, re-enable interrupts

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 14-43: LATF: PORTF DATA LATCH REGISTER

bit 7-0 LATF<7:0>: RF<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTF are actually written to corresponding LATF register. Reads from PORTF register is return of actual I/O pin values.

REGISTER 14-44: ANSELF: PORTF ANALOG SELECT REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ANSF7 | ANSF6 | ANSF5 | ANSF4 | ANSF3 | ANSF2 | ANSF1 | ANSF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ANSF<7:0>**: Analog Select between Analog or Digital Function on pins RF<7:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 14-45: WPUF: WEAK PULL-UP PORTF REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUF7 | WPUF6 | WPUF5 | WPUF4 | WPUF3 | WPUF2 | WPUF1 | WPUF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUF<7:0>: Weak Pull-up Register bits⁽¹⁾

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 17-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER	REGISTER 17-9:	IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER
---	----------------	--

R/W/HS-0/0	R/W/HS-0/0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	
IOCCF7	IOCCF6	—	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable		W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unk		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared		ared	HS - Bit is se	t in hardware				
bit 7-6 IOCCF<7:6>: Interrupt-on-Change PORTC Flag bits								
1 = An enabled change was detected on the associated pin Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling								

	edge was detected on RCx.
	0 = No change was detected, or the user cleared the detected change
bit 5	Unimplemented: Read as '0'
bit 4-0	 IOCCF<4:0>: Interrupt-on-Change PORTC Flag bits 1 = An enabled change was detected on the associated pin Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.

^{0 =} No change was detected, or the user cleared the detected change

REGISTER 17-10: IOCEP: INTERRUPT-ON-CHANGE PORTE POSITIVE EDGE REGISTER

U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	U-0	U-0
—	—	—	—	IOCEP3 ⁽¹⁾	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4	Unimplemented: Read as '0'	
---------	----------------------------	--

bit 3 IOCEP3: Interrupt-on-Change PORTE Positive Edge Enable bit

1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCEFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

bit 2-0 Unimplemented: Read as '0'

Note 1: If MCLRE = 1 or LVP = 1, RC port functionality is disabled and IOC is not available on RE3.

REGISTER 19-20: ADRESH: ADC RESULT REGISTER HIGH, FM = 1

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—	ADRES<11:8>			
bit 7							bit 0
Legend:							

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is cleared

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ADRES<11:8>: ADC Sample Result bits. Upper four bits of 12-bit conversion result.

REGISTER 19-21: ADRESL: ADC RESULT REGISTER LOW, FM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **ADRES<7:0>**: ADC Result Register bits. Lower eight bits of 12-bit conversion result.

REGISTER 19-22: ADPREVH: ADC PREVIOUS RESULT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			PRE	V<15:8>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	nged	x = Bit is unknown	ı	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0	PREV<15:8>: Previous ADC Results bits
	If ADPSIS = 1:
	Upper byte of FLTR at the start of current ADC conversion
	If ADPSIS = 0:
	Upper bits of ADRES at the start of current ADC conversion ⁽¹⁾

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the FM bit.

REGISTER 19-23: ADPREVL: ADC PREVIOUS RESULT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
PREV<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

PREV<7:0>: Previous ADC Results bits
If ADPSIS = 1:
Lower byte of FLTR at the start of current ADC conversion
If ADPSIS = 0:
Lower bits of ADRES at the start of current ADC conversion ⁽¹⁾

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the FM bit.

◎ 2017 M

FIGURE 28-17: CAPTURE MODE SINGLE ACQUISITION TIMING DIAGRAM

© 2017 Microchip Technology Inc.

Preliminary

32.2 CLCx Interrupts

An interrupt will be generated upon a change in the output value of the CLCx when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR5 register will be set when either edge detector is triggered and its associated enable bit is set. The LCxINTP enables rising edge interrupts and the LCxINTN bit enables falling edge interrupts. Both are located in the CLCxCON register.

To fully enable the interrupt, set the following bits:

- · CLCxIE bit of the PIE5 register
- LCxINTP bit of the CLCxCON register (for a rising edge detection)
- LCxINTN bit of the CLCxCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The CLCxIF bit of the PIR5 register, must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

32.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained in the CLCxDATA register. Reading this register reads the outputs of all CLCs simultaneously. This prevents any reading skew introduced by testing or reading the LCxOUT bits in the individual CLCxCON registers.

32.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result of a Reset. All other selection and gating values remain unchanged.

32.5 Operation During Sleep

The CLC module operates independently from the system clock and will continue to run during Sleep, provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the CLC module is enabled and the HFINTOSC is selected as an input source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

32.6 CLCx Setup Steps

The following steps should be followed when setting up the CLCx:

- Disable CLCx by clearing the LCxEN bit.
- Select desired inputs using CLCxSEL0 through CLCxSEL3 registers (See Table 32-2).
- Clear any associated ANSEL bits.
- Enable the chosen inputs through the four gates using CLCxGLS0, CLCxGLS1, CLCxGLS2, and CLCxGLS3 registers.
- Select the gate output polarities with the LCxGyPOL bits of the CLCxPOL register.
- Select the desired logic function with the LCxMODE<2:0> bits of the CLCxCON register.
- Select the desired polarity of the logic output with the LCxPOL bit of the CLCxPOL register. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- If interrupts are desired, configure the following bits:
 - Set the LCxINTP bit in the CLCxCON register for rising event.
 - Set the LCxINTN bit in the CLCxCON register for falling event.
 - Set the CLCxIE bit of the PIE5 register.
 - Set the GIE and PEIE bits of the INTCON register.
- Enable the CLCx by setting the LCxEN bit of the CLCxCON register.

REGISTER 33-7: SSPxBUF: MSSPx BUFFER REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			SSPxBl	JF<7:0>			
bit 7							bit 0
l egend:							

Legenu.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SSPxBUF<7:0>: MSSP Buffer bits

TABLE 33-3: SUMMARY OF REGISTERS ASSOCIATED WITH MSSPx

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	—	—	INTEDG	164
PIR1	OSFIF	CSWIF	—	—	—	—	ADTIF	ADIF	175
PIE1	OSFIE	CSWIE	—	—	—	—	ADTIE	ADIE	166
SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	557
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		558
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	559
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	560
SSP1MSK	SSPMSK<7:0>						561		
SSP1ADD	SSPADD<7:0>						561		
SSP1BUF	SSPBUF<7:0>					562			
SSP2STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	557
SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		558
SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	559
SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	560
SSP2MSK				SSPMS	K<7:0>				561
SSP2ADD				SSPAD	D<7:0>				561
SSP2BUF				SSPBU	F<7:0>				562
SSP1CLKPPS	_				SSP	1CLKPPS<4	4:0>		264
SSP1DATPPS	_	—	_		SSP	1DATPPS<4	4:0>		264
SSP1SSPPS	—	—	_		SSF	1SSPPS<4	:0>		264
SSP2CLKPPS		—			SSP	2CLKPPS<4	4:0>		264
SSP2DATPPS	—	—	—	SSP2DATPPS<4:0>				264	
SSP2SSPPS	—	—	_		SSF	2SSPPS<4	:0>		264
RxyPPS	—		—		R	xyPPS<4:0>	>		265

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSPx module.

37.3 Instruction Descriptions

ADDFSR	Add Literal to FSRn				
Syntax:	[label] ADDFSR FSRn, k				
Operands:	$-32 \le k \le 31$ n \in [0, 1]				
Operation:	$FSR(n) + k \rightarrow FSR(n)$				
Status Affected:	None				
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.				
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to				

ANDLW	AND literal with W				
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .AND. (k) \rightarrow (W)				
Status Affected:	Z				
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.				

ADDLW	Add literal and W					
Syntax:	[<i>label</i>] ADDLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.					

wrap-around.

ANDWF	AND W with f					
Syntax:	[<i>label</i>] ANDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .AND. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<7>) \rightarrow dest<7>$ $(f<7:1>) \rightarrow dest<6:0>,$ $(f<0>) \rightarrow C,$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

ADDWFC	ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(W) + (f) + (C) \rightarrow dest$					
Status Affected:	C, DC, Z					
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.					

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
110h	ADPREH	_	_	_	PRE<4:0>				312	
111h	ADCON0	ON	CONT	_	CS	_	FM	_	GO	305
112h	ADCON1	PPOL	IPEN	GPOL	_	_	_	_	DSEN	306
113h	ADCON2	PSIS		CRS<2:0>		ACLR		MD<2:0>		307
114h	ADCON3	_		CALC<2:0>		SOI		TMD<2:0>		308
115h	ADSTAT	OV	UTHR	LTHR	MATH	_		STAT<2:0>		309
116h	ADREF	_	—	_	—	_	_	PRE	F<1:0>	310
117h	ADACT	_	_	_			ACT<4:0>			323
118h	ADCLK	_	_			CS	<5:0>			310
119h	RC1REG				RC	IREG				
11Ah	TX1REG				TX1	IREG				
11Bh	SP1BRGL				SP1	BRGL				
11Ch	SP1BRGH				SP1	BRGH				
11Dh	RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
11Eh	TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	
11Fh	BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	
18Ch	SSP1BUF		•		SSF	XBUF			•	562
18Dh	SSP1ADD				SSP	xADD				561
18Eh	SSP1MSK				SSP	xMSK				561
18Fh	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	557
190h	SSP1CON1	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	558
191h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	559
192h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	560
193h	_				Unimpl	emented				
194h					Unimpl	emented				
195h	_				Unimpl	emented				
196h	—		Unimplemented							
197h	—		Unimplemented							
198n			Unimplemented							
1990 100b										
19An 19Bh			Unimplemented							
19Dh										
19Dh	_									
19Eh	_				Unimpl	emented				
19Fh					Unimpl	emented				
20Ch	TMR1L	TMR1L7	TMR1L6	TMR1L5	TMR1L4	TMR1L3	TMR1L2	TMR1L1	TMR1L0	
			ı		TN	IR1L				
20Dh	TMR1H	TMR1H7	TMR1H6	TMR1H5	TMR1H4	TMR1H3	TMR1H2	TMR1H1	TMR1H0	
		TMR1H								
20Eh	T1CON		_	CKF	PS<1:0>	_	SYNC	RD16	ON	379
20Fh	T1GCON	GE	GPOL	GTM	GSPM	GGO/DONE	GVAL	—	_	380
210h	T1GATE	—	—	—			GSS<4:0>			382
211h	T1CLK	—	—	—	_		CS	8<3:0>		381

TABLE 38-1:REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
 Note 1: Unimplemented data memory locations, read as '0'.

TABLE 39-6: **THERMAL CHARACTERISTICS**

Standard Operating Conditions (unless otherwise stated) Operating temperature -40°C \leq TA \leq +125°C									
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions				
TH01	θја	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package				
			80	°C/W	28-pin SOIC package				
			90	°C/W	28-pin SSOP package				
			48	°C/W	28-pin UQFN 4x4 mm package				
			47.2	°C/W	40-pin PDVP package				
			41.0	°C/W	40-pin UQFN 5x5 package				
			46.0	°C/W	44-pin TQFP package				
			24.4	°C/W 🤇	44-pin QFN 8x8 mm package				
			27.6	°C/W	48-pin DQFN 6x6 package				
				°C/W	48-pin TQFP 7x7 package				
TH02	θJC	Thermal Resistance Junction to Case	31.4	_∕°C∧W	28-pin SPDIP package				
			24	>€\M∕	28-pin SOIC package				
			24 /~	<u>°C/W</u>	28-pin SSOP package				
			12	<u>~°C/W</u>	28-pin UQFN 4x4 mm package				
			24,70	°C(W	40-pin PDIP package				
			5.5	~C/W	40-pin UQFN 5x5 package				
			14.5	_°C/₩∕	44-pin TQFP package				
			20.0	w\?€	44-pin QFN 8x8 mm package				
		\sim	6.7	[∼] C/W	48-pin UQFN 6x6 package				
			$\langle / \rightarrow \rangle$	°C/W	48-pin TQFP 7x7 package				
TH03	TJMAX	Maximum Junction Temperature	150	°C					
TH04	PD	Power Dissipation	\searrow	W	PD = PINTERNAL + PI/O				
TH05	PINTERNAL	Internal Power Dissipation	> -	W	Pinternal = Idd x Vdd ⁽¹⁾				
TH06	Pi/o	I/O Power Dissipation	×	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$				
TH07	PDER	Derated Power		W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾				

Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature, TJ = Junction Temperature

I²C BUS START/STOP BITS TIMING FIGURE 39-21: SCL SP93 SP91 SP92 SP90 SDA ŧ Start Stop Condition Condition Note: Refer to Figure 39-4 for load conditions.

TABLE 39-25: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Charact	Min.	Тур	Max.	Units	Conditions		
SP90*	TSU:STA	Start condition	100 kHz mode	4700	—	—	ns	Only relevant for Repeated Start	
		Setup time	400 kHz mode	600		_		condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000		_	ns	After this period, the first clock	
		Hold time	400 kHz mode	600		_		pulse is generated	
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700		—	ns		
		Setup time	400 kHz mode	600		_			
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	_	ns		
		Hold time	400 kHz mode	600		_			

* These parameters are characterized but not tested.

FIGURE 39-22: I²C BUS DATA TIMING

