

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19176-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				,
Name	Function	Input Types	Output Types	Description
RC0/T1CKI ⁽¹⁾ /SMTWIN1 ⁽¹⁾ /IOCC0/SOSCO	RC0	TTL/ST	CMOS/OD	General purpose I/O.
	T1CKI ⁽¹⁾	—	_	Timer1 clock input.
	SMTWIN1 ⁽¹⁾	—	—	SMT window input.
	IOCC0	TTL/ST	—	Interrupt-on-change input.
	SOSCO	—	AN	32.768 kHz secondary oscillator crystal driver output.
RC1/T4IN ⁽¹⁾ /SMTSIG1 ⁽¹⁾ /CCP2 ⁽¹⁾ /IOCC1/SOSCI	RC1	TTL/ST	CMOS/OD	General purpose I/O.
	T4IN ⁽¹⁾	—	—	Timer4 external input.
	SMTSIG1 ⁽¹⁾	—	_	SMT signal input.
	CCP2 ⁽¹⁾	_	_	CCP Capture Input.
	IOCC1	TTL/ST	_	Interrupt-on-change input.
	SOSCI	—	—	32.768 kHz secondary oscillator crystal driver input.
RC2/CCP1 ⁽¹⁾ /IOCC2/ANC2/SEG18/COM2	RC2	TTL/ST	CMOS/OD	General purpose I/O.
	CCP1 ⁽¹⁾	—	_	CCP Capture Input.
	IOCC2	TTL/ST	—	Interrupt-on-change input.
	ANC2	AN	_	ADC Channel input.
	SEG18	_	AN	LCD Analog output.
	COM2	_	AN	LCD Driver Common Outputs.
RC3/T2IN ⁽¹⁾ /SCL ^(3,4) /SCK ⁽¹⁾ /SEG19	RC3	TTL/ST	CMOS/OD	General purpose I/O.
	T2IN ⁽¹⁾	_	—	Timer2 external input.
	SCL ^(3,4)	I ² C	OD	MSSP I ² C clock input/output.
	SCK ⁽¹⁾	TTL/ST	_	MSSP SPI clock input/output
	IOCC3	TTL/ST	_	Interrupt-on-change input.
	ANC3	AN	_	ADC Channel input.
	SEG19	_	AN	LCD Analog output.
RC4/SDA ^(3,4) /SDI ⁽¹⁾ /IOCC4/ANC4/SEG20	RC4	TTL/ST	CMOS/OD	General purpose I/O.
	SDA ^(3,4)	TTL/ST	—	MSSP I ² C data input/output.
	SDI ⁽¹⁾	I ² C	OD	MSSP SPI serial data in.
	IOCC4	TTL/ST		Interrupt-on-change input.
	ANC4	AN	_	ADC Channel input.
	SEG20	—	AN	LCD Analog output.
Legend: AN = Analog input or output CMOS	S = CMOS compat	ible input or out	out OD = Op	en-Drain

TABLE 1-4: PIC16(L)F19185/86 PINOUT DESCRIPTION (CONTINUED)

 Legend:
 AN = Analog input or output TTL = TTL compatible input' HV = High Voltage
 CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels
 OD = Open-Drain

 CMOS = CMOS compatible input or output TTL = TTL compatible input' HV = High Voltage
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Refer to Table 14-2 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 14-3.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

	Bank 58		Bank 59		Bank 60		Bank 61		Bank 62		Bank 63
1D00h	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 4-3)	1D80h	(Table 4-3)	1E00h	(Table 4-3)	1E80h	(Table 4-3)	1F00h	(Table 4-3)	1F80h	(Table 4-3)
1D0Ch	LCDCON	1D8Ch	—	1E0Ch	—	1E8Ch	—	1F0Ch	_	1F8Ch	_
1D0Dh	LCDPS	1D8Dh	—	1E0Dh	—	1E8Dh	—	1F0Dh	_	1F8Dh	_
1D0Eh	LCDSE0	1D8Eh		1E0Eh		1E8Eh	_	1F0Eh	_	1F8Eh	_
1D0Fh	LCDSE1	1D8Fh		1E0Fh	CLCDATA	1E8Fh	PPSLOCK	1F0Fh	_	1F8Fh	_
1D10h	LCDSE2	1D90h	_	1E10h	CLC1CON	1E90h	INTPPS	1F10h	RA0PPS	1F90h	
1D11h	LCDSE3	1D91h	—	1E11h	CLC1POL	1E91h	T0CKIPPS	1F11h	RA1PPS	1F91h	_
1D12h	LCDSE4	1D92h	—	1E12h	CLC1SEL0	1E92h	T1CKIPPS	1F12h	RA2PPS	1F92h	_
1D13h	LCDSE5	1D93h	—	1E13h	CLC1SEL1	1E93h	T1GPPS	1F13h	RA3PPS	1F93h	_
1D14h	LCDVCON1	1D94h	_	1E14h	CLC1SEL2	1E94h	_	1F14h	RA4PPS	1F94h	_
1D15h	LCDVCON2	1D95h	—	1E15h	CLC1SEL3	1E95h	—	1F15h	RA5PPS	1F95h	_
1D16h	LCDREF	1D96h	—	1E16h	CLC1GLS0	1E96h	—	1F16h	RA6PPS	1F96h	_
1D17h	LCDRL	1D97h	—	1E17h	CLC1GLS1	1E97h	_	1F17h	RA7PPS	1F97h	_
1D18h	LCDDATA0	1D98h	—	1E18h	CLC1GLS2	1E98h	_	1F18h	RB0PPS	1F98h	_
1D19h	LCDDATA1	1D99h	—	1E19h	CLC1GLS3	1E99h	—	1F19h	RB1PPS	1F99h	—
1D1Ah	LCDDATA2	1D9Ah	_	1E1Ah	CLC2CON	1E9Ah	—	1F1Ah	RB2PPS	1F9Ah	—
1D1Bh	LCDDATA3	1D9Bh	_	1E1Bh	CLC2POL	1E9Bh	_	1F1Bh	RB3PPS	1F9Bh	—
1D1Ch	LCDDATA4	1D9Ch	_	1E1Ch	CLC2SEL0	1E9Ch	T2AINPPS	1F1Ch	RB4PPS	1F9Ch	—
1D1Dh	LCDDATA5	1D9Dh	—	1E1Dh	CLC2SEL1	1E9Dh	T4AINPPS	1F1Dh	RB5PPS	1F9Dh	—
1D1Eh	LCDDATA6	1D9Eh	_	1E1Eh	CLC2SEL2	1E9Eh	_	1F1Eh	RB6PPS	1F9Eh	_
1D1Fh	LCDDATA7	1D9Fh	_	1E1Fh	CLC2SEL3	1E9Fh	_	1F1Fh	RB7PPS	1F9Fh	_
1D20h	LCDDATA8	1DA0h	_	1E20h	CLC2GLS0	1EA0h	_	1F20h	RC0PPS	1FA0h	_
1D21h	LCDDATA9	1DA1h	_	1E21h	CLC2GLS1	1EA1h	CCP1PPS	1F21h	RC1PPS	1FA1h	_
1D22h	LCDDATA10	1DA2h	_	1E22h	CLC2GLS2	1EA2h	CCP2PPS	1F22h	RC2PPS	1FA2h	_
1D23h	LCDDATA11	1DA3h	—	1E23h	CLC2GLS3	1EA3h	_	1F23h	RC3PPS	1FA3h	_
1D24h	LCDDATA12	1DA4h		1E24h	CLC3CON	1EA4h	_	1F24h	RC4PPS	1FA4h	—
1D25h	LCDDATA13	1DA5h	_	1E25h	CLC3POL	1EA5h	—	1F25h	_	1FA5h	—
1D26h	LCDDATA14	1DA6h	_	1E26h	CLC3SEL0	1EA6h	_	1F26h	RC6PPS	1FA6h	_
1D27h	LCDDATA15	1DA7h	_	1E27h	CLC3SEL1	1EA7h	_	1F27h	RC7PPS	1FA7h	_
1D28h	LCDDATA16	1DA8h	_	1E28h	CLC3SEL2	1EA8h	_	1F28h	RD0PPS ⁽²⁾	1FA8h	_
1D29h	LCDDATA17	1DA9h	_	1E29h	CLC3SEL3	1EA9h	SMT1WINPPS	1F29h	RD1PPS ⁽²⁾	1FA9h	_
1D2Ah	LCDDATA18	1DAAh		1E2Ah	CLC3GLS0	1EAAh	SMT1SIGPPS	1F2Ah	RD2PPS ⁽²⁾	1FAAh	_
1D2Bh	LCDDATA19	1DABh		1E2Bh	CLC3GLS1	1EABh	_	1F2Bh	RD3PPS ⁽²⁾	1FABh	
1D2Ch	LCDDATA20	1DACh		1E2Ch	CLC3GLS2	1EACh	_	1F2Ch	RD4PPS ⁽²⁾	1FACh	
1D2Dh	LCDDATA21	1DADh		1E2Dh	CLC3GLS3	1EADh	_	1F2Dh	RD5PPS ⁽²⁾	1FADh	_
1D2Eh	LCDDATA22	1DAEh		1E2Eh	CLC4CON	1EAEh	_	1F2Eh	RD6PPS ⁽²⁾	1FAEh	_
1D2Fh	LCDDATA23	1DAFh		1E2Fh	CLC4POL	1EAFh	_	1F2Fh	RD7PPS ⁽²⁾	1FAFh	
1D30h	LCDDATA24	1DB0h		1E30h	CLC4SEL0	1EB0h	_	1F30h	RE0PPS ⁽²⁾	1FB0h	_
1D31h	LCDDATA25	1DB1h		1E31h	CLC4SEL1	1EB1h	CWG1PPS	1F31h	RE1PPS ⁽²⁾	1FB1h	
1D32h	LCDDATA26	1DB2h	_	1E32h	CLC4SEL2	1EB2h	_	1F32h	RE2PPS ⁽²⁾	1FB2h	_
1D33h	LCDDATA27	1DB3h		1E33h	CLC4SEL3	1EB3h	_	1F33h	RE3PPS	1FB3h	_
1D34h	LCDDATA28	1DB4h	_	1E34h	CLC4GLS0	1EB4h	_	1F34h	RE4PPS	1FB4h	
1D35h	LCDDATA29	1DB5h		1E35h	CLC4GLS1	1EB5h	_	1F35h	RE5PPS	1FB5h	_
1D36h	LCDDATA30	1DB6h	_	1E36h	CLC4GLS2	1EB6h	_	1F36h	RE6PPS	1FB6h	_
1D37h	LCDDATA31	1DB7h	_	1E37h	CLC4GLS3	1EB7h	_	1F37h	RE7PPS	1FB7h	_
1D38h	LCDDATA32	1DB8h		1E38h	RF0PPS ⁽³⁾	1EB8h	_	1F38h	ANSELA	1FB8h	
1D39h	LCDDATA33	1DB9h		1E39h	RF1PPS(3)	1FB9h	_	1F39h	WPUA	1FB9h	
1D3Ah	LCDDATA34	1DBAh		1E3Ah	RF2PPS ⁽³⁾	1EBAh	_	1F3Ah	ODCONA	1FBAh	

TABLE 4-10: PIC16(L)F19155/56/75/76/85/86 MEMORY MAP, BANKS 58-63

Note 1: Unimplemented locations read as '0'.

2: Present only on PIC16(L)F19156/76/86.

3: Present only on PIC16(L)F19185/86.

REGISTER 10-13: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

U-0	R/W/HS-0/0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
_	ZCDIF	_	_	_	_	C2IF	C1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set

bit 7	Unimplemented: Read as '0'
bit 6	ZCDIF: Zero-Cross Detect (ZCD1) Interrupt Flag bit
	 1 = An enabled rising and/or falling ZCD1 event has been detected (must be cleared in software) 0 = No ZCD1 event has occurred
bit 5-2	Unimplemented: Read as '0'
bit 1	C2IF : Comparator C2 Interrupt Flag bit 1 = Comparator 2 interrupt asserted (must be cleared in software) 0 = Comparator 2 interrupt not asserted
bit 0	C1IF: Comparator C1 Interrupt Flag bit 1 = Comparator 1 interrupt asserted (must be cleared in software) 0 = Comparator 1 interrupt not asserted
Note:	Interrupt flag bits are set when an interrupt

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of									
	its corresponding enable bit or the Global									
	Enable bit, GIE, of the INTCON register.									
	User software should ensure the									
	appropriate interrupt flag bits are clear									
	prior to enabling an interrupt.									

REGISTER	10-14: PIR3:	PERIPHERA	L INTERRU	PT REQUES	T REGISTER	3	
R-0	R-0	R-0	R-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
RC2IF	TX2IF	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	HS = Hardwa	are clearable		
bit 7	RC2IF: EUSA 1 = The EUS 0 = The EUS	ART2 Receive ART2 receive ART2 receive	Interrupt Flag buffer is not e buffer is empt	(read-only) bit mpty (contains y	(1) at least one by	rte)	
bit 6	1 = The EUSA 1 = The EUS 0 = The EUS TXxREG	ART2 Transmit SART2 transmit SART2 transm	Interrupt Flag buffer contain it buffer is cu	(read-only) bit ns at least one urrently full. Th	unoccupied spanne application f	ace firmware shoul	d not write to
bit 5	RC1IF: EUSA 1 = The EUS 0 = The EUS	ART1 Receive SART1 receive SART1 receive	Interrupt Flag buffer is not e buffer is empt	(read-only) bit mpty (contains y	(1) at least one by	rte)	
bit 4	TX1IF: EUSA	RT1 Transmit	Interrupt Flag	(read-only) bit	(2)		
	1 = The EUS 0 = The EUS TXxREG	SART1 transm SART1 transm Gagain, until m	it buffer contai hit buffer is cu ore room beco	ins at least one urrently full. T omes available	e unoccupied sp he application t in the transmit	ace firmware shoul buffer.	d not write to
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	BCL1IF: MSS	SP1 Bus Collis	ion Interrupt F	lag bit			
	1 = A bus co 0 = No bus c	llision was dete collision was de	ected (must be tected	e cleared in so	ftware)		
bit 0	SSP1IF: Synd 1 = The Tran 0 = Waiting fo	chronous Seria Ismission/Rece or the Transmi	I Port (MSSP ption/Bus Co ssion/Reception	1) Interrupt Fla ndition is comp on/Bus Conditi	g bit blete (must be cl on in progress	leared in softwa	are)
Note 1: T ti	The RCxIF flag is a imes to remove al	a read-only bit. Il bytes from th	To clear the F	RCxIF flag, the er.	firmware must	read from RCx	REG enough
2 : T tł T	The TXxIF flag is a he firmware must TXxIF flag does no	a read-only bit, write enough o ot indicate trans	indicating if th data to TXxRE smit completio	nere is room in G to complete on (use TRMT	the transmit bu ly fill all availabl for this purpose	ffer. To clear th le bytes in the t instead).	e TXxIF flag, ouffer. The
Note: I	nterrupt flag bits a	re set when an	interrupt				

NOLC.	interrupt hay bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

© 2017 Microchip Technology Inc.

© 2017 Microchip Technology Inc.

I	U-0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0			
	_	NVMREGS	LWLO	FREE	WRERR ^(1,2,3)	WREN	WR ^(4,5,6)	RD			
bit 7								bit 0			
Legen	d:										
R = Re	eadable b	it	W = Writable bi	t	U = Unimplemen	ted bit, read as	s 'O'				
S = Bit	t can only	be set	x = Bit is unkno	wn	-n/n = Value at P	OR and BOR/\	/alue at all other F	Resets			
'1' = Bi	it is set		'0' = Bit is clear	ed	HC = Bit is cleare	ed by hardware)				
bit 7		Unimplemente	d: Read as '0'								
bit 6		NVMREGS: Co 1 = Access EE 0 = Access PF	onfiguration Selec EPROM, DIA, DC ^E M	ct bit Cl, Configuratio	n, User ID and Dev	vice ID Register	rs				
bit 5	bit 5 LWLO: Load Write Latches Only bit <u>When FREE = 0</u> : 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiated. 0 = The next WR command writes data or erases Otherwise: The bit is ignored										
bit 4	bit 4 FREE: PFM Erase Enable bit When NVMREGS:NVMADR points to a PFM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicated address is erased (to all 1s) to prepare for writing. 0 = All erase operations have completed parmally.										
bit 3		WRERR: Progr This bit is norm 1 = A write op NVMADR 0 = The progra	am/Erase Error I ally set by hardw eration was inter points to a write- am or erase oper	Flag bit ^(1,2,3) vare. rupted by a Re protected addr ration complete	eset, interrupted ur ess. d normally	lock sequence	, or WR was writt	en to one while			
bit 2		WREN: Program1 = Allows pro0 = Inhibits pro	m/Erase Enable ogram/erase cyclo ogramming/erasi	bit es ng of program	Flash						
bit 1		WR: Write Cont <u>When NVMRE(</u> 1 = Initiates th 0 = NVM prog	trol bit ^(4,5,6) <u>G:NVMADR poin</u> e operation indic ram/erase opera	ts to a PFM loc ated by Table ² tion is complete	<u>ation</u> : 13-4 e and inactive.						
bit 0	 t 0 RD: Read Control bit⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle a bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive 										
Note	1: Bit i 2: Bit r 3: Bit r 4: This 5: Ope 6: One	s undefined while must be cleared b may be written to bit can only be serations are self-ti te a write operatic	WR = 1. y software; hard '1' by software ir set by following the med, and the Willon is initiated, set	ware will not cle n order to imple ne unlock sequ R bit is cleared tting this bit to z	ear this bit. ment test sequence ence of Section 13 by hardware when zero will have no ef	es. 3.4.2 "NVM Un complete. ffect.	lock Sequence".				

REGISTER 13-5: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

7: Reading from EEPROM loads only NVMDATL<7:0> (Register 13-1).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	229
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	229
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	230
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	230
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	231
ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	231
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	232
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	232
HIDRVB	_		_	—	_	_	HIDB1	—	232

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

REGISTER 14-24: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLC7	INLVLC6	—	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is cleared

bit 7-6	INLVLC<7:6>: PORTC Input Level Select bits
	For RC<7:6> pins, respectively
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change
bit 5	Unimplemented: Read as '0'.
bit 4-0	INLVLC<4:0>: PORTC Input Level Select bits
	For RC<4:0> pins, respectively
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change

TABLE 14-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTC	RC7	RC6	—	RC4	RC3	RC2	RC1	RC0	235
TRISC	TRISC7	TRISC6	—	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	235
LATC	LATC7	LATC6	—	LATC4	LATC3	LATC2	LATC1	LATC0	236
WPUC	WPUC7	WPUC6	—	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	236
ODCONC	ODCC7	ODCC6	—	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	237
SLRCONC	SLRC7	SLRC6	—	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	237
INLVLC	INLVLC7	INLVLC6	_	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	238

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

19.5.5 BURST AVERAGE MODE

The Burst Average mode (ADMD = 011) acts the same as the Average mode in most respects. The one way it differs is that it continuously retriggers ADC sampling until the CNT value is greater than or equal to RPT, even if Continuous Sampling mode (see **Section 19.5.8 "Continuous Sampling mode**") is not enabled. This allows for a threshold comparison on the average of a short burst of ADC samples.

19.5.6 LOW-PASS FILTER MODE

The Low-Pass Filter mode (ADMD = 100) acts similarly to the Average mode in how it handles samples (accumulates samples until CNT value is greater than or equal to RPT, then triggers threshold comparison. CNT does not reset once it is greater or equal to RPT. Thus CNT will be greater than RPT for all subsequent samples until CNT is reset by the user), but instead of a simple average, it performs a low-pass filter operation on all of the samples, reducing the effect of high-frequency noise on the average, then performs a threshold comparison on the results. (see Table 19-2 for a more detailed description of the mathematical operation). In this mode, the ADCRS bits determine the cut-off frequency of the low-pass filter (as demonstrated by Table 19-3).

19.5.7 THRESHOLD COMPARISON

At the end of each computation:

- The conversion results are latched and held stable at the end-of-conversion.
- The error is calculated based on a difference calculation which is selected by the ADCALC<2:0> bits in the ADCON3 register. The value can be one of the following calculations (see Register 19-4 for more details):
 - The first derivative of single measurements
 - The CVD result in CVD mode
 - The current result vs. a setpoint
 - The current result vs. the filtered/average result
 - The first derivative of the filtered/average value
 - Filtered/average value vs. a setpoint
- The result of the calculation (ERR) is compared to the upper and lower thresholds, UTH<ADUTHH:ADUTHL> and

LTH<ADLTHH:ADLTHL> registers, to set the ADUTHR and ADLTHR flag bits. The threshold logic is selected by ADTMD<2:0> bits in the ADCON3 register. The threshold trigger option can be one of the following:

- Never interrupt
- Error is less than lower threshold
- Error is greater than or equal to lower threshold
- Error is between thresholds (inclusive)
- Error is outside of thresholds
- Error is less than or equal to upper threshold
- Error is greater than upper threshold
- Always interrupt regardless of threshold test results
- If the threshold condition is met, the threshold interrupt flag ADTIF is set.

Note 1: The threshold tests are signed operations.

2: If OV is set, a threshold interrupt is signaled.

REGISTER 19-15: ADCNT: ADC REPEAT COUNTER REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			CNT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **CNT<7:0>**: ADC Repeat Count bits Counts the number of times that the ADC has been triggered and is used along with RPT to determine when the error threshold is checked when the computation is Low-pass Filter, Burst Average, or Average modes. See Table 19-2 for more details.

REGISTER 19-16: ADFLTRH: ADC FILTER HIGH BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FLTR<	<15:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **FLTR<15:8**>: ADC Filter Output Most Significant bits

In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

REGISTER 19-17: ADFLTRL: ADC FILTER LOW BYTE REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			FLTR	<7:0>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **FLTR<7:0>**: ADC Filter Output Least Significant bits In Accumulate, Average, and Burst Average mode, this is equal to ACC right shifted by the ADCRS bits of ADCON2. In LPF mode, this is the output of the Low-pass Filter.

22.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Programmable input selection
- Selectable voltage reference
- Programmable output polarity
- Rising/falling output edge interrupts
- Programmable Speed/Power optimization
- CWG1 Auto-shutdown source

22.1 Comparator Overview

A single comparator is shown in Figure 22-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

The comparators available are shown in Table 22-1.

TABLE 22-1: AVAILABLE COMPARATORS

Device	C1	C2
PIC16(L)F19155/56/75/76/85/86	•	•

22.2 C2 Low-Power Clocked Comparator

C2 is a low-power LFINTOSC clocked comparator. On each rising edge of LFINTOSC the output state of the comparator is updated based on the states of the comparator inputs.

22.2.1 LOW POWER REFERENCE

C2 has access to a low power reference source (3.072V) used by the LCD module. If the lowest power operation is desired and a highest variation of tolerance is acceptable, the user can choose the C2 Low-Power Clocked Comparator with the LCD VREF as a positive channel input (see Comparator Positive Input Channel Select bits PCH<2:0>). See Section 18.0 "Fixed Voltage Reference (FVR)" for additional details.

SINGLE COMPARATOR

33.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 33-27) occurs when the RSEN bit of the SSPxCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 33-27: REPEATED START CONDITION WAVEFORM

35.5.2 AUTOMATIC POWER MODE SWITCHING

Each segment within an LCD display is perceived electrically like a small capacitor. Due to this fact, power is mainly consumed during the transition periods when voltage is being supplied to the segments. So in order to manage total current consumption, the LCD reference ladder can be used in different power modes during these transition periods. Control of the LCD reference ladder is done through the LCDRL register (see Register 35-7).

The automatic power switching using Type-A/Type-B, can optimize the power consumption for a given contrast. As shown in Figure 35-3, Power Mode A is active for a programmable time, beginning when the LCD segment waveform is transitioning. The LRLAT<2:0> bits (LCDRL<2:0>) select how long Mode A is active. Power mode B is active for the remaining time before the segments or commons change again.

As shown in Figure 35-3, there are 32 counts in a single segment time. Type-A is used when the wave form is in transition. Type-B can be used when the segment voltage is stable or not in transition.

© 2017 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
LCDDATA34	S47C5	S46C5	S45C5	S44C5	S43C5	S42C5	S41C5	S40C5	624
LCDDATA35	S07C6	S06C6	—	S04C6	S03C6	S02C6	S01C6	S00C6	624
LCDDATA36	S15C6	S14C6	S13C6	_	S11C6	S10C6	S09C6	S08C6	624
LCDDATA37	S23C6	S22C6	—	S20C6	S19C6	S18C6	—	_	624
LCDDATA38	S31C6	S30C6	S29C6	S28C6	S27C6	S26C6	S25C6	S24C6	624
LCDDATA39	—	—	—	—	—	S34C6	S33C6	S32C6	624
LCDDATA40	S47C6	S46C6	S45C6	S44C6	S43C6	S42C6	S41C6	S40C6	624
LCDDATA41	S07C7	S06C7	—	S04C7	S03C7	S02C7	S01C7	S00C7	624
LCDDATA42	S15C7	S14C7	S13C7	—	S11C7	S10C7	S09C7	S08C7	624
LCDDATA43	S23C7	S22C7	—	S20C7	S19C7	S18C7	—	_	624
LCDDATA44	S31C7	S30C7	S29C7	S28C7	S27C7	S26C7	S25C7	S24C7	624
LCDDATA45	—	—	—	—	—	S34C7	S33C7	S32C7	624
LCDDATA46	S47C7	S46C7	S45C7	S44C7	S43C7	S42C7	S41C7	S40C7	624
LCDDATA47	S07C0	S06C0	—	S04COM0	S03C0	S02C0	S01C0	S00C0	624

TABLE 35-10: SUMMARY OF REGISTERS ASSOCIATED WITH LCD MODULE (CONTINUED)

TABLE 39-10: I/O A	ND CLKOUT TIMING	SPECIFICATIONS
--------------------	------------------	----------------

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
IO1*	T _{CLKOUTH}	CLKOUT rising edge delay (rising edge Fosc (Q1 cycle) to falling edge CLKOUT	> -	—	70	ns			
IO2*	T _{CLKOUTL}	CLKOUT falling edge delay (rising edge Fosc (Q3 cycle) to rising edge CLKOUT	_	—	72	ns			
IO3*	T _{IO_VALID}	Port output valid time (rising edge Fose (Q1 cycle) to port valid)	_	50	70	ns			
IO4*	T _{IO_SETUP}	Port input setup time (Setup time before rising edge Fosc – Q2 cycle)	20	—		ns			
IO5*	T _{IO_HOLD}	Port input hold time (Hold time after rising edge Fosc – Q2 cycle)	50	—	_	ns			
IO6*	TIOR_SLREN	Port I/O rise time, slew rate enabled		25	_	ns	VDD = 3.0V		
107*	TIOR SLADIS	Port I/O fise time, slew rate disabled		5	_	ns	VDD = 3.0V		
IO8*	FIOF SLREN	Port I/O fall time, slew rate enabled	—	25	_	ns	VDD = 3.0V		
109*		Port I/O fall time, slew rate disabled	—	5	_	ns	VDD = 3.0V		
1010*	7 INT	INT pin high or low time to trigger an interrupt	25			ns			
IO11*	A ^{10C}	Interrupt-on-Change minimum high or low time to trigger interrupt	25	—	_	ns			
*These	parameters ar	e characterized but not tested.							

Standard Operating Conditions (unless otherwise stated)

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A