

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19176-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4: 40/44-PIN ALLOCATION TABLE (PIC16(L)F19175/76) (CONTINUED)

I/O ⁽²⁾	40-Pin PDIP	40-Pin UQFN	44-Pin TQFP	44-Pin QFN	ADC	Reference	Comparator	Zero-Cross Detect	DAC	Timers/SMT	ССР	PWM	CWG	ASSM	EUSART	CLC	RTCC	ГСД	Interrupt-on-Change	High Current	Pull-up	Basic
VLCD3	24	39	43	43			—		—		—	—	—	_		_	—	VLCD3	—		_	_
VDD	11 32	7 26	7 28	7 28	-		—	_	—	_	—	—	—	_		-		-	—		_	Vdd
Vss	12 31	6 27	6 29	6 30	-		-	_	_	_	_	-	Ι	_		-	I	Ι	Ι			Vss
OUT ⁽²⁾					ADGRDA ADGRDB		C1OUT C2OUT	_	-	TMR0	CCP1 CCP2	PWM3 PWM4	CWG1A CWG1B CWG1C CWG1D	SDO SCK SCL SDA	TX1 DT1 CK1 TX2 DT2 CK2	CLC1OUT	RTCC	Ι		_		Ι

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one or more PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by INLCVL register, instead of the I²C specific or SMBUS input buffer thresholds.

5: These are alternative I²C logic levels pins.

6: In I²C logic levels configuration, these pins can operate as either SCL and SDA pins.

Name	Function	Input Type	Output Type	Description
RB3/C1IN2-/C2IN2-/IOCB3/ANB3/SEG11/SEGCFLY2	RB3	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN2-	AN	_	Comparator negative input.
	C2IN2-	AN	_	Comparator negative input.
	IOCB3	TTL/ST	_	Interrupt-on-change input.
	ANB3	AN	_	ADC Channel input.
	SEG11	_	AN	LCD Analog output.
	SEGCFLY2	AN	_	LCD Drive Charge Pump Capacitor Inputs
RB4/ADCACT ⁽¹⁾ /IOCB4/ANB4/COM0	RB4	TTL/ST	CMOS/OD	General purpose I/O.
	ADCACT ⁽¹⁾	TTL/ST	—	ADC Auto-Conversion Trigger input
	IOCB4	TTL/ST	_	Interrupt-on-change input.
	ANB4	AN	_	ADC Channel input.
	COM0	_	AN	LCD Driver Common Outputs.
RB5/T1G ⁽¹⁾ /IOCB5/ANB5/SEG13/COM1	RB5	TTL/ST	CMOS/OD	General purpose I/O.
	T1G ⁽¹⁾	—	_	Timer1 Gate input.
	IOCB5	TTL/ST	_	Interrupt-on-change input.
	ANB5	AN	_	ADC Channel input.
	SEG13	-	AN	LCD Analog output.
	COM1	-	AN	LCD Driver Common Outputs.
RB6/CK2 ⁽³⁾ /TX2 ⁽¹⁾ /CLCIN2 ⁽¹⁾ /IOCB6/ANB6/SEG14/	RB6	TTL/ST	CMOS/OD	General purpose I/O.
ICSPCLK	CK2 ⁽³⁾	-	_	EUSART synchronous clock out
	TX2 ⁽¹⁾	_	_	EUSART asynchronous TX data out
	CLCIN2 ⁽¹⁾		_	Configurable Logic Cell source input.
	IOCB6	TTL/ST	_	Interrupt-on-change input.
	ANB6	AN	_	ADC Channel input.
	SEG14	_	AN	LCD Analog output.
	ICSPCLK	ST	_	In-Circuit Serial Programming™ and debugging clock input.
RB7/DK2 ⁽³⁾ /RX2 ⁽¹⁾ /CLCIN3 ⁽¹⁾ /IOCB7/ANB7/SEG15/	RB7	TTL/ST	CMOS/OD	General purpose I/O.
DAC10UT2/ICSPDAT	DK2 ⁽³⁾	—	_	EUSART synchronous data output
	RX2 ⁽¹⁾	_	_	EUSART receive input.
	CLCIN3 ⁽¹⁾	_	_	Configurable Logic Cell source input.
	IOCB7	TTL/ST	_	Interrupt-on-change input.
	ANB7	_	AN	ADC Channel input.
	SEG15	_	AN	LCD Analog output.
	DAC10UT2	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	TTL/ST	TTL/ST	In-Circuit Serial Programming™ and debugging data input/output.

TABLE 1-3: PIC16(L)F19175/76 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output TTL = TTL compatible input' HV = High Voltage

CMOS = CMOS compatible input or output OD = Open-Drain

ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C XTAL = Crystal levels

Note This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. 1: Refer to Table 14-2 for details on which PORT pins may be used for this signal.

All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as 2: described in Table 14-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS 3: output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assignments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds. 4:

Name	Function	Input Types	Output Types	Description
RA0/C1IN0-/C2IN0-/ANA0/CLCIN0 ⁽¹⁾ /IOCA0/SEG0	RA0	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN0-	AN	_	Comparator negative input.
	C2IN0-	AN	_	Comparator negative input.
	ANA0	AN	_	ADC Channel input.
	CLCIN0 ⁽¹⁾	_	-	Configurable Logic Cell source input.
	IOCA0	TTL/ST	_	Interrupt-on-change input.
	SEG0	-	AN	LCD Analog output.
RA1/C1IN1-/C2IN1-/ANA1/CLCIN1 ⁽¹⁾ /SEG1	RA1	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN1-	AN	_	Comparator negative input.
	C2IN1-	AN	_	Comparator negative input.
	ANA1	AN	_	ADC Channel input.
	CLCIN1 ⁽¹⁾	_	_	Configurable Logic Cell source input.
	IOCA1	TTL/ST	_	Interrupt-on-change input.
	SEG1	—	AN	LCD Analog output.
RA2/C1IN0+/C2IN0+/ANA2/DAC1OUT1/IOCA2/SEG2	RA2	TTL/ST	CMOS/OD	General purpose I/O.
	C1IN0+	AN	_	Comparator positive input.
	C2IN0+	AN	_	Comparator positive input.
	ANA2	AN	_	ADC Channel input.
	DAC1OUT1	—	AN	Digital-to-Analog Converter output.
	IOCA2	TTL/ST	_	Interrupt-on-change input.
	SEG2	_	AN	LCD Analog output.
RA3/C1IN1+/ANA3/SEG3/IOCA3/VREF+ (ADC)/VREF+	RA3	TTL/ST	CMOS/OD	General purpose I/O.
(DAC1)	C1IN1+	AN	_	Comparator positive input.
	ANA3	AN	_	ADC Channel input.
	SEG3	_	AN	LCD Analog output.
	IOCA3	TTL/ST	_	Interrupt-on-change input.
	VREF+ (ADC)	AN	—	ADC positive reference.
	VREF+ (DAC1)	AN		DAC positive reference.
RA4/ANA4/T0CKI ⁽¹⁾ /IOCA4/SEG4/COM3	RA4	TTL/ST	CMOS/OD	General purpose I/O.
	ANA4	AN	_	ADC Channel input.
	T0CKI ⁽¹⁾	_	-	Timer0 clock input.
	IOCA4	TTL/ST	_	Interrupt-on-change input.
	SEG4	—	AN	LCD Analog output.
	COM3	_	AN	LCD Driver Common Outputs.
RA5/SS ⁽¹⁾ /IOCA5/VBAT	RA5	TTL/ST	CMOS/OD	General purpose I/O.
	SS ⁽¹⁾	TTL/ST	_	MSSP SPI slave select input.
	IOCA5	TTL/ST	_	Interrupt-on-change input.
	VBAT	AN	_	RTCC Back-up Battery.
Legend: AN = Analog input or output CMOS	= CMOS compati	ble input or out	out OD = Op	en-Drain

TABLE 1-4: PIC16(L)F19185/86 PINOUT DESCRIPTION

AN = Analog input or output CMOS = CMOS compatible input or output Legend: TTL = TTL compatible input HV = High Voltage

ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C XTAL = Crystal levels

This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins. Note 1: Refer to Table 14-2 for details on which PORT pins may be used for this signal.

2: All output signals shown in this row are PPS remappable. These signals may be mapped to output onto one of several PORTx pin options as described in Table 14-3.

This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and 3: PPS output registers.

These pins are configured for I²C logic levels. The SCLx/SDAx signals may be assigned to any of the RB1/RB2/RC3/RC4 pins. PPS assign-4: ments to the other pins (e.g., RA5) will operate, but input logic levels will be standard TTL/ST, as selected by the INLVL register, instead of the I²C specific or SMBus input buffer thresholds.

PIC16(L)F19155/56/75/76/85/86

EXAMPLE 13-5: DEVICE ID ACCESS

; This write routine assu	mes the following:								
; 1. A full row of data are loaded, starting at the address in DATA_ADDR									
; 2. Each word of data to	2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,								
; stored in little endian	format								
; 3. A valid starting add	ress (the least significant bits = 00000) is loaded in ADDRH:ADDRL								
; 4. ADDRH and ADDRL are	located in common RAM (locations 0x70 - 0x7F)								
; 5. NVM interrupts are n	not taken into account								
BANKSEL NVMADRH									
MOVF ADDRH,W									
MOVWF NVMADRH	; Load initial address								
MOVE ADDRL.W									
MOVWE NVMADRI									
MOVIW LOW DATA ADDR	; Load initial data address								
MOVWF FSROL									
MOVLW HIGH DATA ADDR									
MOVWE ESROH									
BCE NVMCON1 NVMREGS	: Set PFM as write location								
BSE NVMCON1 WREN	: Enable writes								
BSF NVMCON1 LWLO	: Load only write latches								
LOOP	/ Hoad only write ratenes								
MOVIW ESPO++									
MOVWE NUMDATI.	: Load first data byte								
MOVIN FSP0++	, hoad filibe data byte								
MOVINE NUMDATH	· Load second data bute								
CALL UNLOCK SEO	· If not go load latab								
INCE NUMADRI E	· In not, go load laten								
MOVE NUMADRI N	/ Increment address								
YODIW Orle	: Check if lower bits of address are 00000								
ANDIW Orle	; check if lower bits of address are 00000								
ANDLW UXIF	, and if on last of 32 addresses								
COTO CTADE WEITE	· If a a write latabas into moment								
GOTO STARI_WRITE	, II SO, GO WIILE TALCHES INCO MEMORY								
GOIO LOOP									
SIARI_WRIIE	· Tetab united complete neurunite memory								
CALL UNLOCK SEC	· Devices working up of a service memory								
CALL UNLOCK_SEQ	, Perform required unfock sequence								
BCF NVMCONI, LWLO	, Disable writes								
UNLOCK_SEQ									
MOVEW 5511									
BCF INTCON, GIE	, Disable interrupts								
MOV WF NVMCONZ	, Begin unlock sequence								
MOVLW AAN									
MOVWF NVMCON2									
BSF NVMCONI,WR									
BSF INTCON, GIE	; UNIOCK sequence complete, re-enable interrupts								

15.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections.

All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 15-1.

FIGURE 15-1: SIMPLIFIED PPS BLOCK DIAGRAM

15.1 PPS Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 15-1.

Note:	The notation "xxx" in the register name is
	a place holder for the peripheral identifier.
	For example, CLC1PPS.

15.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals are (See Section 15.3 "Bidirectional Pins"):

- EUSART (synchronous operation)
- MSSP (I²C)
- CWG

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 15-2.

Note: The notation "Rxy" is a place holder for the pin port and bit identifiers. For example, x and y for PORTA bit 0 would be A and 0, respectively, resulting in the pin PPS output selection register RA0PPS.

15.8 Register Definitions: PPS Input Selection

REGISTER 15-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION⁽¹⁾

U-0	U-0	U-0	R/W-q/u	R/W/q/u	R/W-q/u	R/W-q/u	R/W-q/u	
—	—	_			xxxPPS<4:0>			
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable b			bit U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is un			nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cle	ared	q = value depends on peripheral				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **xxxPPS<4:0>:** Peripheral xxx Input Selection bits See Table 15-1 and Table 15-2.⁽²⁾

- **Note 1:** The "xxx" in the register name "xxxPPS" represents the input signal function name, such as "INT", "T0CKI", "RX", etc. This register summary shown here is only a prototype of the array of actual registers, as each input function has its own dedicated SFR (ex: INTPPS, T0CKIPPS, RXPPS, etc.).
 - 2: Each specific input signal may only be mapped to a subset of these I/O pins, as shown in Table 15-2. Attempting to map an input signal to a non-supported I/O pin will result in undefined behavior. For example, the "INT" signal map be mapped to any PORTA or PORTB pin. Therefore, the INTPPS register may be written with values from 0x00-0x0F (corresponding to RA0-RB7). Attempting to write 0x10 or higher to the INTPPS register is not supported and will result in undefined behavior.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0						
_	—		_	PWM4MD	PWM3MD	CCP2MD	CCP1MD						
bit 7							bit 0						
Legend:	Legend:												
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'							
u = Bit is unc	hanged	x = Bit is unkn	own	-n/n = Value a	t POR and BO	R/Value at all c	other Resets						
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value depends on condition									
bit 7-4	Unimplemen	ted: Read as 'o)'										
bit 3	PWM4MD: Di	isable Pulse-Wi	idth Modulator	PWM4 bit									
	1 = PWM4 m	odule disabled											
bit 2	PWM3MD: Di	isable Pulse-Wi	idth Modulator	PWM3 bit									
	$\perp = PWW3 m$ 0 = PWM3 m	iodule enabled											
hit 1	CCP2MD: Die	sable CCP2 bit											
	1 = CCP2 m	odule disabled											
	0 = CCP2 m	odule enabled											
bit 0	CCP1MD: Dis	sable CCP1 bit											

REGISTER 16-4: PMD3: PMD CONTROL REGISTER 3

- 1 = CCP1 module disabled
- 0 = CCP1 module enabled

© 2017 Microchip Technology Inc.

REGISTER 17-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE	E EDGE REGISTER
--	-----------------

IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 bit 7	·O'	
IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2		bit 0
	IOCBP1 IC	CBP0
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0	R/W-0/0 R	R/M-0/0

R = Readable bit	vv = vvritable bit	U = Unimplemented bit, read as 'U'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBP<7:0>: Interrupt-on-Change PORTB Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

REGISTER 17-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBN<7:0>: Interrupt-on-Change PORTB Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER 17-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

- IOCBF<7:0>: Interrupt-on-Change PORTB Flag bits
- 1 = An enabled change was detected on the associated pin
 - Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change

25.2 Clock Source Selection

The T0CS<2:0> bits of the T0CON1 register are used to select the clock source for Timer0. Register 25-2 displays the clock source selections.

25.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, Timer0 operates as a timer and will increment on multiples of the clock source, as determined by the Timer0 prescaler.

25.2.2 EXTERNAL CLOCK SOURCE

When an external clock source is selected, Timer0 can operate as either a timer or a counter. Timer0 will increment on multiples of the rising edge of the external clock source, as determined by the Timer0 prescaler.

25.3 Programmable Prescaler

A software programmable prescaler is available for exclusive use with Timer0. There are 16 prescaler options for Timer0 ranging in powers of two from 1:1 to 1:32768. The prescaler values are selected using the T0CKPS<3:0> bits of the T0CON1 register.

The prescaler is not directly readable or writable. Clearing the prescaler register can be done by writing to the TMR0L register or the T0CON1 register.

25.4 Programmable Postscaler

A software programmable postscaler (output divider) is available for exclusive use with Timer0. There are 16 postscaler options for Timer0 ranging from 1:1 to 1:16. The postscaler values are selected using the TOOUTPS<3:0> bits of the TOCON0 register.

The postscaler is not directly readable or writable. Clearing the postscaler register can be done by writing to the TMR0L register or the T0CON0 register.

25.5 Operation during Sleep

When operating synchronously, Timer0 will halt. When operating asynchronously, Timer0 will continue to increment and wake the device from Sleep (if Timer0 interrupts are enabled) provided that the input clock source is active.

25.6 Timer0 Interrupts

The Timer0 Interrupt Flag bit (TMR0IF) is set when either of the following conditions occur:

- 8-bit TMR0L matches the TMR0H value
- 16-bit TMR0 rolls over from 'FFFFh'

When the postscaler bits (T0OUTPS<3:0>) are set to 1:1 operation (no division), the T0IF flag bit will be set with every TMR0 match or rollover. In general, the TMR0IF flag bit will be set every T0OUTPS +1 matches or rollovers.

If Timer0 interrupts are enabled (TMR0IE bit of the PIE0 register = 1), the CPU will be interrupted and the device may wake from sleep (see Section 25.2 "Clock Source Selection" for more details).

25.7 Timer0 Output

The Timer0 output can be routed to any I/O pin via the RxyPPS output selection register (see Section 15.0 "Peripheral Pin Select (PPS) Module" for additional information). The Timer0 output can also be used by other peripherals, such as the Auto-conversion Trigger of the Analog-to-Digital Converter. Finally, the Timer0 output can be monitored through software via the Timer0 output bit (T0OUT) of the T0CON0 register (Register 25-1).

TMR0_out will be one postscaled clock period when a match occurs between TMR0L and TMR0H in 8-bit mode, or when TMR0 rolls over in 16-bit mode. The Timer0 output is a 50% duty cycle that toggles on each TMR0_out rising clock edge.

26.7 Timer1 Interrupts

The Timer1 register pair (TMRxH:TMRxL) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the respective PIR register is set. To enable the interrupt-on-rollover, you must set these bits:

- ON bit of the T1CON register
- TMR1IE bit of the PIE4 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note:	To avoid immediate interrupt vectoring,
	the TMR1H:TMR1L register pair should
	be preloaded with a value that is not immi-
	nently about to rollover, and the TMR1IF
	flag should be cleared prior to enabling
	the timer interrupts.

26.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- · ON bit of the T1CON register must be set
- TMR1IE bit of the PIE4 register must be set
- PEIE bit of the INTCON register must be set
- SYNC bit of the T1CON register must be set

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

26.9 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPRxH:CCPRxL register pair on a configured event.

In Compare mode, an event is triggered when the value CCPRxH:CCPRxL register pair matches the value in the TMR1H:TMR1L register pair. This event can be an Auto-conversion Trigger.

For more information, see Section 29.0 "Capture/Compare/PWM Modules".

26.10 CCP Special Event Trigger

When any of the CCPs are configured to trigger a special event, the trigger will clear the TMRxH:TMRxL register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt. In this mode of operation, the CCPRxH:CCPRxL register pair becomes the period register for Timer1. Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed. In the event that a write to TMRxH or TMRxL coincides with a Special Event Trigger from the CCP, the write will take precedence.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	U-0	U-0	
GE	GPOL	GTM	GSPM	GGO/DONE	GVAL		_	
bit 7	·	-					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cle	eared by hardw	vare		
bit 7	GE: Timer1 C <u>If ON = 0</u> : This bit is ign <u>If ON = 1</u> : 1 = Timer1 c 0 = Timer1 is	Gate Enable bit ored ounting is cont s always counti	rolled by the T ng	imer1 gate func	tion			
bit 6	GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)							
bit 5	GTM: Timer1 Gate Toggle Mode bit 1 = Timer1 Gate Toggle mode is enabled 0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1 gate flip-flop toggles on every rising edge							
bit 4	 GSPM: Timer1 Gate Single-Pulse Mode bit 1 = Timer1 Gate Single-Pulse mode is enabled 0 = Timer1 Gate Single-Pulse mode is disabled 							
bit 3	 GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started This bit is automatically cleared when GSPM is cleared 							
bit 2 GVAL: Timer1 Gate Value Status bit Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L Unaffected by Timer1 Gate Enable (GE)								
bit 1-0	Unimplemen	ited: Read as '	0'					

REGISTER 26-2: T1GCON: TIMER1 GATE CONTROL REGISTER

27.5.9 EDGE-TRIGGERED MONOSTABLE MODES

The Edge-Triggered Monostable modes start the timer on an edge from the external Reset signal input, after the ON bit is set, and stop incrementing the timer when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 10001)
- Falling edge (MODE<4:0> = 10010)
- Rising or Falling edge (MODE<4:0> = 10011)

When an Edge-Triggered Monostable mode is used in conjunction with the CCP PWM operation the PWM drive goes active with the external Reset signal edge that starts the timer, but will not go active when the timer matches the PRx value. While the timer is incrementing, additional edges on the external Reset signal will not affect the CCP PWM.

REGISTER 28-16: SMTxPRL: SMT PERIOD REGISTER – LOW BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxF	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

REGISTER 28-17: SMTxPRH: SMT PERIOD REGISTER – HIGH BYTE

| R/W-x/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SMTxPF | R<15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 28-18: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
SMTxPR<23:16>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

29.4 Register Definitions: CCP Control

Long bit name prefixes for the CCP peripherals are shown in **Section 1.1** "**Register and Bit Naming Conventions**".

TABLE 29-4:LONG BIT NAMES PREFIXESFOR CCP PERIPHERALS

Peripheral	Bit Name Prefix
CCP1	CCP1
CCP2	CCP2

REGISTER 29-1: CCPxCON: CCPx CONTROL REGISTER

R/W-0/0	U-0	R-x	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
EN	—	OUT	FMT	MODE<3:0>			
bit 7							bit 0

Legend:							
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset				
'1' = Bit is set		'0' = Bit is cleared					
bit 7	EN: CCPx Mo 1 = CCPx is e 0 = CCPx is c	odule Enable bit enabled lisabled					
bit 6	Unimplemented: Read as '0'						
bit 5	OUT: CCPx C	Output Data bit (read-only)					
bit 4	FMT: CCPW (<u>MODE = Cap</u> Unused <u>MODE = Com</u> Unused <u>MODE = PWM</u> 1 = Left-aligne 0 = Right-alig	(Pulse Width) Alignment bit t <u>ure mode</u> n <u>pare mode</u> <u>M mode</u> ed format ned format					

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWG1CLKCON	—	_	—	—	_	_	_	CS	492
CWG1ISM	—	_	— — IS<3:0>				492		
CWG1DBR	—	_	DBR<5:0>					488	
CWG1DBF	—	_	DBF<5:0>					488	
CWG1CON0	EN	LD	_	_		MODE<2:0>			486
CWG1CON1	—	_	IN	_	POLD	POLC	POLB	POLA	487
CWG1AS0	SHUTDOWN	REN	LSBD<1:0>		LSAC<1:0> —		—	—	489
CWG1AS1	—	_	_	AS4E	AS3E	AS2E	AS1E	AS0E	490
CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	491
INTCON	GIE	PEIE	_	_	_		_	INTEDG	164
PIE7			NVMIE					CWG1IE	172
PIR7	_		NVMIF	_	_	_	_	CWG1IF	181

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by CWG.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LCxG2D4T	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N	
bit 7		·	•		·		bit 0	
Legend:								
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	LCxG2D4T: (Gate 1 Data 4 T	rue (non-inve	rted) bit				
	1 = CLCIN3	(true) is gated i	nto CLCx Gat	e 1 Coto 1				
hit C		(li ue) is not gat		Gale I				
DIT 6 LCXG2D4N: Gate 1 Data 4 Negated (INVERTED) DIT								
	0 = CLCIN3	(inverted) is no	t gated into Cl	_Cx Gate 1				
bit 5	LCxG2D3T: (Gate 1 Data 3 T	rue (non-inve	rted) bit				
	1 = CLCIN2	(true) is gated i	nto CLCx Gat	e 1				
	0 = CLCIN2	(true) is not gat	ted into CLCx	Gate 1				
bit 4	LCxG2D3N:	Gate 1 Data 3 Negated (inverted) bit						
	1 = CLCIN2 (0 = CLCIN2 ((inverted) is ga (inverted) is no	ted into CLCx t gated into Cl	Gate 1 _Cx Gate 1				
bit 3	LCxG2D2T: (Gate 1 Data 2 T	rue (non-inve	rted) bit				
	1 = CLCIN1	(true) is gated i	nto CLCx Gat	e 1				
	0 = CLCIN1	(true) is not gat	ted into CLCx	Gate 1				
bit 2	LCxG2D2N:	Gate 1 Data 2 I	Negated (inve	rted) bit				
	1 = CLCIN1	(inverted) is ga	ted into CLCx	Gate 1				
hit 1	0 = CLCINT((Inverted) is no	ruo (non invo	LOX Gale 1				
DILI	1 = CLCINO	(true) is gated i	nte (1011-111Ve					
	0 = CLCINO	(true) is not gat	ted into CLCx	Gate1				
bit 0	LCxG2D1N:	Gate 1 Data 1 I	Negated (inve	rted) bit				
	1 = CLCIN0	(inverted) is ga	ted into CLCx	Gate 1				
	0 = CLCIN0	(inverted) is no	t gated into Cl	Cx Gate 1				

REGISTER 32-8: CLCxGLS1: GATE 1 LOGIC SELECT REGISTER

33.5.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 33.5.6 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This \overline{ACK} value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not \overline{ACK}), then the data transfer is complete. When the not \overline{ACK} is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

33.5.3.1 Slave Mode Bus Collision

A slave receives a read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCL1IF bit of the PIR3 register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCL1IF bit to handle a slave bus collision.

33.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 33-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

PIC16(L)F19155/56/75/76/85/86

33.6.7 I²C MASTER MODE RECEPTION

Master mode reception (Figure 33-29) is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

Note:	The MSSP module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

33.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

33.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

33.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

- 33.6.7.4 Typical Receive Sequence:
- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- User sets the RCEN bit of the SSPxCON2 register and the master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCL, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxBUF, clears BF.
- 11. Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Master's ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

PIC16(L)F19155/56/75/76/85/86

