

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 31x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19176t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 5: 48-PIN ALLOCATION TABLE (PIC16(L)F19185/86) (CONTINUED)

I/O ⁽²⁾	48-Pin TQFP/QFN	ADC	Reference	Comparator	Zero-Cross Detect	DAC	Timers/SMT	ССР	MWM	CWG	dssw	EUSART	CLC	RTCC	ГСD	Interrupt-on-Change	High Current	Pull-up	Basic
RC0	34	_	_	—	_	_	T1CKI ⁽¹⁾ SMTWIN1 ⁽¹⁾	_		_	—	_	—		—	IOCC0		Y	SOSCO
RC1	35		_	—	_	_	SMTSIG1 ⁽¹⁾ T4IN ⁽¹⁾	CCP2 ⁽¹⁾		_	—	_	_	I	_	IOCC1		Y	SOSCI
RC2	40	ANC2	_	—	_	-	-	CCP1 ⁽¹⁾	-	-	—	_	_	-	COM2 SEG18	IOCC2		Y	—
RC3	41	ANC3	_	—	_	—	T2IN ⁽¹⁾	_	-	-	SCK ⁽¹⁾ SCL ^(1,3,4)	_	_	-	SEG19	IOCC3	_	Y	—
RC4	46	ANC4	_	—	_	-	_	_		_	SDI ⁽¹⁾ SDA ^(1,3,4)	_	_	I	SEG20	IOCC4		Y	—
RC6	48	ANC6	_	—	_	_	_	_		_	—	TX1 ⁽¹⁾ CK1 ⁽¹⁾	_	I	SEG22 VLCD2	IOCC6		Y	—
RC7	1	ANC7	_	—	_	-	-	_	-	_	—	RX1 ⁽¹⁾ DT1 ⁽¹⁾	_		SEG23 VLCD1	IOCC7		Y	—
RD0	42	AND0	_	_	-	—	—	_		_	_	—	_		SEG24	_		Υ	—
RD1	43	AND1	—	—	—	_	_	—	_	_	—		_	—	SEG25	—	—	Y	_
RD2	44	AND2	_	—	_	_	_	—	_	_	_	—	_	_	COM5 SEG26	_	_	Y	_
RD3	45	AND3	-	—	_	-	-	—	—	-	—	—	—	—	COM4 SEG27	—	—	Y	_
RD4	2	AND4	_	_	-	—	—	_		_	_	—	_		SEG28	_		Υ	—
RD5	3	AND5	—	—	—	—	—	—	—	—	—	—	—	_	SEG29	—	_	Y	_
RD6	4	AND6	—	—	—	—	—	—	—	—	—	—	—	_	SEG30	—	_	Υ	—
RD7	5	AND7	—	—	—	—	_	—	_	—	—	—	—	_	SEG31		_	Y	—
RE0	27	ANE0	-	-	—	_	-	_	-	_			_	-	SEG32	-	-	Y	-
RE1	28	ANE1	—	_	—	—	—	—	_	_	—	_	_	_	COM6 SEG33	_	—	Y	—
RE2	29	ANE2	_	_	_	—	_	—	—	—	—	—	—	_	COM7 SEG34	—	_	Y	_
RE3	20	_	—	_	—	_	_	_	_	_	_	-	-	—	—	IOCE3	—	Υ	MCLR

Note 1: This is a PPS remappable input signal. The input function may be moved from the default location shown to one of several other PORTx pins.

2: All digital output signals shown in this row are PPS remappable. These signals may be mapped to output onto one or more PORTx pin options.

3: This is a bidirectional signal. For normal module operation, the firmware should map this signal to the same pin in both the PPS input and PPS output registers.

4: These pins are configured for I²C logic levels. PPS assignments to the other pins will operate, but input logic levels will be standard TTL/ST as selected by INLCVL register, instead of the I²C specific or SMBUS input buffer thresholds.

5: These are alternative I^2C logic levels pins.

6: In I²C logic levels configuration, these pins can operate as either SCL and SDA pins.

						•••••••••••••••••••••••••••••••••••••••			(·1	
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					V <u>alue on</u> : MCLR
Bank 18	•		•	•	•	•		•	•		
				CPU	CORE REGISTERS	; see Table 4-3 for	specifics				
90Ch	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	'R<1:0>	ADF	/R<1:0>	0x00 xxxx	0q00 uuuu
90Dh	—				Unimplen	nented					
90Eh	DAC1CON0	EN	—	OE1	OE2	DAC1PS	SS<1:0>	—	—	0-00 00	0-00 00
90Fh	DAC1CON1	—	—	_			DAC1R<4:0>			x xxxx	u uuuu
90Fh		—	—	_	DAC1R4	DAC1R3	DAC1R2	DAC1R1	DAC1R0	x xxxx	u uuuu
910h	—				Unimplen	nented					
911h	—				Unimplen	nented					
912h	—				Unimplen	nented					
913h	—				Unimplen	nented					
914h	_				Unimplen	nented					
915h					Unimplen	nented					
916h					Unimplen	nented					
917h					Unimplen	nented					
918h					Unimplen	nented					
919h					Unimplen	nented					
91Ah					Unimplen	nented					
91Bh	_				Unimplen	nented					
91Ch	—				Unimplen	nented					
91Dh	—				Unimplen	nented					
91Eh	—				Unimplen	nented		-			
91Fh	ZCDCON	ZCDSEN	_	ZCDOUT	ZCDPOL	—	—	ZCDINTP	ZCDINTN	0-x000	0-x000

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR
Bank 20											
				CPU	CORE REGISTERS	; see Table 4-3 for	specifics				
A0Ch	_				Unimpler	nented					
A0Dh	—				Unimpler	nented					
A0Eh	—				Unimpler	nented					
A0Fh	—				Unimpler	nented					
A10h	—				Unimpler	nented					
A11h	—				Unimpler	nented					
A12h	—				Unimpler	nented					
A13h	—				Unimpler	nented					
A14h	—				Unimpler	nented					
A15h	—		Unimplemented								
A16h	—				Unimpler	nented					
A17h	—				Unimpler	nented					
A18h	—				Unimpler	nented					
A19h	RC2REG				RC2R	EG				0000 0000	0000 0000
A1Ah	TX2REG				TX2R	EG				0000 0000	0000 0000
A1Bh	SP2BRGL				SP2BF	RGL				0000 0000	0000 0000
A1Ch	SP2BRGH				SP2BF	RGH				0000 0000	0000 0000
A1Dh	RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 0000
A1Eh	TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
A1Fh	BAUD2CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Banks 30-5	inks 30-57											
	CPU CORE REGISTERS; see Table 4-3 for specifics											
F0Ch — 1C9Fh	F0Ch Unimplemented											
Legend:	.egend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.											

FIGURE 4-7:	ACCESSING THE STACK	EXAMPLE 4	
			Rev. 10,0001410 7,350/2013
	0x0F	Return Address]
	0x0E	Return Address	1
	0x0D	Return Address	-
	0x0C	Return Address	
	0x0B	Return Address	
	0x0A	Return Address	When the stack is full, the next CALL or
	0x09	Return Address	an interrupt will set the Stack Pointer to
	0x08	Return Address	the stack will wrap and overwrite the
	0x07	Return Address	return address at 0x00. If the Stack
	0x06	Return Address	Reset will occur and location 0x00 will
	0x05	Return Address	not be overwritten.
	0x04	Return Address	
	0x03	Return Address	
	0x02	Return Address	
_	0x01	Return Address	
	TOSH:TOSL 0x00	Return Address	STKPTR = 0x10
	N		\vee
1			

4.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words (Register 5-2) is programmed to '1', the device will be Reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

4.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into four memory regions:

- Traditional/Banked Data Memory
- · Linear Data Memory
- Program Flash Memory
- EEPROM

REGISTER 14-24: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
INLVLC7	INLVLC6	—	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is cleared

bit 7-6	INLVLC<7:6>: PORTC Input Level Select bits
	For RC<7:6> pins, respectively
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change
bit 5	Unimplemented: Read as '0'.
bit 4-0	INLVLC<4:0>: PORTC Input Level Select bits
	For RC<4:0> pins, respectively
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change

TABLE 14-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTC	RC7	RC6	—	RC4	RC3	RC2	RC1	RC0	235
TRISC	TRISC7	TRISC6	—	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	235
LATC	LATC7	LATC6	—	LATC4	LATC3	LATC2	LATC1	LATC0	236
WPUC	WPUC7	WPUC6	—	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	236
ODCONC	ODCC7	ODCC6	—	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	237
SLRCONC	SLRC7	SLRC6	—	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	237
INLVLC	INLVLC7	INLVLC6	_	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	238

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

14.11 Register Definitions: PORTE

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u
RE7	RE6	RE5	RE4	RE3	—	RE1	RE0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOF	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-3	RE<7:3> : PO 1 = Port pin is 0 = Port pin is	RTE I/O Value s ≥ Viн s ≤ ViL	bits ⁽¹⁾				

REGISTER 14-33: PORTE: PORTE REGISTER

bit 2 Unimplemented: Read as '0' bit 1-0 RE<1:0>: PORTE I/O Value bits⁽¹⁾

- $1 = Port pin is \geq VIH$
 - 0 = Port pin is <u><</u> VIL
- **Note 1:** Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.

REGISTER 14-34: TRISE: PORTE TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1
TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	—	TRISE1	TRISE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	TRISE<7:3>: PORTE Tri-State Control bit
	1 = PORTE pin configured as an input (tri-stated)
	0 = PORTE pin configured as an output
bit 2	Unimplemented: Read as '0'
bit 1-0	TRISE<1:0>: PORTE Tri-State Control bit
	1 = PORTE pin configured as an input (tri-stated)

0 = PORTE pin configured as an output

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0
PSIS		CRS<2:0>		ACLR		MD<2:0>	
bit 7							bit 0
r							
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is	unchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is	set	'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	vare	
bit 7	PSIS: ADC 1 = PREV is 0 = PREV is	PSIS: ADC Previous Sample Input Select bits 1 = PREV is the FLTR value at start-of-conversion 0 = PREV is the RES value at start-of-conversion					
bit 6-4	CRS<2:0>:	ADC Accumulat	ed Calculatior	n Right Shift Sel	ect bits		
	If ADMD = 1 Low-pass fil If ADMD = 0 The accum Otherwise: Bits are igno	It ADMD = 100: Low-pass filter time constant is 2 ^{ADCRS} , filter gain is 1:1 <u>If ADMD = 001, 010 or 011</u> : The accumulated value is right-shifted by CRS (divided by 2 ^{ADCRS}) ^(1,2) <u>Otherwise:</u> Bits are ignored					
bit 3	ACLR: A/D	Accumulator Cle	ear Command	bit ⁽³⁾			
	1 = ACC, A	OV and CNT reg	isters are clea	ared			
	0 = Clearing	action is compl	ete (or not sta	rted)			
bit 2-0	<pre>NU<2:0>: ADC Operating Mode Selection bits^(*) 111-101 = Reserved 100 = Low-pass Filter mode 011 = Burst Average mode 010 = Average mode 001 = Accumulate mode 000 = Basic mode</pre>						
Note 1:	To correctly calc	o correctly calculate an average, the number of samples (set in RPT) must be 2 ^{ADCRS} .					
2:	ADCRS = 3 ' b12	11 is a reserved	option.				
3:	This bit is cleare selections, the d	d by hardware w elay may be mar	hen the accur	nulator operatic	on is complete;	depending on	oscillator

REGISTER 19-3: ADCON2: ADC CONTROL REGISTER 2

4: See Table 19-2 for Full mode descriptions.

Writes to the RTCCAL register should occur only when the timer is turned off, or immediately after the rising edge of the seconds pulse, except when SECONDS = 00, 15, 30 or 45 due to the possibility of the auto-adjust event.

Note: When determining the crystal's error value, the user should take into account the crystal's initial error from drift due to temperature or crystal aging.

24.2 Alarm

The alarm features and characteristics are:

- · Configurable from half a second to one year
- Enabled using the ALRMEN bit (ALRMCON<7>, Register 24-10)
- Offers one time and repeat alarm options

24.2.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit.

This bit is cleared when an alarm is issued. The bit will not be cleared if the CHIME bit = 1.

The interval selection of the alarm is configured through the ALRMCFG (AMASK<3:0>) bits (see Figure 24-5). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The number of times this occurs, after the alarm is enabled, is stored in the lower half of the ALRMRPT register.

Note: While the alarm is enabled (ALRMEN = 1), changing any of the registers, other than the ALRMRPT register, and the CHIME bit, can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALRMRPT register and CHIME bit be changed when RTCSYNC = 0.

FIGURE 24-5: ALARM MASK SETTINGS

Alarm Mask Setting AMASK<3:0>	Day of the Week	e Month	Day	Hours	Minutes Seconds
0000 – Every half second 0001 – Every second					:
0010 – Every 10 seconds					: s
0011 – Every minute					s s s
0100 – Every 10 minutes					m:ss
0101 – Every hour					mm:ss
0110 – Every day				h h ;	mm:ss
0111 – Every week	d			h h	mm:ss
1000 – Every month			dd	h h	mm:ss
1001 – Every year ⁽¹⁾		m m /	d d	h h	mm:ss
Note 1: Annually, except when c	onfigured fo	r February 29.			

REGISTER 28-13: SMTxCPWL: SMT CAPTURED PULSE WIDTH REGISTER – LOW BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTxC	CPW<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	nged	x = Bit is unknow	/n	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleare	d				

bit 7-0 SMTxCPW<7:0>: Significant bits of the SMT PW Latch – Low Byte

REGISTER 28-14: SMTxCPWH: SMT CAPTURED PULSE WIDTH REGISTER - HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTxCP	W<15:8>			
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPW<15:8>: Significant bits of the SMT PW Latch – High Byte

REGISTER 28-15: SMTxCPWU: SMT CAPTURED PULSE WIDTH REGISTER - UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTxCP\	N<23:16>			
bit 7 bit (

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPW<23:16>: Significant bits of the SMT PW Latch – Upper Byte

33.5.3 SLAVE TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCL pin is held low (see **Section 33.5.6 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCL pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time.

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. This \overline{ACK} value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not \overline{ACK}), then the data transfer is complete. When the not \overline{ACK} is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDA line was low (\overline{ACK}), the next transmit data must be loaded into the SSPxBUF register. Again, the SCL pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

33.5.3.1 Slave Mode Bus Collision

A slave receives a read request and begins shifting data out on the SDA line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCL1IF bit of the PIR3 register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCL1IF bit to handle a slave bus collision.

33.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 33-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

33.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 33-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01,10,11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{split} & W \rightarrow INDFn \\ & \text{Effective address is determined by} \\ & FSR + 1 \ (\text{preincrement}) \\ & FSR + 1 \ (\text{predecrement}) \\ & FSR + k \ (\text{relative offset}) \\ & \text{After the Move, the FSR value will be} \\ & \text{either:} \\ & FSR + 1 \ (\text{all increments}) \\ & FSR + 1 \ (\text{all increments}) \\ & \text{Unchanged} \end{split}$
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h-FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP **No Operation** [label] NOP Syntax: Operands: None Operation: No operation Status Affected: None Description: No operation. Words: 1 Cycles: 1 Example: NOP

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the RI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by software.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE k
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIF = 1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
1F33h		Unimplemented								
1F34h	—		Unimplemented							
1F35h	_		Unimplemented							
1F36h	_		Unimplemented							
1F37h	_	Unimplemented								
1F38h	ANSELA	ANSA7	ANSA6	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	223
1F39h	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	224
1F3Ah	ODCONA	ODCA7	ODCA6	—	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	224
1F3Bh	SLRCONA	SLRA7	SLRA6	—	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	225
1F3Ch	INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	225
1F3Dh	IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	
1F3Eh	IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	
1F3Fh	IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	
1F40h	—				Unimple	emented				
1F41h	—				Unimple	emented				
1F42h	—				Unimple	emented				
1F43h	ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	230
1F44h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	231
1F45h	ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	231
1F46h	SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	232
1F47h	INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	232
1F48h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	277
1F49h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	277
1F4Ah	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	277
1F4Bh	_				Unimple	emented				
1F4Ch	_				Unimple	emented				
1F4Dh	_				Unimpl	emented				
1F4Eh	—				Unimple	emented				
1F4Fh	WPUC	WPUC7	WPUC6	_	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	236
1F50h	ODCONC	ODCC7	ODCC6	_	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	237
1F51h	SLRCONC	SLRC7	SLRC6	_	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	237
1F52h	INLVLC	INLVLC7	INLVLC6	_	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	238
1F53h	IOCCP	IOCCP7	IOCCP6	_	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	278
1F54h	IOCCN	IOCCN7	IOCCN6	_	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	278
1F55h	IOCCE	IOCCF7	IOCCF6	_	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	278
1F56h	_				Unimple	emented				
1E57h	_		Unimplemented							
1F58h	_	Unimplemented								
1E59h	ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	242
1F5Ab	WPUD	WPLID7	WPUD6	WPUD5	WPI ID4	WPUD3	WPUD2	WPLID1	WPLIDO	243
1E5Bb				00005		00003	00002			243
1E5Ch	SLRCOND	SI PD7	SIPDA	SIPDS	SI PD4	SIPD3	SI PD2	SI PD1	SLEDO	244
1E5Db										244
Legend:	× = unknown	$u = unchanged \alpha = depends on condition - = unimplemented read as '0' r = reserved. Shaded locations unimplemented read as '0' r$							read as '0'	

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

TABLE 39-8:	INTERNAL OSCILLATOR PARAMETERS ⁽¹⁾

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic		Тур†	Max.	Units	Conditions	
OS50	FHFOSC	Precision Calibrated HFINTOSC Frequency		4 8 12 16 32		MHz	(Note 2)	
OS51	FHFOSCLP	Low-Power Optimized HFINTOSC Frequency		1 2		MHz MHz		
OS52	FMFOSC	Internal Calibrated MFINTOSC Frequency	_	500	_	кня	7/~	
OS53	FLFOSC	Internal LFINTOSC Frequency		31	\searrow	kHž		
OS54	THFOSCST	HFINTOSC Wake-up from Sleep Start-up Time	_	11 50	20	μs μs	VREGPM = 0 VREGPM = 1	
OS56	TLFOSCST	LFINTOSC Wake-up from Sleep Start-up Time	$\left\langle \right\rangle$	0.2	\mathcal{X}	ms		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, Vop and Vss must be capacitively decoupled as close to the device as possible. 0.1 µF and 0.01 µF values in parallel are recommended.

2: See Figure 39-6: Precision Calibrated HFINTOSC Frequency Accuracy Over Device VDD and Temperature.

© 2017 Microchip Technology Inc.

42.1 Package Marking Information (Continued)

40-Lead UQFN (5x5x0.5 mm) Example PIN 1 PIN 1 16(Ľ)F 9175/76 /MV @ 1526017 Example 44-Lead TQFP (10x10x1 mm) MICROCHIP MICROCHIP 16(L)F XXXXXXXXXXX XXXXXXXXXX 19175/76 /PT (e3) XXXXXXXXXXX ○ 1526017

Legend	: XXX Y YY WW NNN *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.					
Note:	In the event the full Microchip part number cannot be marked on one line, it w be carried over to the next line, thus limiting the number of availab characters for customer-specific information.						

© 2017 Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing			7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

40-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) - 5x5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Ν	MILLIMETERS				
Dimension	MIN	NOM	MAX			
Contact Pitch			0.40 BSC			
Optional Center Pad Width	W2			3.80		
Optional Center Pad Length	T2			3.80		
Contact Pad Spacing	C1		5.00			
Contact Pad Spacing	C2		5.00			
Contact Pad Width (X40)	X1			0.20		
Contact Pad Length (X40)	Y1			0.75		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2156B