

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19185-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR
Bank 20											
				CPU	CORE REGISTERS	6; see Table 4-3 for	rspecifics				
A0Ch	_				Unimple	mented					
A0Dh	_				Unimple	mented					
A0Eh	_				Unimple	mented					
A0Fh	_				Unimple	mented					
A10h	_	Unimplemented									
A11h	_	Unimplemented									
A12h	_		Unimplemented								
A13h	_		Unimplemented								
A14h	—		Unimplemented								
A15h	—		Unimplemented								
A16h	—		Unimplemented								
A17h	—	Unimplemented									
A18h	—				Unimple	mented					
A19h	RC2REG	RC2REG							0000 0000	0000 0000	
A1Ah	TX2REG	TX2REG						0000 0000	0000 000		
A1Bh	SP2BRGL	SP2BRGL							0000 0000	0000 0000	
A1Ch	SP2BRGH				SP2B	RGH				0000 0000	0000 000
A1Dh	RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 0000	0000 000
A1Eh	TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 001
A1Fh	BAUD2CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-0

PIC16(L)F19155/56/75/76/85/86

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

8.2 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an acceptable level for minimum operation. Slow rising VDD, fast operating speeds or analog performance may require greater than minimum VDD. The PWRT, BOR or MCLR features can be used to extend the start-up period until all device operation conditions have been met.

8.3 Brown-out Reset (BOR)

The BOR circuit holds the device in Reset when VDD reaches a selectable minimum level. Between the POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brown-out Reset module has four operating modes controlled by the BOREN<1:0> bits in Configuration Words. The four operating modes are:

- · BOR is always on
- · BOR is off when in Sleep
- BOR is controlled by software
- BOR is always off

Refer to Table 8-1 for more information.

The Brown-out Reset voltage level is selectable by configuring the BORV bit in Configuration Words.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 8-2 for more information.

TABLE 8-1: BOR OPERATING MODES

8.3.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Words are programmed to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

8.3.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Words are programmed to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Instruction Execution upon: Release of POR or Wake-up from Sleep
11	х	Х	Active	Wait for release of BOR ⁽¹⁾ (BORRDY = 1)
1.0		Awake	Active	Waits for release of BOR (BORRDY = 1)
10	X	Sleep	Disabled	Waits for BOR Reset release
0.1	1	х	Active	Waits for BOR Reset release (BORRDY = 1)
01	0	х	Disabled	Paging immediately (POPDDY =)
00	Х	х	Disabled	Begins immediately (BORRDY = x)

Note 1: In this specific case, "Release of POR" and "Wake-up from Sleep", there is no delay in start-up. The BOR ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR circuit is forced on by the BOREN<1:0> bits.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O
- pinsCurrent draw from pins with internal weak
- pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Any module with a clock source that is not Fosc can be enabled. Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 21.0 "5-Bit Digital-to-Analog Converter (DAC1) Module", Section 18.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

11.2.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled.
- 2. BOR Reset, if enabled.
- 3. POR Reset.
- 4. Watchdog Timer, if enabled.
- 5. Any external interrupt.
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information).

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 8.14 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WWDT is cleared when the device wakes-up from Sleep, regardless of the source of wake-up.

12.1 Independent Clock Source

The WWDT can derive its time base from either the 31 kHz LFINTOSC, or 31.25 kHz MFINTOSC internal oscillators or 32.768 kHz SOSC, depending on the value of either the WDTCCS<2:0> Configuration bits or the WDTCS<2:0> bits of WDTCON1. Time intervals in this chapter are based on a minimum nominal interval of 1 ms. See **Section 39.0 "Electrical Specifications"** for LFINTOSC and MFINTOSC tolerances.

12.2 WWDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 12-1.

12.2.1 WWDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WWDT is always on.

WWDT protection is active during Sleep.

12.2.2 WWDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WWDT is on, except in Sleep.

WWDT protection is not active during Sleep.

12.2.3 WWDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WWDT is controlled by the SWDTEN bit of the WDTCON0 register.

12.2.4 WWDT IS OFF

When the WDTE bits of the Configuration Word are set to '00', the WWDT is always OFF.

WWDT protection is unchanged by Sleep. See Table 12-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WWDT Mode
11	Х	Х	Active
10		Awake	Active
10	х	Sleep	Disabled
0.1	1	Х	Active
01	0	Х	Disabled
00	х	Х	Disabled

TABLE 12-1:	WWDT OPERATING MODES
--------------------	----------------------

12.3 Time-Out Period

The WDTPS bits of the WDTCON0 register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

12.4 Watchdog Window

The Watchdog Timer has an optional Windowed mode that is controlled by the WDTCWS<2:0> Configuration bits and WINDOW<2:0> bits of the WDTCON1 register. In the Windowed mode, the CLRWDT instruction must occur within the allowed window of the WWDT period. Any CLRWDT instruction that occurs outside of this window will trigger a window violation and will cause a WWDT Reset, similar to a WWDT time out. See Figure 12-2 for an example.

The window size is controlled by the WDTCWS<2:0> Configuration bits, or the WINDOW<2:0> bits of WDTCON1, if WDTCWS<2:0> = 111.

In the event of a <u>window</u> violation, a Reset will be generated and the WDTWV bit of the PCON register will be cleared. This bit is set by a POR or can be set in firmware.

12.5 Clearing the WWDT

The WWDT is cleared when any of the following conditions occur:

- Any Reset
- Valid CLRWDT instruction is executed
- Device enters Sleep
- Device wakes up from Sleep
- WWDT is disabled
- Oscillator Start-up Timer (OST) is running
- Any write to the WDTCON0 or WDTCON1 registers

12.5.1 CLRWDT CONSIDERATIONS (WINDOWED MODE)

When in Windowed mode, the WWDT must be armed before a CLRWDT instruction will clear the timer. This is performed by reading the WDTCON0 register. Executing a CLRWDT instruction without performing such an arming action will trigger a window violation.

See Table 12-2 for more information.

14.11 Register Definitions: PORTE

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	
RE7	RE6	RE5	RE4	RE3	—	RE1	RE0	
bit 7	-						bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOF	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-3 RE<7:3> : PORTE I/O Value bits ⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL								

REGISTER 14-33: PORTE: PORTE REGISTER

bit 2 Unimplemented: Read as '0' bit 1-0 RE<1:0>: PORTE I/O Value bits⁽¹⁾

- $1 = Port pin is \geq VIH$
 - 0 = Port pin is <u><</u> VIL
- **Note 1:** Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.

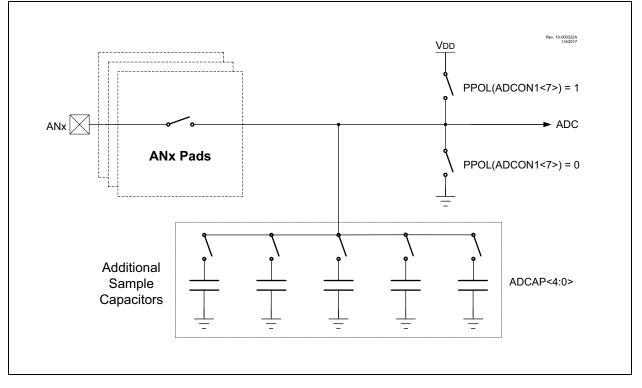
REGISTER 14-34: TRISE: PORTE TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1
TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	—	TRISE1	TRISE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	TRISE<7:3>: PORTE Tri-State Control bit 1 = PORTE pin configured as an input (tri-stated) 0 = PORTE pin configured as an output
bit 2	Unimplemented: Read as '0'
bit 1-0	TRISE<1:0>: PORTE Tri-State Control bit 1 = PORTE pin configured as an input (tri-stated)

0 = PORTE pin configured as an output


U-0	U-0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	—	TMR4MD	—	TMR2MD	TMR1MD	TMR0MD
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is un	ichanged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all c	other Resets
'1' = Bit is s	et	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7-5	Unimpleme	nted: Read as '	כ'				
bit 4	TMR4MD: D	isable Timer TM	IR4 bit				
		module disabled					
		module enabled					
bit 3	Unimpleme	nted: Read as '	כ'				
bit 2		isable Timer TM					
		module disabled module enabled					
L:1 4							
bit 1 TMR1MD: Disable Timer TMR1 bit 1 = Timer1 module disabled							
		module enabled					
bit 0	TMR0MD: D	isable Timer TM	IR0 bit				
	1 = Timer0 ı	module disabled	l				
	0 = Timer0 I	module enabled					

REGISTER 16-2: PMD1: PMD CONTROL REGISTER 1

19.4 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. Figure 19-6 shows the basic block diagram of the CVD portion of the ADC module.

FIGURE 19-6: HARDWARE CAPACITIVE VOLTAGE DIVIDER BLOCK DIAGRAM

19.5.1 DIGITAL FILTER/AVERAGE

The digital filter/average module consists of an accumulator with data feedback options, and control logic to determine when threshold tests need to be applied. The accumulator is a 24-bit wide register with sign extension which can be accessed through the ADACCU:H:L register triple.

Upon each trigger event (the GO bit set or external event trigger), the ADC conversion result is added to the accumulator. If the accumulated result exceeds $2^{(accumulator_width)}-1 = 18 = 262143$, the overflow bit OV in the ADSTAT register is set.

The number of samples to be accumulated is determined by the RPT (A/D Repeat Setting) register. Each time a sample is added to the accumulator, the ADCNT register is incremented. Once RPT samples are accumulated (CNT = RPT), an accumulator clear command can be issued by the software by setting the ADACLR bit in the ADCON2 register. Setting the ADACLR bit will also clear the OV (Accumulator overflow) bit in the ADSTAT register, as well as the

ADCNT register. The ADACLR bit is cleared by the hardware when accumulator clearing action is complete.

Note: When ADC is operating from FRC, five FRC clock cycles are required to execute the ACC clearing operation.

The ADCRS <2:0> bits in the ADCON2 register control the data shift on the accumulator result, which effectively divides the value in accumulator (ADACCU:ADACCH:ADACCL) register triple For the Accumulate mode of the digital filter, the shift provides a simple scaling operation. For the Average/Burst Average modes, the shift bits are used to determine the number of arithmetic right shifts to be performed on the accumulated result. For the Low-Pass Filter mode, the shift is an integral part of the filter, and determines the cut-off frequency of the filter. Table 19-3 shows the -3 dB cut-off frequency in ω T (radians) and the highest signal attenuation obtained by this filter at nyquist frequency (ω T = π).

TADIE 40.2.	LOW DASS EILTED	
IADLE 19-3.	LUW-PASS FILLER	-3 dB CUT-OFF FREQUENCY

ADCRS	ωT (radians) @ -3 dB Frequency	dB @ F _{nyquist} =1/(2T)
1	0.72	-9.5
2	0.284	-16.9
3	0.134	-23.5
4	0.065	-29.8
5	0.032	-36.0
6	0.016	-42.0
7	0.0078	-48.1

19.5.2 BASIC MODE

Basic mode (ADMD = 000) disables all additional computation features. In this mode, no accumulation occurs but threshold error comparison is performed. Double sampling, Continuous mode, and all CVD features are still available, but no features involving the digital filter/average features are used.

19.5.3 ACCUMULATE MODE

In Accumulate mode (ADMD = 001), after every conversion, the ADC result is added to the ADACC register. The ADACC register is right-shifted by the value of the ADCRS bits in the ADCON2 register. This right-shifted value is copied in to the ADFLT register. The Formatting mode does not affect the right-justification of the ACC value. Upon each sample, CNT is also incremented, incrementing the number of samples accumulated. After each sample and accumulation, the ACC value has a threshold comparison performed on it (see **Section 19.5.7 "Threshold Comparison**") and the ADTIF interrupt may trigger.

19.5.4 AVERAGE MODE

In Average mode (ADMD = 010), the ADACC registers accumulate with each ADC sample, much as in Accumulate mode, and the ADCNT register increments with each sample. The ADFLT register is also updated with the right-shifted value of the ADACC register. The value of the ADCRS bits governs the number of right shifts. However, in Average mode, the threshold comparison is performed upon CNT being greater than or equal to a user-defined RPT value. In this mode when RPT = 2^A ADCRS-the shift distance, then the final accumulated value will be divided by number of samples, allowing for a threshold comparison operation on the average of all gathered samples.

19.5.5 BURST AVERAGE MODE

The Burst Average mode (ADMD = 011) acts the same as the Average mode in most respects. The one way it differs is that it continuously retriggers ADC sampling until the CNT value is greater than or equal to RPT, even if Continuous Sampling mode (see **Section 19.5.8 "Continuous Sampling mode"**) is not enabled. This allows for a threshold comparison on the average of a short burst of ADC samples.

19.5.6 LOW-PASS FILTER MODE

The Low-Pass Filter mode (ADMD = 100) acts similarly to the Average mode in how it handles samples (accumulates samples until CNT value is greater than or equal to RPT, then triggers threshold comparison. CNT does not reset once it is greater or equal to RPT. Thus CNT will be greater than RPT for all subsequent samples until CNT is reset by the user), but instead of a simple average, it performs a low-pass filter operation on all of the samples, reducing the effect of high-frequency noise on the average, then performs a threshold comparison on the results. (see Table 19-2 for a more detailed description of the mathematical operation). In this mode, the ADCRS bits determine the cut-off frequency of the low-pass filter (as demonstrated by Table 19-3).

19.5.7 THRESHOLD COMPARISON

At the end of each computation:

- The conversion results are latched and held stable at the end-of-conversion.
- The error is calculated based on a difference calculation which is selected by the ADCALC<2:0> bits in the ADCON3 register. The value can be one of the following calculations (see Register 19-4 for more details):
 - The first derivative of single measurements
 - The CVD result in CVD mode
 - The current result vs. a setpoint
 - The current result vs. the filtered/average result
 - The first derivative of the filtered/average value
 - Filtered/average value vs. a setpoint
- The result of the calculation (ERR) is compared to the upper and lower thresholds, UTH<ADUTHH:ADUTHL> and

LTH<ADLTHH:ADLTHL> registers, to set the ADUTHR and ADLTHR flag bits. The threshold logic is selected by ADTMD<2:0> bits in the ADCON3 register. The threshold trigger option can be one of the following:

- Never interrupt
- Error is less than lower threshold
- Error is greater than or equal to lower threshold
- Error is between thresholds (inclusive)
- Error is outside of thresholds
- Error is less than or equal to upper threshold
- Error is greater than upper threshold
- Always interrupt regardless of threshold test results
- If the threshold condition is met, the threshold interrupt flag ADTIF is set.

Note 1: The threshold tests are signed operations.

2: If OV is set, a threshold interrupt is signaled.

REGISTER 19-24: ADACCU: ADC ACCUMULATOR REGISTER UPPER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-x/x	R/W-x/x
—	—	—	—	—	—	ACC<	17:16>
bit 7			•				bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimpler	nented bit, read	l as '0'		

R – Reauable bil		0 – Onimplemented bit, read as 0
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1-0 ACC<17:16>: ADC Accumulator MSB. Upper two bits of accumulator value. See Table 19-2 for more details.

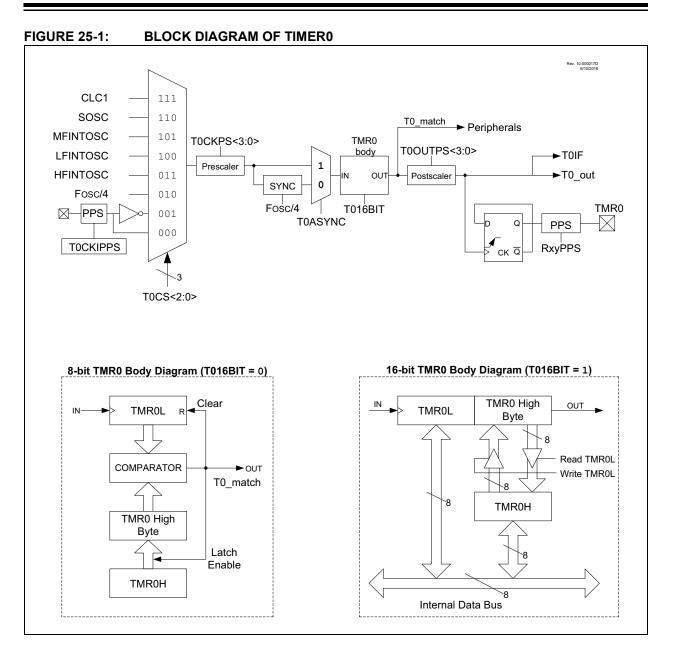
REGISTER 19-25: ADACCH: ADC ACCUMULATOR REGISTER HIGH

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ACC< | 15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<15:8>: ADC Accumulator middle bits. Middle eight bits of accumulator value. See Table 19-2 for more details.

REGISTER 19-26: ADACCL: ADC ACCUMULATOR REGISTER LOW

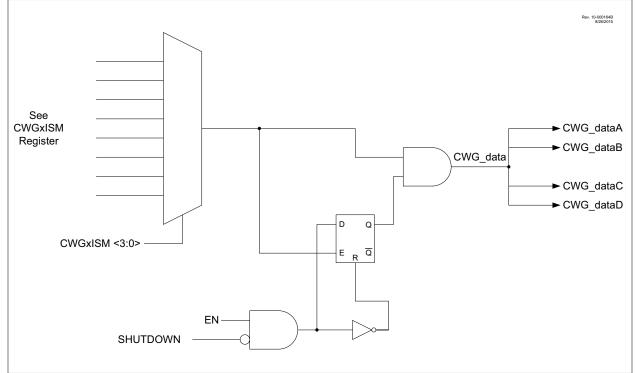

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ACC< | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Logond | | | | | | | |

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<7:0>: ADC Accumulator LSB. Lower eight bits of accumulator value. See Table 19-2 for more details.

© 2017 Microchip Technology Inc.

PIC16(L)F19155/56/75/76/85/86



31.1.4 STEERING MODES

In Steering modes, the data input can be steered to any or all of the four CWG output pins. In Synchronous Steering mode, changes to steering selection registers take effect on the next rising input.

In Non-Synchronous mode, steering takes effect on the next instruction cycle. Additional details are provided in **Section 31.9 "CWG Steering Mode"**.

31.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the CS bit of the CWG1CLKCON register.

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
—	—	—		MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-4	Unimplemen	ted: Read as ')'					
bit 3	MLC4OUT: Mirror copy of LC4OUT bit							
bit 2	MLC3OUT: Mirror copy of LC3OUT bit							
bit 1	MLC2OUT: Mirror copy of LC2OUT bit							
bit 0	MLC10UT: Mirror copy of LC10UT bit							

REGISTER 32-11: CLCDATA: CLC DATA OUTPUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CLC4GLS1	LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	506
CLC4GLS2	LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	507
CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	508
CLCIN0PPS	—	-	_		CLCIN0PPS<4:0>			264	
CLCIN1PPS	-	_	_		CLCIN1PPS<4:0>				264
CLCIN2PPS	_	_	_	CLCIN2PPS<4:0>			264		
CLCIN3PPS	_	_	_		(CLCIN3PPS<4:	0>		264

TABLE 32-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx (continued)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

Register Definitions: MSSPx Control 33.8

REGISTER 33-1: SSPxSTAT: SSPx STATUS REGISTER

REGISTI R/W-0		R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0	R/HS/HC-0
SMP	(4)	D/A	P ⁽²⁾	S ⁽²⁾	R/W	UA	BF
bit 7				_			bit 0
Legend:							
R = Reada	ble bit	W = Writable bit		U = Unimpleme	nted bit, read as '0	2	
u = Bit is u	nchanged	x = Bit is unknow	vn	-n/n = Value at	POR and BOR/Val	ue at all other Res	sets
'1' = Bit is s	set	'0' = Bit is cleare	ed	HS/HC = Hardv	vare set/clear		
bit 7	SPI Master mod	Input Sample bit <u>te:</u> ampled at end of o	data output time				
	SPI Slave mode SMP must be c In I ² C Master of 1 = Slew rate c	control disabled for	s used in Slave r Standard Speed	node d mode (100 kHz	and 1 MHz)		
bit 6		control enabled for Edge Select bit (•	. , ,			
bit o	In SPI Master o 1 = Transmit oc 0 = Transmit oc In I ² C mode onl 1 = Enable inpu	r Slave mode: curs on transition curs on transition	from active to Id from Idle to activ sholds are comp	e clock state e clock state	specification		
bit 5	1 = Indicates th	D/A: Data/Address bit (I ² C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address					
bit 4	1 = Indicates th	 P: Stop bit⁽²⁾ (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Stop bit has been detected last (this bit is '0' on Reset) 0 = Stop bit was not detected last 					
bit 3	1 = Indicates th	 S: Start bit ⁽²⁾ (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Start bit has been detected last (this bit is '0' on Reset) 0 = Start bit was not detected last 					
bit 2	This bit holds th next Start bit, Sl In I ² C Slave mo 1 = Read 0 = Write	top bit, or not ACK i <u>de:</u>	ion following the	last address mat	ch. This bit is only v	valid from the add	ress match to the
	0 = Transmit is	s in progress s not in progress	SEN, PEN, RCE	N or ACKEN will i	ndicate if the MSS	P is in IDLE mode	
bit 1	1 = Indicates th	dress bit (10-bit I ² at the user needs es not need to be	to update the ad	dress in the SSP	kADD register		
bit 0	0 = Receive not <u>Transmit (I²C m</u> 1 = Data transm	nd I ² C modes): mplete, SSPxBUF t complete, SSPxE lode only): nit in progress (doe	UF is empty es not include the		its), SSPxBUF is fi s), SSPxBUF is em		
Note 1: 2:	Polarity of clock state This bit is cleared on	•		•			

PIC16(L)F19155/56/75/76/85/86

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

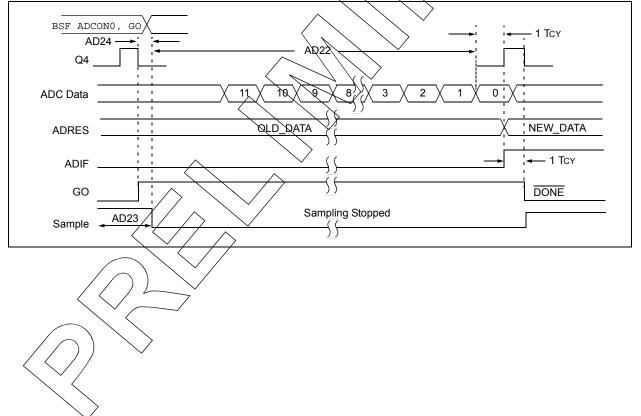
XORWF	Exclusive OR W with f					
Syntax:	[label] XORWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

TABLE 39-6: **THERMAL CHARACTERISTICS**

		Conditions (unless otherwise stated) ure -40°C \leq TA \leq +125°C			\land		
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θја	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package		
			80	°C/W	28-pin SOIC package		
			90	°C/W	28-pin SSOP package		
			48	°C/W	28-pin UQFN 4x4 mm package		
			47.2	°C/W	40-pin PDIP package		
			41.0	°C/W	40-pin UQFN 5x5 package		
			46.0	°C/W	44-pin TQFP package		
			24.4	°C/W 〈	44-pin QFN 8x8 mm package		
			27.6	°C/W	48-pin DQFN 6x6 package		
			_	°C/W	48-pin/TQFP 7x7 package		
TH02	θις	Thermal Resistance Junction to Case	31.4	∕°C⁄₩	28-pin SPDIP package		
			24	°€∕W∕	28-pin SOIC package		
			24 /~	°C/W	28-pin SSOP package		
			12	<u>°C/W</u>	28-pin UQFN 4x4 mm package		
			24,70	~°C∕W	40-pin PDIP package		
			5.5	~C/W	40-pin UQFN 5x5 package		
			14.5	_°C/₩∕	44-pin TQFP package		
			20.0	w/کور	44-pin QFN 8x8 mm package		
		\sim	6.7	[∼] C/W	48-pin UQFN 6x6 package		
			$\overline{\langle / \rangle}$	°C/W	48-pin TQFP 7x7 package		
TH03	TJMAX	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation	\searrow	W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	$\rangle -$	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pı/o	I/O Power Dissipation	× _	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	Pder	Derated Power	_	W	Pder = PDmax (Τj - Τα)/θja ⁽²⁾		

Note 1: IDD is current to run the chip alone without driving any load on the output pins.
2: TA = Ambient Temperature, TJ = Junction Temperature

TABLE 39-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS


Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
AD20	- Tad	ADC Clock Period	1	_	9	μS	Using Fosc as the ADC clock source ADCS = 1
AD21				2		μS	Using FRC as the ADC clock source ADS C = 0
AD22 T	TCNV	Conversion Time	_	14 TAD + 2 TCY	_	—	Using Fosc as the ADC clock source ADCS = 1
	ICINV			16 TAD + 2 TCY		—	Using FRC as the ADC clock source ADSC = 0
AD24	THCD	Sample and Hold Capacitor Disconnect Time	_	2 TAD + 1 TCY	_		Using Fosc as the ADC clock source ADCS = 1
				3 TAD + 2 TCY		£	Using Frc as the ADC clock source ADSC = 0

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

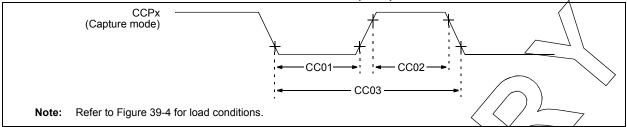

Note 1: A TAD of 8 μ s is recommended measuring the 1/3 tap point on the VBAT.

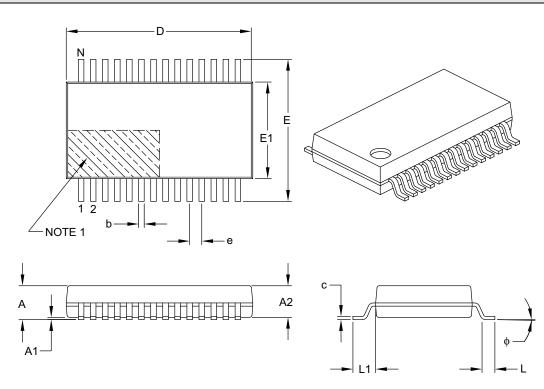
FIGURE 39-10: ADC CONVERSION TIMING (ADC CLOCK Fosc-BASED)

PIC16(L)F19155/56/75/76/85/86

FIGURE 39-13: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 39-20: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param. No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	$\langle - \rangle$	ns	\rangle
			With Prescaler	20	\sim	A	ns	
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	/-/	1	ns	
			With Prescaler	20			ns	
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N		\triangleright	ns	N = prescale value


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

The following sections give the technical details of the packages.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
	Dimension Limits			MAX			
Number of Pins	N	28					
Pitch	е	0.65 BSC					
Overall Height	А	_	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

- 3. Dimensioning and tolerancing per ASME 114.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B