

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19185-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

9.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 9-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators. In addition, the system clock source can be supplied from one of two internal oscillators and PLL circuits, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (ECH, ECM, ECL) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of SOSC.

The RSTOSC bits of Configuration Word 1 determine the type of oscillator that will be used when the device is reset, including when it is first powered up.

The internal clock configuration, LFINTOSC, HFINTOSC (set at 1 MHz), or HFINTOSC (set at 32 MHz) can be set through the RSTOSC bits.

If an external clock source is selected, the FEXTOSC bits of Configuration Word 1 must be used to select the external clock mode.

The external oscillator module can be configured in one of the following clock modes, by setting the FEXTOSC<2:0> bits of Configuration Word 1:

- 1. ECL External Clock Low-Power mode ECL<= 500 kHz
- 2. ECM External Clock Medium Power mode ECM <= 8 MHz
- 3. ECH External Clock High-Power mode ECH <= 32 MHz

The ECH, ECM, and ECL Clock modes rely on an external logic level signal as the device clock source. Each mode is optimized for a different frequency range.

The INTOSC internal oscillator block produces low and high-frequency clock sources, designated LFINTOSC and HFINTOSC. (see Internal Oscillator Block, Figure 9-1). A wide selection of device clock frequencies may be derived from these clock sources.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON1	—		NOSC<2:0>				152		
OSCCON2	—		COSC<2:0>		CDIV<3:0>				152
OSCCON3	CWSHOLD	SOSCPWR	-	ORDY	NOSCR	—	_		154
OSCFRQ	—	—	_	_	HFFRQ<2:0>				157
OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	155
OSCTUNE	—	—			HFTUN	<5:0>			157
OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	_	156
ACTCON	ACTEN	ACTUD	-	-	ACTLOCK	—	ACTORS		158

TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 9-4:SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	_	FCMEN	_	CSWEN	LCDPEN	VBATEN	CLKOUTEN	100
CONFIG1 7:0 -		_	F	RSTOSC<2:0	>	_	FEXTOSC<2:0>			120

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY (PFM)

; This write routine assumes the following:

; 1.	32 bytes of da	ata are loaded, startin	g at the address in DATA_ADDR
; 2.	Each word of o	data to be written is m	ade up of two adjacent bytes in DATA_ADDR,
;	stored in lit	tle endian format	
; 3.	A valid start	ing address (the least	significant bits = 00000) is loaded in ADDRH:ADDRL
; 4.	ADDRH and ADD	RL are located in commo	n RAM (locations 0x70 - 0x7F)
; 5.	NVM interrupt	s are not taken into ac	count
	BANKSEL	NVMADRH	
	MOVF	ADDRH,W	
	MOVWF	NVMADRH	; Load initial address
	MOVF	ADDRL,W	
	MOVWF	NVMADRL	
	MOVLW	LOW DATA_ADDR	; Load initial data address
	MOVWF	FSROL	
	MOVLW	HIGH DATA_ADDR	
	MOVWF	FSR0H	
	BCF	NVMCON1,NVMREGS	; Set Program Flash Memory as write location
	BSF	NVMCON1,WREN	; Enable writes
	BSF	NVMCON1, LWLO	; Load only write latches
TOOD			
LOOP	моити	ECD()++	
	MOVINE		· Lood first data buta
	MOVTW	ESD0++	/ Hoad Hilst data byte
	MOVIW	NVMDATH	; Load second data byte
	MOVF	NVMADRL,W	
	XORLW	0x1F	; Check if lower bits of address are 00000
	ANDLW	0x1F	; and if on last of 32 addresses
	BTFSC	STATUS, Z	; Last of 32 words?
	GOTO	START_WRITE	; If so, go write latches into memory
	CALL	UNLOCK_SEQ	; If not, go load latch
	INCF	NVMADRL, F	; Increment address
	GOTO	LOOP	
STAR	T_WRITE		
	BCF	NVMCON1, LWLO	; Latch writes complete, now write memory
	CALL	UNLOCK_SEQ	; Perform required unlock sequence
	BCF	NVMCON1,WREN	; Disable writes
UNLO	CK_SEQ		
	MOVLW	55h	
	BCF	INTCON, GIE	; Disable interrupts
	MOVWF	NVMCON2	; Begin unlock sequence
	MOVLW	AAh	
	MOVWF	NVMCON2	
	BSF	NVMCON1,WR	
	BSF	INTCON, GIE	; Unlock sequence complete, re-enable interrupts
	return		

I	U-0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0			
	_	NVMREGS	LWLO	FREE	WRERR ^(1,2,3)	WREN	WR ^(4,5,6)	RD			
bit 7								bit 0			
Legen	d:										
R = Re	eadable b	it	W = Writable bi	t	U = Unimplemen	ted bit, read as	s 'O'				
S = Bit	t can only	be set	x = Bit is unkno	wn	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bi	it is set		'0' = Bit is clear	ed	HC = Bit is cleare	ed by hardware)				
bit 7		Unimplemente	d: Read as '0'								
bit 6	bit 6 NVMREGS: Configuration Select bit 1 = Access EEPROM, DIA, DCI, Configuration, User ID and Device ID Registers 0 = Access PFM										
bit 5	bit 5 LWLO: Load Write Latches Only bit <u>When FREE = 0</u> : 1 = The next WR command updates the write latch for this word within the row; no memory operation is initiated. 0 = The next WR command writes data or erases Otherwise: The bit is ignored										
bit 4	bit 4 FREE: PFM Erase Enable bit When NVMREGS:NVMADR points to a PFM location: 1 = Performs an erase operation with the next WR command; the 32-word pseudo-row containing the indicated address is erased (to all 1s) to prepare for writing. 0 = All erase operations have completed normally										
bit 3		WRERR: Progr This bit is norm 1 = A write op NVMADR 0 = The progra	am/Erase Error I ally set by hardw eration was inter points to a write- am or erase oper	Flag bit ^(1,2,3) vare. rupted by a Re protected addr ration complete	eset, interrupted ur ess. d normally	lock sequence	, or WR was writt	en to one while			
bit 2		WREN: Program1 = Allows pro0 = Inhibits pro	m/Erase Enable ogram/erase cyclo ogramming/erasi	bit es ng of program	Flash						
bit 1		WR: Write Cont <u>When NVMRE(</u> 1 = Initiates th 0 = NVM prog	trol bit ^(4,5,6) <u>G:NVMADR poin</u> e operation indic ram/erase opera	ts to a PFM loc ated by Table ² tion is complete	<u>ation</u> : 13-4 e and inactive.						
bit 0		 RD: Read Control bit⁽⁷⁾ 1 = Initiates a read at address = NVMADR1, and loads data to NVMDAT Read takes one instruction cycle at bit is cleared when the operation is complete. The bit can only be set (not cleared) in software. 0 = NVM read operation is complete and inactive 									
Note	1: Bit i 2: Bit r 3: Bit r 4: This 5: Ope 6: One	s undefined while must be cleared b may be written to bit can only be serations are self-ti te a write operatic	WR = 1. y software; hard '1' by software ir set by following the med, and the Willon is initiated, set	ware will not cle n order to imple ne unlock sequ R bit is cleared tting this bit to z	ear this bit. ment test sequence ence of Section 13 by hardware when zero will have no ef	es. 3.4.2 "NVM Un complete. ffect.	lock Sequence".				

REGISTER 13-5: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

7: Reading from EEPROM loads only NVMDATL<7:0> (Register 13-1).

R/W-0/0	U-0						
HIDF7	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							

REGISTER 14-49: HIDRVF: PORTF HIGH DRIVE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	HIDF7: PORTF High Drive Enable bit For RF7 pin
	 1 = High current source and sink enabled 0 = Standard current source and sink
bit 6-0	Unimplemented: Read as '0'

TABLE 14-7: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	255
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	255
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	256
ANSELF	ANSF7	ANSF6	ANSF5	ANSF4	ANSF3	ANSF2	ANSF1	ANSF0	256
WPUF	WPUF7	WPUF6	WPUF5	WPUF4	WPUF3	WPUF2	WPUF1	WPUF0	256
ODCONF	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	257
SLRCONF	SLRF7	SLRF6	SLRF5	SLRF4	SLRF3	SLRF2	SLRF1	SLRF0	257
INLVLF	INLVLF7	INLVLF6	INLVLF5	INLVLF4	INLVLF3	INLVLF2	INLVLF1	INLVLF0	257
HIDRVF	HIDF7	—	_	_	—	—	_	—	258

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTF.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVR<1:0>		285
ADCON0	ON	CONT	_	CS	-	FM	-	GO	305
ADCON1	PPOL	IPEN	GPOL	-	-	-	-	DSEN	306
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E2	DAC1PS	SS<1:0>			332

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: -= unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

RTCC Control Registers 24.6

R/W-0/ι	u U-0	R/W-0/u	R-0/u	R-0/u	U-0	R/W-0/u	R/W-0/u
RTCEN ⁽	1)	RTCWREN	RTCSYNC	HALFSEC ⁽²⁾	—	RTCCLKSEL1	RTCCLKSEL0
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, re	ead as '0' u =	Bit is unchanged
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknow	n
bit 7	RTCEN:	RTCC Enable b	t(1)				
	1 = RT(CC module is ena	bled				
	0 = RTC	CC module is disa	abled				
bit 6	Unimple	emented: Read a	IS '0'				
bit 5	RTCWR	EN: RTCC Value	Registers Wr	ite Enable bit			
	1 = RTC	CC registers can	be written to b	by the user			
	0 = RTC	CC registers are I	ocked out fror	n being written	to by the us	er	
bit 4	RTCSYI	NC: RTCC Value	Registers Rea	ad Synchroniza	ation bit		
	1 = RTC	CC registers can	change while i	reading due to	a rollover rip	ole resulting in an	nvalid data read;
	if the reg 0 = RTC	jister is read twic CC registers can	e and results be read witho	in the same da ut concern ove	ta, the data o r a rollover ri	can be assumed to pple) be valid.
bit 3	HALFSE	C: Half-Second	Status bit ⁽²⁾				
	1 = Sec 0 = Firs	ond half period o t half period of a	f a second second				
bit 2	Unimple	emented: Read a	is '0'				
bit 1-0	RTCCL	(SEL<1:0>: RTC	Clock Source	e Selection bits	;		
	00 = SO	SC (expected to	32.768 kHz)				
	01 = MF	INTOSC (31.25	(Hz)				
	10 = 50	Hz Powerline Clo	ock (Zero-Cro	ss Detect)			
	11 = 60	Hz Powerline Clo	CK (Zero-Cro	ss Detect)			
Note 1:	A write to the	RTCEN bit is on	ly allowed whe	en RTCWREN	= 1.		
2.	This hit is rea	d-only. It is clear	ed to '∩' on a	write to the SE	CONDS regi	ster	

REGISTER 24-1: RTCCON: RTC CONTROL REGISTER

bit is read-only. It is cleared to '0' on a write to the SECONDS register.

U-0	U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u		
_	—	—	_		CS<	:3:0>			
bit 7							bit 0		
·									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cleared by hardware					
bit 7-4	Unimplemen	ted: Read as '	0'						
bit 3-0	CS<3:0>: Timer1 Clock Select bits								
	1111 = Reserved								
	1110 = Reser	rved							
	1101 = Reser	rved							
	$1100 = LC4_0$	out							
	$1011 = LC3_0$	out							
	$1010 = LC2_0$	out							
	$1001 = LCI_0$	oui 0 Overflow Ou	tout						
	0111 = SOS(ipui						
	0110 = MFIN	, TOSC (32 kHz)						
	0101 = MFIN	TOSC (500 kH	, Z)						
	0100 = LFIN7	rosc	,						
	0011 = HFIN	TOSC							
	0010 = Fosc								
	0001 = Fosc/	/4							
	0000 = TxCK	IPPS							

REGISTER 26-3: T1CLK TIMER1 CLOCK SELECT REGISTER

Mada	MODE<4:0>		Output	Oneration	Timer Control		
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop
		000		Software gate (Figure 27-4)	ON = 1		ON = 0
		001	Period	Hardware gate, active-high (Figure 27-5)	ON = 1 and TMRx_ers = 1	_	ON = 0 or TMRx_ers = 0
		010		Hardware gate, active-low	ON = 1 and TMRx_ers = 0	—	ON = 0 or TMRx_ers = 1
Free	0.0	011		Rising or falling edge Reset		TMRx_ers	ON = 0
Period	00	100	Period	Rising edge Reset (Figure 27-6)		TMRx_ers ↑	
		101	Pulse	Falling edge Reset		TMRx_ers ↓	
		110	with Hardware	Low level Reset	ON = 1	TMRx_ers = 0	ON = 0 or TMRx_ers = 0
		111	Resel	High level Reset (Figure 27-7)		TMRx_ers = 1	ON = 0 or TMRx_ers = 1
		000	One-shot	Software start (Figure 27-8)	ON = 1	_	
		001	Edge	Rising edge start (Figure 27-9)	ON = 1 and TMRx_ers ↑	_	
One-shot	Ol	010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	—	
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers	_	ON = 0 or Next clock after TMRx = PRx (Note 2)
		100	Edge triggered start and hardware Reset (Note 1)	Rising edge start and Rising edge Reset (Figure 27-10)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑	
		101		Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers \downarrow	
		110		Rising edge start and Low level Reset (Figure 27-11)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0	
		111		Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1	
		000		Rese	rved		
		001	Edge	Rising edge start (Figure 27-12)	ON = 1 and TMRx_ers ↑	_	ON = 0 or
Mono-stable		010	triggered start	Falling edge start	ON = 1 and TMRx_ers ↓	_	Next clock after
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers		TMRx = PRx (Note 3)
Reserved	10	100	Reserved				
Reserved		101		Rese	rved		
One-shot		110	Level triggered	High level start and Low level Reset (Figure 27-13)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or
		111	start and hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	Held in Reset (Note 2)
Reserved	11	xxx		Rese	rved		

TABLE 27-1: TIMER2/4 OPERATING MODES

Note 1: If ON = 0 then an edge is required to restart the timer after ON = 1.

2: When TMRx = PRx then the next clock clears ON and stops TMRx at 00h.

3: When TMRx = PRx then the next clock stops TMRx at 00h but does not clear ON.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ON ⁽¹⁾	CKPS<2:0>				OUTP	S<3:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared		HC = Bit is cle	HC = Bit is cleared by hardware		
bit 7	ON: Timer2/4 1 = Timer2/4 0 = Timer2/4	4 On bit 4 is on 4 is off: all coun	ters and state	e machines are i	reset		
bit 6-4	CKPS<2:0>:	Timer2/4-type	Clock Prescal	le Select bits			
	111 = 1:128 110 = 1:64 F 101 = 1:32 F 100 = 1:16 F 011 = 1:8 Pr 010 = 1:4 Pr 001 = 1:2 Pr 000 = 1:1 Pr	Prescaler Prescaler Prescaler Prescaler rescaler rescaler rescaler rescaler					
bit 3-0	OUTPS<3:0>: Timer2/4 Output Postscaler S 1111 = 1:16 Postscaler 1110 = 1:15 Postscaler 1101 = 1:14 Postscaler 1000 = 1:13 Postscaler 1011 = 1:12 Postscaler 1010 = 1:11 Postscaler 1000 = 1:9 Postscaler 1000 = 1:9 Postscaler 0111 = 1:8 Postscaler 0110 = 1:7 Postscaler 0101 = 1:6 Postscaler 0101 = 1:6 Postscaler 0101 = 1:7 Postscaler 0011 = 1:4 Postscaler 0010 = 1:3 Postscaler 0010 = 1:2 Postscaler 0000 = 1:1 Postscaler			r Select bits			

REGISTER 27-2: TxCON: TIMER2/4 CONTROL REGISTER

Note 1: In certain modes, the ON bit will be auto-cleared by hardware. See Section 27.5 "Operation Examples".

© 2017 Microchip Technology Inc.

DS40001923A-page 424

28.7.4 HIGH AND LOW-MEASURE MODE

This mode measures the high and low-pulse time of the SMTSIGx relative to the SMT clock. It begins incrementing the SMTxTMR on a rising edge on the SMTSIGx input, then updates the SMTxCPW register with the value and resets the SMTxTMR on a falling edge, starting to increment again. Upon observing another rising edge, it updates the SMTxCPR register with its current value and once again resets the SMTxTMR value and begins incrementing again. See Figure 28-8 and Figure 28-9.

29.3.4 TIMER2 TIMER RESOURCE

This device has a newer version of the Timer2 module that has many new modes, which allow for greater customization and control of the PWM signals than on older parts. Refer to **Section 27.5** "**Operation Examples**" for examples of PWM signal generation using the different modes of Timer2. The CCP operation requires that the timer used as the PWM time base has the FOSC/4 clock source selected

29.3.5 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 29-1.

EQUATION 29-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is transferred from the CCPRxL/H register pair into a 10-bit buffer.

Note:	The Timer postscaler (see Section 27.4
	"Timer2/4 Interrupt") is not used in the
	determination of the PWM frequency.

29.3.6 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the CCPRxH:CCPRxL register pair. The alignment of the 10-bit value is determined by the CCPRxFMT bit of the CCPxCON register (see Figure 29-5). The CCPRxH:CCPRxL register pair can be written to at any time; however the duty cycle value is not latched into the 10-bit buffer until after a match between PR2 and TMR2.

Equation 29-2 is used to calculate the PWM pulse width.

Equation 29-3 is used to calculate the PWM duty cycle ratio.

EQUATION 29-2: PULSE WIDTH

Pulse Width = (CCPRxH:CCPRxL register pair) •

TOSC • (TMR2 Prescale Value)

EQUATION 29-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(CCPRxH:CCPRxL register pair)}{4(PR2 + 1)}$$

CCPRxH:CCPRxL register pair are used to double buffer the PWM duty cycle. This double buffering provides for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH:CCPRxL register pair, then the CCPx pin is cleared (see Figure 29-4).

29.3.7 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 29-4.

EQUATION 29-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse-width value is greater than the period, the assigned PWM pin(s) will remain unchanged.

33.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPxCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into IDLE mode (Figure 33-30).

33.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

33.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPxCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 33-31).

33.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 33-30: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 33-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

PIC16(L)F19155/56/75/76/85/86

PIC16(L)F19155/56/75/76/85/86

37.3 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

ANDLW	AND literal with W	
Syntax:	[<i>label</i>] ANDLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	(W) .AND. (k) \rightarrow (W)	
Status Affected:	Z	
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.	

ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

wrap-around.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<7>) \rightarrow dest<7>$ $(f<7:1>) \rightarrow dest<6:0>,$ $(f<0>) \rightarrow C,$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

ADDWFC	ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

PIC16(L)F19155/56/75/76/85/86

TRIS	Load TRIS Register with W
Syntax:	[<i>label</i>] TRIS f
Operands:	$5 \le f \le 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORLW	Exclusive OR literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .XOR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

XORWF	Exclusive OR W with f						
Syntax:	[label] XORWF f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$						
Operation:	(W) .XOR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						

PIC16(L)F19155/56/75/76/85/86

40ChUnimplemented $40Dh$ HIDRVBHIDB1 $40Eh$ UnimplementedUnimplemented $40Fh$ Unimplemented $40Fh$ Unimplemented $410h$ Unimplemented $410h$ Unimplemented $411h$ Unimplemented $412h$ Unimplemented $413h$ Unimplemented $414h$ Unimplemented $416h$ Unimplemented $418h$ Unimplemented <th>Register on page</th>	Register on page
40Dh HIDRVB	
40EhUnimplemented40FhUnimplemented410hUnimplemented411hUnimplemented412hUnimplemented413hUnimplemented414hUnimplemented415hUnimplemented416hUnimplemented417hUnimplemented418hUnimplemented418hUnimplemented418hUnimplemented418hUnimplemented	232
40FhUnimplemented410hUnimplemented411hUnimplemented412hUnimplemented413hUnimplemented414hUnimplemented415hUnimplemented416hUnimplemented417hUnimplemented418hUnimplemented418hUnimplemented419hUnimplemented	
410hUnimplemented411hUnimplemented412hUnimplemented413hUnimplemented414hUnimplemented415hUnimplemented416hUnimplemented417hUnimplemented418hUnimplemented418hUnimplemented	
411hUnimplemented412hUnimplemented413hUnimplemented414hUnimplemented415hUnimplemented416hUnimplemented417hUnimplemented418hUnimplemented418hUnimplemented419hUnimplemented	
412h — Unimplemented 413h — Unimplemented 414h — Unimplemented 415h — Unimplemented 416h — Unimplemented 417h — Unimplemented 418h — Unimplemented 418h — Unimplemented	
413h — Unimplemented 414h — Unimplemented 415h — Unimplemented 416h — Unimplemented 417h — Unimplemented 418h — Unimplemented 419h — Unimplemented	
414h — Unimplemented 415h — Unimplemented 416h — Unimplemented 417h — Unimplemented 418h — Unimplemented 418h — Unimplemented	
415h Unimplemented 416h Unimplemented 417h Unimplemented 418h Unimplemented 419h Unimplemented	
416h Unimplemented 417h Unimplemented 418h Unimplemented 419h Unimplemented	
417h Unimplemented 418h Unimplemented 419h Unimplemented	
418h — Unimplemented	
419h Linimplemented	
41An — Unimplemented	
41Bh — Onimplemented	
410h Unimplemented	
41Eh Linimplemented	
41Eh — Unimplemented	
48Ch SMT1TMRL SMT1TMR	416
48Dh SMT1TMRH SMT1TMR	416
48Eh SMT1TMRU SMT1TMR	416
48Fh SMT1CPRL CPR	417
490h SMT1CPRH CPR	417
491h SMT1CPRU CPR	417
492h SMT1CPWL CPW	418
493h SMT1CPWH CPW	418
494h SMT1CPWU CPW	418
495h SMT1PRL SMT1PR	419
496h SMT1PRH SMT1PR	419
497h SMT1PRU SMT1PR	419
498h SMT1CON0 EN - STP WPOL SPOL CPOL SMT1PS<1:0>	410
499h SMT1CON1 SMT1GO REPEAT MODE<3:0>	411
49Ah SMT1STAT CPRUP CPWUP RST TS WS AS	412
49Bh SMT1CLK — — — — — CSEL<2:0>	413
49Ch SMT1SIG SSEL<4:0>	415
49Dh SMT1WIN — — — WSEL<4:0>	414

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.
 Note 1: Unimplemented data memory locations, read as '0'.

Λ

TABLE 39-3: POWER-DOWN CURRENT (IPD)^(1,2)

PIC16(L)F19155/56/75/76/85/86				Standard Operating Conditions (unless otherwise stated)						
PIC16F19155/56/75/76/85/86				Standard Operating Conditions (unless otherwise stated) VREGPM = 1						
Param.	Symbol	Dovice Characteristics	Min.	Тур.†	Max. +85°C	Max. +125°C	Units	\bigcirc	Conditions	
No.	Cymbol	Device Gharacteristics						YDD	Note	
D200	IPD	IPD Base	—	0.05	—	—	μÀ	3.0V	-	
D200	IPD	IPD Base	_	0.4	_	\sim	μΑ	3.0V	\geq	
D200A			_	18	_ <		μA	3.0V	VREGPM = 0	
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	-	0.4	-	$\backslash \rightarrow$	μA	3.0V		
D201	IPD_WDT	Low-Frequency Internal Oscillator/WDT	-	0.6 <	\sum	7	μΑ	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_	-0.6_	\sum	<u> </u>	μA	3.0V		
D202	IPD_SOSC	Secondary Oscillator (SOSC)	_ <	0.8	-	\rightarrow	μΑ	3.0V		
D203	IPD_FVR	FVR	\land	28			μΑ	3.0V		
D203	IPD_FVR	FVR	X	33	$\langle - \rangle$	_	μΑ	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)	`	10	\leq	—	μΑ	3.0V		
D204	IPD_BOR	Brown-out Reset (BOR)	X	14	$\rangle -$	_	μΑ	3.0V		
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	$\langle \succ \rangle$	0.5	[—	—	μΑ	3.0V		
D205	IPD_LPBOR	Low-Power Brown-out Reset (LPBOR)	$\langle + \rangle$	Ø.7	-	_	μΑ	3.0V		
D206	IPD_ADCA	ADC - Active	$\left[- \right]$	250	_	—	μΑ	3.0V	ADC is converting (4)	
D206	IPD_ADCA	ADC - Active		280	—	—	μΑ	3.0V	ADC is converting (4)	
D207	IPD_ADCA_CHGPUMP	ADC - Active with Charge Rump	$\geq -$	315	—	—	μΑ	3.0V		
D207	IPD_ADCA_CHGPUMP	ADC - Active with Charge Pump	_	345	—	—	μΑ	3.0V		
D208	IPD_CMP	Comparator C1	_	30	—	—	μΑ	3.0V		
D208	IPD_CMP	Comparator C1		33	_	_	μΑ	3.0V		
D209	IPD_CMP_LP	LP Comparator C2(b)	_	0.25	—	—	μΑ	3.0V		
D209	IPD_CMP_LP	LP Comparator C2	—	0.6	_	—	μΑ	3.0V		
D210	IPD_LCD_PUMP_3V	3V PumpOutput	-	2.5	—	_	μΑ	2.5V		
D210	IPD_LCD_PUMP_5	SV/Pump Output	—	3	_		μΑ	2.5V		

t

Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. The peripheral current is the sum of the base IDD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max. values should be used when 1:

calculating total current consumption. The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in 2: Sleep mode with all I/O pins in high-impedance state and tied to Vss.

All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.

ADC clock source is FRC.

= KF device

Note

5į/

The IPD spec for the LP comparator does not include current consumed by the supporting clock. 6: