

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19185t-i-pt

Email: info@E-XFL.COM

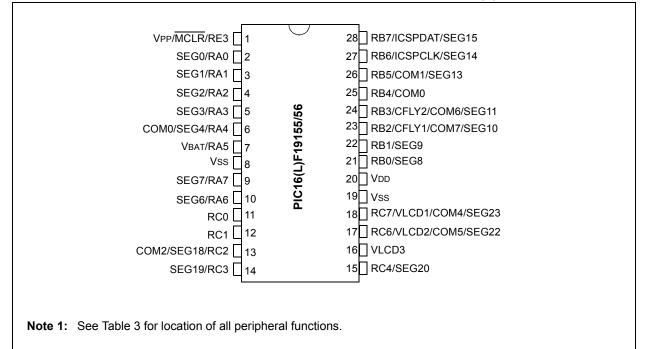

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PACKAGES

Device	28-Pin SPDIP	28-Pin SOIC	28-Pin SSOP	28-Pin UQFN (4x4)	40-Pin PDIP	40-Pin UQFN (5x5)	44-Pin TQFP	48-Pin UQFN (6x6)	48-Pin TQFP (7x7)
PIC16(L)F19155	Х	Х	Х	Х					
PIC16(L)F19156	Х	Х	Х	Х					
PIC16(L)F19175					Х	Х	Х		
PIC16(L)F19176					Х	Х	Х		
PIC16(L)F19185								Х	Х
PIC16(L)F19186								Х	Х

Note: Pin details are subject to change.

FIGURE 1: 28-PIN SSOP, SPDIP AND SOIC PIN DIAGRAM FOR PIC16(L)F19155/56

Core Registers (Table 4-3)	C80h	Core Registers (Table 4-3)	D00h	Core Registers (Table 4-3)	D80h	Core Registers (Table 4-3)	E00h	Core Registers (Table 4-3)	E80h	Core Registers (Table 4-3)
RTCCON	C8Ch	_	D0Ch	_	D8Ch	_	E0Ch	_	E8Ch	VB0GPR
RTCCAL	C8Dh	_	D0Dh	—	D8Dh	—	E0Dh	_	E8Dh	VB1GPR
ALRMCON	C8Eh	-	D0Eh	—	D8Eh	—	E0Eh	—	E8Eh	VB2GPR
ALRMRPT	C8Fh	-	D0Fh	—	D8Fh	—	E0Fh	—	E8Fh	VB3GPR
YEAR	C90h	-	D10h	—	D90h	—	E10h	—	E90h	—
MONTH	C91h	—	D11h	—	D91h	—	E11h	—	E91h	—
WEEKDAY	C92h	—	D12h	—	D92h	—	E12h	—	E92h	—
DAY	C93h	_	D13h	_	D93h	_	E13h	_	E93h	_
HOURS	C94h	_	D14h	_	D94h	_	E14h	_	E94h	_
MINUTES	C95h	_	D15h	—	D95h	_	E15h	_	E95h	_
SECONDS	C96h	_	D16h	—	D96h	_	E16h	_	E96h	_
ALRMMTH	C97h	_	D17h	_	D97h	_	E17h	_	E97h	_
ALRMWD	C98h	_	D18h	—	D98h	_	E18h	_	E98h	_
ALRMDAY	C99h	_	D19h	_	D99h	_	E19h	_	E99h	_
ALRMHR	C9Ah	_	D1Ah	_	D9Ah	_	E1Ah	_	E9Ah	_
ALRMMIN	C9Bh	_	D1Bh	_	D9Bh	_	E1Bh	_	E9Bh	_
ALRMSEC	C9Ch	_	D1Ch	—	D9Ch	_	E1Ch	_	E9Ch	_
_	C9Dh	_	D1Dh	—	D9Dh	_	E1Dh	_	E9Dh	_
_	C9Eh	_	D1Eh	—	D9Eh	_	E1Eh	_	E9Eh	_
—	C9Fh	—	D1Fh	—	D9Fh	—	E1Fh	—	E9Fh	—
	CA0h	General Purpose	D20h		DA0h		E20h		EA0h	
General Purpose Register 80 Bytes ⁽²⁾	CBFh	Register 32 Bytes ⁽²⁾		_		_		_		_
Register of Bytes	CC0h CEFh	_	D6Fh		DEFh		E6Fh		EEFh	
	CEFn CF0h		D6Fn D70h		DEFN DF0h		E6Fh E70h		EEFN EF0h	
Common RAM Accesses 70h-7Fh	CFFh	Common RAM Accesses 70h-7Fh	D76h	Common RAM Accesses 70h-7Fh	DFFh	Common RAM Accesses 70h-7Fh	E70h	Common RAM Accesses 70h-7Fh	EFFh	Common RAM Accesses 70h-7Fh

Bank 27

Bank 28

Bank 29

Bank 26

TABLE 4-9: PIC16(L)F19155/56/75/76/85/86 MEMORY MAP, BANKS 24-29 BANK 25

Note 1: Unimplemented locations read as '0'.

2: Present only on PIC16(L)F19156/76/86.

Present only on PIC16(L)F19185/86. 3:

BANK 24

4: Banks 30-57 have been omitted from the tables in the data sheet since they have unimplemented registers.

5: See Table 4-4 for general purpose RAM size and bank location.

C00h

C0Ch C0Dh C0Eh C0Fh C10h C11h C12h

C13h C14h C15h C16h C17h

C18h C19h C1Ah C1Bh C1Ch C1Dh C1Eh C1Fh C20h

C6Fh C70h

C7Fh

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue on</u> : MCLR			
Bank 10														
				CPU	CORE REGISTER	S; see Table 4-3 fo	r specifics							
50Ch	_				Unimple	mented								
50Dh														
50Eh														
50Fh														
510h														
511h														
512h	_		Unimplemented											
513h	_		Unimplemented											
514h					Unimple	emented								
515h	_				Unimple	emented								
516h	_				Unimple	emented								
517h	_				Unimple	emented								
518h	—				Unimple	emented								
519h	—				Unimple	emented								
51Ah	—				Unimple	emented								
51Bh	_				Unimple	emented								
51Ch	_				Unimple	emented								
51Dh					Unimple	emented								
51Eh	_		Unimplemented											
51Fh	_				1Fh — Unimplemented									

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Preliminary

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

1	TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)											
	Addroop	Nomo	Dit 7	Dit 6	Dit E	Dit 4	Dit 2	Dit 2	Dit 1	Rit 0	Value on:	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR	
Bank 61 (C	ontinued)	tinued)										
1EE5h	—											
1EE6h	—											
1EE7h	—											
1EE8h	_											
1EE9h	—		Unimplemented									
1EEAh	—				Unimpler	nented						
1EEBh	—				Unimpler	nented						
1EECh	—				Unimpler	nented						
1EEDh	—				Unimpler	nented						
1EEEh	_											
1EEFh	_		Unimplemented									
1												

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON1	—		NOSC<2:0>			NDIV<	3:0>		152
OSCCON2	—		COSC<2:0>		CDIV<3:0>				152
OSCCON3	CWSHOLD	SOSCPWR	_	ORDY	NOSCR	-	_	-	154
OSCFRQ	_	_	_	_	_	HFFRQ<2:0>			157
OSCSTAT	EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR	155
OSCTUNE	—	_			HFTUN	HFTUN<5:0>			
OSCEN	EXTOEN	HFOEN	MFOEN	LFOEN	SOSCEN	ADOEN	_	_	156
ACTCON	ACTEN	ACTUD	_	_	ACTLOCK	_	ACTORS		158

TABLE 9-3:SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

TABLE 9-4:SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	—	_	FCMEN	_	CSWEN	LCDPEN	VBATEN	CLKOUTEN	100
CONFIGT	7:0	—	F	RSTOSC<2:0	>	_	FEXTOSC<2:0>			120

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by clock sources.

U-0	U-0	U-0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0				
_	—	—	—	TMR4IE	—	TMR2IE	TMR1IE				
bit 7							bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
u = Bit is u	u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all othe										
'1' = Bit is s	Bit is set '0' = Bit is cleared HS = Hardware set										
bit 7-4	Unimpleme	nted: Read as '	0'								
bit 3	TMR4IE: TMR4 to PR4 Match Interrupt Enable bit										
		the Timer4 to P		•							
	0 = Disables	the Timer4 to P	PR4 match in	terrupt							
bit 2	Unimpleme	nted: Read as '	0'								
bit 1		IR2 to PR2 Mate									
		s the Timer2 to									
L:1 0		s the Timer2 to		•							
bit 0		ner1 Overflow Ir s the Timer1 ov	•								
		s the Timer1 ov		•							
				- F							
Note:	Bit PEIE of the IN	ITCON register	must be								
	set to enable a										
	controlled by regi	sters PIE1-PIE8									

REGISTER 10-6: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

			-				
R/W-1/1							
SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0
bit 7							bit 0

REGISTER 14-15: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRB<7:0>: PORTB Slew Rate Enable bits For RB<7:0> pins, respectively 1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 14-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7 | | | | | | | bit 0 |

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets	
'1' = Bit is set	'0' = Bit is cleared		

bit 7-0 INLVLB<7:0>: PORTB Input Level Select bits

For RB<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

REGISTER 14-17: HIDRVB: PORTB HIGH DRIVE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	U-0
—	—	—	—	—	—	HIDB1	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'.
bit 1	HIDB1: PORTB High Drive Enable bit
	For RB1 pin
	1 = High current source and sink enabled
	0 = Standard current source and sink
bit 0	Unimplemented: Read as '0'.

IOCCP7 IOCCP6 — IOCCP4 IOCCP3 IOCCP2 IOCCP1 IOCCP								
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Rese '1' = Bit is set '0' = Bit is cleared	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Rese '1' = Bit is set '0' = Bit is cleared	IOCCP7	IOCCP6	—	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Rese'1' = Bit is set'0' = Bit is cleared	bit 7							bit 0
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Rese'1' = Bit is set'0' = Bit is cleared								
u = Bit is unchangedx = Bit is unknown '0' = Bit is cleared-n/n = Value at POR and BOR/Value at all other Rese'1' = Bit is set'0' = Bit is cleared	Legend:							
'1' = Bit is set '0' = Bit is cleared	R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
	u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
bit 7-6 IOCCP<7:6>: Interrupt-on-Change PORTC Positive Edge Enable bits	'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6 IOCCP<7:6>: Interrupt-on-Change PORTC Positive Edge Enable bits								
	bit 7-6	IOCCP<7:6>	: Interrupt-on-C	hange PORT	C Positive Edg	e Enable bits		

	 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.
	0 = Interrupt-on-Change disabled for the associated pin
bit 5	Unimplemented: Read as '0'
bit 4-0	IOCCP<4:0>: Interrupt-on-Change PORTC Positive Edge Enable bits
	 1 = Interrupt-on-Change enabled on the pin for a positive-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin

REGISTER 17-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER

R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCN7	IOCCN6	—	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0
bit 7		•					bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	 IOCCN<7:6>: Interrupt-on-Change PORTC Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin
bit 5	Unimplemented: Read as '0'
bit 4-0	 IOCCN<4:0>: Interrupt-on-Change PORTC Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative-going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin

20.4 Minimum Operating VDD

When the temperature circuit is operated in Low range, the device may be operated at any operating voltage that is within specifications. When the temperature circuit is operated in High range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 20-1 shows the recommended minimum $V \mbox{\scriptsize DD}$ vs. Range setting.

TABLE 20-1: RECOMMENDED VDD vs. RANGE

Min.VDD, TSRNG = 1	Min. VDD, TSRNG = 0			
(High Range)	(Low Range)			
≥ 2.5	≥ 1.8			

20.5 Temperature Indicator Range

The temperature indicator circuit operates in either High or Low range. The High range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range. High range requires a higher-bias voltage to operate and thus, a higher VDD is needed. The Low range is selected by clearing the TSRNG bit of the FVRCON register. The Low range generates a lower sensor voltage and thus, a lower VDD voltage is needed to operate the circuit. The output voltage of the sensor is the highest value at -40° C and the lowest value at $+125^{\circ}$ C.

- **High Range:** The High range is used in applications with the reference for the ADC, VREF = 2.048V. This range may not be suitable for battery-powered applications.
- Low Range: This mode is useful in applications in which the VDD is too low for high-range operation. The VDD in this mode can be as low as 1.8V. VDD must, however, be at least 0.5V higher than the maximum sensor voltage depending on the expected low operating temperature.

20.6 DIA Information

DIA data provide ADC readings at one operating temperature. DIA data is taken during factory testing and stored within the device. The 90°C reading alone allows single-point calibration as described in Section 20.2.1, Calibration, by solving Equation 20-1 for TOFFSET.

Refer to **Section 6.0 "Device Information Area"** for more information on the data stored in the DIA and how to access them.

Note: The lower temperature range (e.g., - 40°C) will suffer in accuracy because temperature conversion must extrapolate below the reference points, amplifying any measurement errors.

TABLE 20-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDFV	R<1:0>	ADFVF	R<1:0>	285

Legend: — = Unimplemented location, read as '0'. Shaded cells are unused by the temperature indicator module.

PIC16(L)F19155/56/75/76/85/86

EQUATION 23-2: R-C CALCULATIONS V_{peak} = external voltage source peak voltage = external voltage source frequency f С = series capacitor R = series resistor V_c = Peak capacitor voltage = Capacitor induced zero crossing phase φ advance in radians Τ_φ = Time ZC event occurs before actual zero crossing $Z = \frac{V_{PEAK}}{3x10^{-4}}$ $X_C = \frac{1}{(2\pi fC)}$ $R = \sqrt{Z^2 - X_C}$ $V_c = X_c (3x10^{-4})$ $\phi = Tan^{-1}\left(\frac{X_c}{R}\right)$ $T_{\phi} = \frac{\phi}{(2\pi f)}$

V_{rms} = 120

EXAMPLE 23-1: R-C CALCULATIONS EXAMPLE

$$V_{peak} = V_{rms} \cdot \sqrt{2} = 169.7$$

f = 60 Hz
C = 0.1 µf
$$Z = \frac{V_{peak}}{3 \times 10^{-4}} = \frac{169.7}{3 \times 10^{-4}} = 565.7 \ kOhms$$
$$X_{c} = \frac{1}{(2\pi fC)} = \frac{1}{(2\pi \cdot 60 \cdot 1 \cdot 10^{-7})} = 26.53 \ kOhms$$

R = 560 kOhms
$$Z_{R} = \sqrt{(R^{2} + X_{c}^{-2})} = 560.6 \ kOhm \ (using actual resistor)$$
$$I_{peak} = \frac{V_{peak}}{Z_{R}} = 302.7 \cdot 10^{-6}$$
$$V_{c} = X_{c} \cdot I_{peak} = 8.0 \ V$$
$$\phi = Tan^{-1} \left(\frac{X_{c}}{R}\right) = 0.047 \ radians$$
$$T_{\phi} = \frac{\phi}{(2\pi f)} = 125.6 \ \mu s$$

© 2017 Microchip Technology Inc.

27.5.3 EDGE-TRIGGERED HARDWARE LIMIT MODE

In Hardware Limit mode the timer can be reset by the TMRx_ers external signal before the timer reaches the period count. Three types of Resets are possible:

- · Reset on rising or falling edge (MODE<4:0>= 00011)
- Reset on rising edge (MODE<4:0> = 00100)
- Reset on falling edge (MODE<4:0> = 00101)

FIGURE 27-6: EDGE-TRIGGERED HARDWARE LIMIT MODE TIMING DIAGRAM

(N	IODE = 00100)	
	Rev. 10.000 1970 500/2014	
MODE	0b00100	
TMRx_dk		
PRx	5	
Instruction ⁽¹⁾	(BSF)	
ON		
TMRx_ers		
TMRx	0 1 2 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1	
TMRx_postscaled		
PWM Duty Cycle	3	
PWM Output		
	 BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock in 	

When the timer is used in conjunction with the CCP in PWM mode then an early Reset shortens the period and restarts the PWM pulse after a two clock delay. Refer to Figure 27-6.

REGISTER 28-16: SMTxPRL: SMT PERIOD REGISTER – LOW BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxF	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

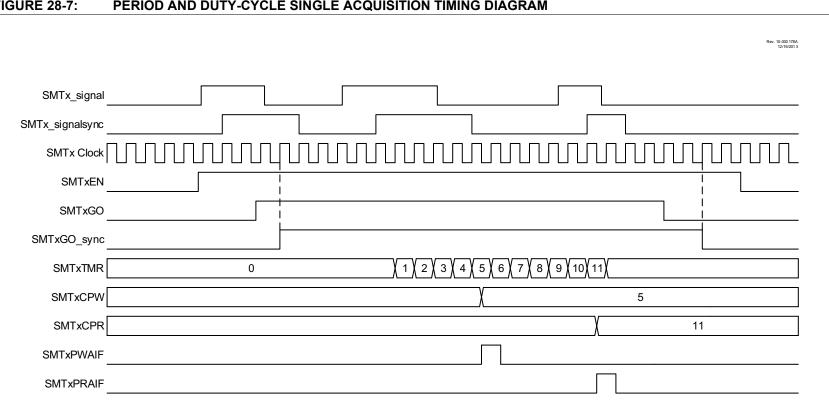
REGISTER 28-17: SMTxPRH: SMT PERIOD REGISTER – HIGH BYTE

| R/W-x/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SMTxPF | R<15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |
| | | | | | | | |

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 28-18: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE


| R/W-x/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | SMTxPR | <23:16> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

28.7.3 PERIOD AND DUTY-CYCLE MODE

In Duty-Cycle mode, either the duty cycle or period (depending on polarity) of the SMTx_signal can be acquired relative to the SMT clock. The CPW register is updated on a falling edge of the signal, and the CPR register is updated on a rising edge of the signal, along with the SMTxTMR resetting to 0×0001 . In addition, the SMTxGO bit is reset on a rising edge when the SMT is in Single Acquisition mode. See Figure 28-6 and Figure 28-7.

PIC16(L)F19155/56/75/76/85/86

FIGURE 28-7:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CLC4GLS1	LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	506
CLC4GLS2	LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	507
CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	508
CLCIN0PPS	—	-	—		(CLCIN0PPS<4:	0>		264
CLCIN1PPS	_	_	_		CLCIN1PPS<4:0>		264		
CLCIN2PPS	_	_	_	CLCIN2PPS<4:0>			264		
CLCIN3PPS	_	_	_		(CLCIN3PPS<4:	0>		264

TABLE 32-4: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx (continued)

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the CLCx modules.

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACKTIM ⁽³	³⁾ PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7	•	•	-	•			bit
Legend:							
R = Readabl	e bit	W = Writable b	it	U = Unimplem	ented bit, read as	ʻ0'	
u = Bit is und	changed	x = Bit is unkno	own	-n/n = Value at	t POR and BOR/V	alue at all other	Resets
'1' = Bit is se	t	'0' = Bit is clear	red				
bit 7	1 = Indicates t	nowledge Time S he I ² C bus is in a knowledge seque	n Acknowledge	sequence, set o	on 8 th falling edge of SCL clock	of SCL clock	
bit 6	1 = Enable inte	ndition Interrupt l errupt on detection tion interrupts are	n of Stop condi				
bit 5	1 = Enable inte	ndition Interrupt errupt on detectio tion interrupts ar	n of Start or Re	• /			
bit 4	$\frac{\text{In SPI Slave m}}{1 = SSPx}$ $0 = \text{If new}$ $regist$ $\frac{\text{In I}^2C \text{ Master r}}{\text{This bit is}}$ $\frac{\text{In I}^2C \text{ Slave m}}{1 = SSPx}$ $SSP(0)$ $0 = SSPx$	BUF updates even v byte is received ter is set, and the <u>mode and SPI Ma</u> ignored. <u>ode:</u> (BUF is updated DV bit only if the BUF is only updated	ery time that a r d with BF bit of buffer is not up aster mode: and \overline{ACK} is get BF bit = 0. ated when SSP	the SSPxSTAT r odated nerated for a rec OV is clear	shifted in ignoring egister already se ceived address/da	et, SSPOV bit of	
bit 3	1 = Minimum c	Hold Time Select of 300 ns hold tim of 100 ns hold tim	e on SDA after	the falling edge			
bit 2	 0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL SBCDE: Slave Mode Bus Collision Detect Enable bit (I²C Slave mode only) If, on the rising edge of SCL, SDA is sampled low when the module is outputting a high state, the BCL1IF PIR3 register is set, and bus goes idle 1 = Enable slave bus collision interrupts 0 = Slave bus collision interrupts are disabled 						3CL1IF bit of th
bit 1	AHEN: Addres 1 = Following register w	s Hold Enable bi	t (I ² C Slave mo edge of SCL t the SCL will b	for a matching re	eceived address	byte; CKP bit of	the SSPxCON
bit 0	1 = Following	N1 register and S	edge of SCL f	or a received da	ita byte; slave ha	rdware clears the	e CKP bit of th
l	For daisy-chained Sl byte is received and This bit has no effec	BF = 1, but hard	ware continues	to write the mos	t recent byte to SS	SPxBUF.	

REGISTER 33-4: SSPxCON3: SSPx CONTROL REGISTER 3

2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.

3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

PIC16(L)F19155/56/75/76/85/86

REGISTER 34-4: RCxREG⁽¹⁾: RECEIVE DATA REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RCxRE	G<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 RCxREG<7:0>: Lower eight bits of the received data; read-only; see also RX9D (Register 34-2)

Note 1: RCxREG (including the 9th bit) is double buffered, and data is available while new data is being received.

REGISTER 34-5: TXxREG⁽¹⁾: TRANSMIT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TXxRE	G<7:0>			
bit 7	bit 7 bit C						

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **TXxREG<7:0>:** Lower eight bits of the received data; read-only; see also RX9D (Register 34-1)

Note 1: TXxREG (including the 9th bit) is double buffered, and can be written when previous data has started shifting.

REGISTER 34-6: SPxBRGL⁽¹⁾: BAUD RATE GENERATOR REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SPxBRG<7:0>							
bit 7							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SPxBRG<7:0>: Lower eight bits of the Baud Rate Generator

Note 1: Writing to SP1BRG resets the BRG counter.

35.0 LIQUID CRYSTAL DISPLAY (LCD) CONTROLLER

The Liquid Crystal Display (LCD) driver module generates the timing control to drive a static or multiplexed LCD panel. The module drives panels with up to eight commons and up to 38 segments pins. It also provides control of the LCD pixel data.

The LCD driver module supports:

- Direct driving of LCD panel
- Two LCD clock sources with selectable prescaler
- Up to eight commons: See Table 35-1 for multiplexing options.
 - Static (One common)
 - 1/2 Multiplex (two commons)
 - 1/3 Multiplex (three commons)
 - 1/4 Multiplex (four commons)
 - 1/5 Multiplex (five commons)
 - 1/6 Multiplex (six commons)
 - 1/7 Multiplex (seven commons)
 - 1/8 Multiplex (eight commons)

- Static, 1/2 (1/2 Multiplex only) or 1/3 LCD bias (1/3 Multiplex and higher)
- On-chip bias generator with dedicated charge pump to support a range of fixed and variable bias options
- · Internal resistors for bias voltage generation
- · Software contrast control through internal biasing

A simplified block diagram of the module is shown in Figure 35-1.

Device I III Count	Number of Cold Osed		Number of 1 ossible beginents
28-Pin	1	19	19
	2	18	36
	3	17	51
	4	16	64
	5	15	75
	6	14	84
	7	13	91
	8	12	96
40-Pin, 44-Pin	1	30	30
	2	29	58
	3	28	84
	4	27	108
	5	26	130
	6	25	150
	7	24	168
	8	23	184
48-Pin	1	38	38
	2	37	74
	3	36	108
	4	35	140
	5	34	170
	6	33	198
	7	32	198
	8	31	248

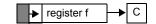
Device Pin Count Number of COM Used Number of SEG Pins Available Number of Possible Segments

TABLE 35-1: MULTIPLEXING OPTIONS

37.3 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	$-32 \le k \le 31$ n \in [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to

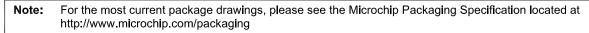
ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.			

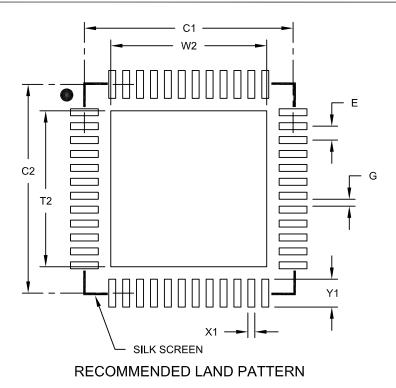

ADDLW	Add literal and W		
Syntax:	[<i>label</i>] ADDLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	$(W) + k \to (W)$		
Status Affected:	C, DC, Z		
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.		

wrap-around.

ANDWF	AND W with f		
Syntax:	[<i>label</i>] ANDWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(W) .AND. (f) \rightarrow (destination)		
Status Affected:	Z		
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.


ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.



ADDWFC ADD W and CARRY bit to f	ADDWFC	ADD W and CARRY bit to f	
---------------------------------	--------	--------------------------	--

Syntax:	[label] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch E		0.40 BSC		
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A