

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19186t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC
016
F19
155/
;/56
175,
/76/
85/
86

TABLE 1:PIC16(L)F191XX FAMILY TYPES

Device	Data Sheet Index	Program Flash Memory (kW/KB)	DataEE (bytes)	Data SRAM (bytes)	I/O Pins	12-bit ADC (ch)	5-bit DAC	Comparator	8-bit/ (with HLT) Timer	16-bit Timer	Window Watchdog Timer (WWDT)	CCP/10-bit PWM	CWG	CLC	Zero-Cross Detect	Temperature Indicator	Memory Access Partition	Device Information Area	EUSART/ I ² C/SPI	Peripheral Pin Select	Peripheral Module Disable	Debug ⁽¹⁾	LCD Segments (Max)	LCD Charge Pump/ Bias Generator
PIC16(L)F19155	(A)	8/14	256	1024	24	20	1	2	2	2	Y	2/2	1	4	Y	Y	Y	Y	2/1	Y	Y	1	96	Y/Y
PIC16(L)F19156	(A)	16/28	256	2048	24	20	1	2	2	2	Y	2/2	1	4	Y	Υ	Y	Y	2/1	Y	Y	I	96	Y/Y
PIC16(L)F19175	(A)	8/14	256	1024	35	31	1	2	2	2	Y	2/2	1	4	Y	Υ	Y	Y	2/1	Y	Y	I	184	Y/Y
PIC16(L)F19176	(A)	16/28	256	2048	35	31	1	2	2	2	Y	2/2	1	4	Y	Υ	Y	Y	2/1	Y	Y	Т	184	Y/Y
PIC16(L)F19185	(A)	8/14	256	1024	43	39	1	2	2	2	Y	2/2	1	4	Y	Υ	Y	Y	2/1	Y	Y	Т	248	Y/Y
PIC16(L)F19186	(A)	16/28	256	2048	43	39	1	2	2	2	Y	2/2	1	4	Y	Υ	Y	Y	2/1	Y	Y	I	248	Y/Y
PIC16(L)F19195	(B)	8/14	256	1024	59	45	1	2	2	2	Y	2/2	1	4	Y	Υ	Y	Y	2/1	Y	Y	- 1	360	Y/Y
PIC16(L)F19196	(B)	16/28	256	2048	59	45	1	2	2	2	Y	2/2	1	4	Y	Υ	Y	Y	2/1	Y	Y	- 1	360	Y/Y
PIC16(L)F19197	(B)	32/56	256	4096	59	45	1	2	2	2	Y	2/2	1	4	Y	Υ	Y	Y	2/1	Y	Y	- 1	360	Y/Y

Note 1: I – Debugging integrated on chip.

Data Sheet Index (Unshaded devices are described in this document):

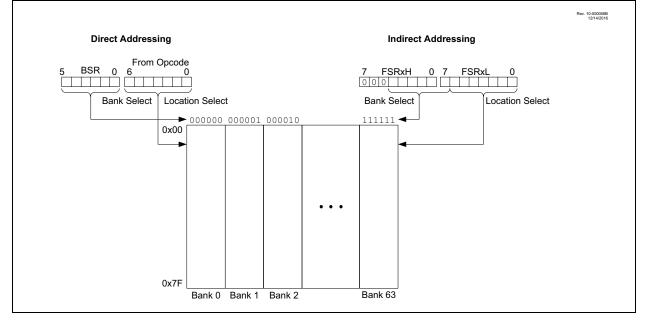
A. Future Release PIC16(L)F19155/56/75/76/85/86 Data Sheet, 28/40/44/48-Pin

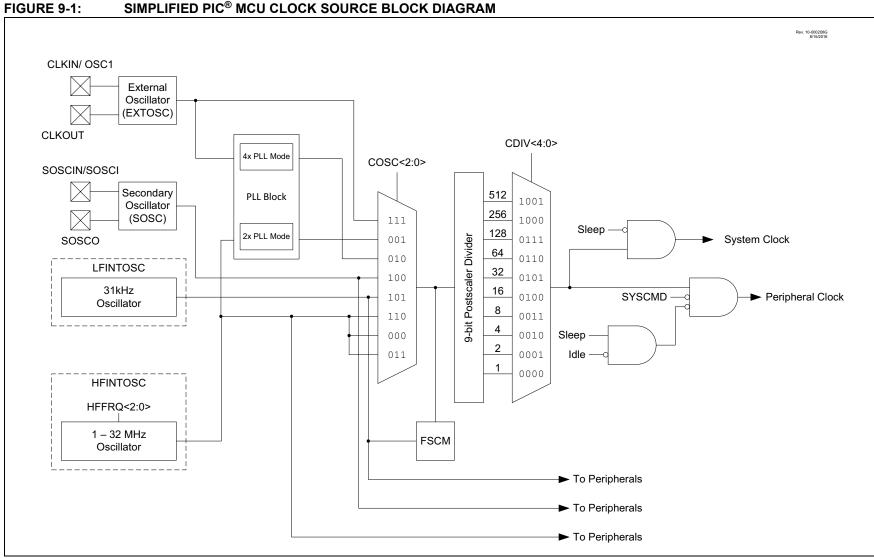
B. DS40001873 PIC16(L)F19195/6/7 Data Sheet, Full-Featured 64-Pin Microcontrollers

Note: For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.

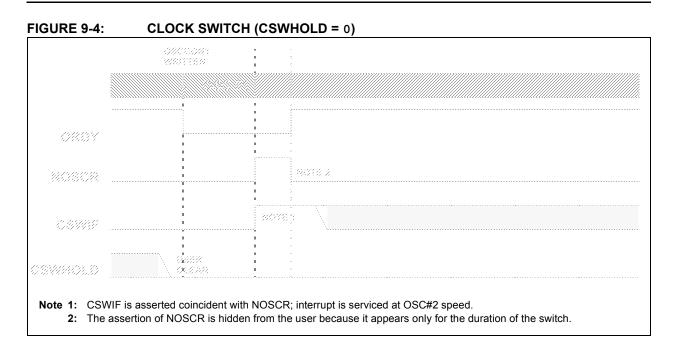
	BANK 8	•	, BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers (Table 4-3)	480h	Core Registers (Table 4-3)	500h	Core Registers (Table 4-3)	580h	Core Registers (Table 4-3)	600h	Core Registers (Table 4-3)	680h	Core Registers (Table 4-3)	700h	Core Registers (Table 4-3)	780h	Core Registers (Table 4-3)
40Ch	_	48Ch	SMT1TMRL	50Ch	_	58Ch		60Ch	CWG1CLKCON	68Ch	_	70Ch	PIR0	78Ch	_
40Dh	_	48Dh	SMT1TMRH	50Dh		58Dh	_	60Dh	CWG1ISM	68Dh		70Dh	PIR1	78Dh	_
40Eh	_	48Eh	SMT1TMRU	50Eh	_	58Eh	_	60Eh	CWG1DBR	68Eh	_	70Eh	PIR2	78Eh	_
40Fh	_	48Fh	SMT1CPRL	50Fh	_	58Fh	_	60Fh	CWG1DBF	68Fh	_	70Fh	PIR3	78Fh	_
410h	_	490h	SMT1CPRH	510h		590h	—	610h	CWG1CON0	690h		710h	PIR4	790h	_
411h	_	491h	SMT1CPRU	511h		591h	_	611h	CWG1CON1	691h		711h	PIR5	791h	_
412h	_	492h	SMT1CPWL	512h	_	592h	_	612h	CWG1AS0	692h	_	712h	PIR6	792h	_
413h	_	493h	SMT1CPWH	513h	_	593h	_	613h	CWG1AS1	693h	_	713h	PIR7	793h	_
414h	_	494h	SMT1CPWU	514h	_	594h	_	614h	CWG1STR	694h	_	714h	PIR8	794h	_
415h	_	495h	SMT1PRL	515h		595h	_	615h	_	695h		715h		795h	_
416h	_	496h	SMT1PRH	516h	_	596h	_	616h	_	696h	_	716h	PIE0	796h	PMD0
417h	_	497h	SMT1PRU	517h	_	597h	_	617h	_	697h	_	717h	PIE1	797h	PMD1
418h	_	498h	SMT1CON0	518h		598h	_	618h	_	698h		718h	PIE2	798h	PMD2
419h	_	499h	SMT1CON1	519h	_	599h	_	619h	_	699h	_	719h	PIE3	799h	PMD3
41Ah	—	49Ah	SMT1STAT	51Ah		59Ah	—	61Ah	_	69Ah		71Ah	PIE4	79Ah	PMD4
41Bh	—	49Bh	SMT1CLK	51Bh	_	59Bh	—	61Bh	—	69Bh	_	71Bh	PIE5	79Bh	PMD5
41Ch	—	49Ch	SMT1SIG	51Ch	_	59Ch	TMR0L	61Ch	_	69Ch	_	71Ch	PIE6	79Ch	—
41Dh	_	49Dh	SMT1WIN	51Dh		59Dh	TMR0H	61Dh	_	69Dh		71Dh	PIE7	79Dh	_
41Eh	—	49Eh	—	51Eh		59Eh	T0CON0	61Eh	—	69Eh		71Eh	PIE8	79Eh	—
41Fh	—	49Fh	—	51Fh	_	59Fh	T0CON1	61Fh	—	69Fh	_	71Fh	_	79Fh	—
420h		4A0h		520h		5A0h		620h	General Purpose	6A0h		720h		7A0h	
	General Purpose		General Purpose		General Purpose		General Purpose	64Fh	Register 48 Bytes		General Purpose Register 80		General Purpose Register 80		General Purpose Register 80
	Register 80 Bytes	650h	General Purpose Register 32		Bytes ⁽²⁾		Bytes ⁽²⁾		Bytes ⁽²⁾						
46Fh		4EFh		56Fh		5EFh		66Fh	Bytes ⁽²⁾	6EFh		76Fh		7EFh	
470h	Common RAM	4F0h	Common RAM	570h	Common RAM	5F0h	Common RAM	670h	Common RAM	6F0h	Common RAM	770h	Common RAM	7F0h	Common RAM
	Accesses		Accesses		Accesses		Accesses								
47Fh	470h-47Fh	4FFh	4F0h-4FFh	57Fh	570h-57Fh	5FFh	5F0h-5FFh	67Fh	670h-67Fh	6FFh	6F0h-6FFh	77Fh	770h-77Fh	7FFh	7F0h-7FFh

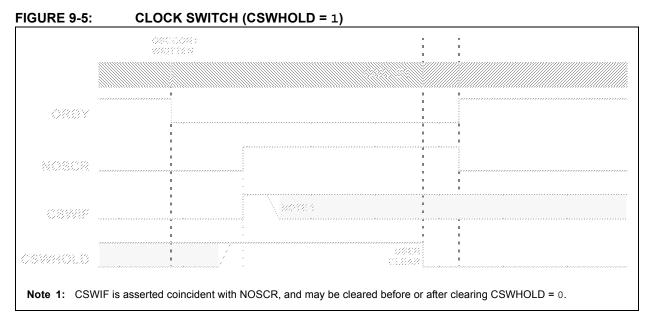
TABLE 4-7: PIC16(L)F19155/56/75/76/85/86 MEMORY MAP, BANKS 8-15


1: Note


Unimplemented locations read as '0'. Present only on PIC16(L)F19156/76/86. 2:

4.6.1 TRADITIONAL/BANKED DATA MEMORY


The traditional or banked data memory is a region from FSR address 0x000 to FSR address 0x1FFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.



SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0					
RC2IE	TX2IE	RC1IE	TX1IE	_	—	BCL1IE	SSP1IE					
bit 7		I					bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is set	t	'0' = Bit is cle	ared									
bit 7		RT Receive Inte	arrupt Epoble	h:t								
DIL 7		the USART rec	•									
		the USART red	•									
bit 6	TX2IE: USAF	RT Transmit Inte	errupt Enable	bit								
		the USART tra										
		the USART tra										
bit 5		RT Receive Inte	•									
		the USART rec the USART rec										
bit 4		RT Transmit Inte										
		the USART tra	•									
	0 = Disables	the USART tra	ansmit interrup	ot								
bit 3-2	Unimplemen	ted: Read as '	0'									
bit 1	BCL1IE: MSS	SP1 Bus Collis	ion Interrupt E	Enable bit								
		us collision inte										
h # 0		us collision inte	·									
bit 0		chronous Seria the MSSP inte	•	1) Interrupt En	adie dit							
		the MSSP inte	•									
			I									
	t PEIE of the IN t to enable ar											
50			on apr									

REGISTER 10-5: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

controlled by PIE1-PIE8.

U-0	U-0	R/W/HS-0/0	R-0	U-0	U-0	U-0	R/W/HS-0/0					
		TMR0IF	IOCIF	_	_	_	INTF ⁽¹⁾					
bit 7							bit 0					
Legend:												
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'						
u = Bit is u	nchanged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is :	set	'0' = Bit is clea	ared	HS= Hardwa	re Set							
bit 7-6	Unimplemer	nted: Read as 'o)'									
bit 5		er0 Overflow In										
bit 4	IOCIF: Interr	upt-on-Change	Interrupt Flag	bit (read-only)	(2)							
		more of the IOC d by the IOC mo		gister bits are o	currently set, ind	icating an ena	bled edge was					
		f the IOCAF-IOC		oits are current	ly set							
bit 3-1	Unimplemer	nted: Read as 'o)'									
bit 0	INTF: INT EX	ternal Interrupt	Flag bit ⁽¹⁾									
		Γexternal interru Γexternal interru	•	•	ed in software)							
2:	The External Inter The IOCIF bit is the application firmwa	ne logical OR of	all the IOCAF	-IOCEF flags.	Therefore, to cl		flag,					

REGISTER 10-11:	PIR0: PERIPHERAL INTERRUPT STATUS REGISTER 0
-----------------	--

Note:	Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of									
	its corresponding enable bit or the Global									
	Enable bit, GIE, of the INTCON register.									
	User software should ensure the									
	appropriate interrupt flag bits are clear									
	prior to enabling an interrupt.									

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	_	_	—	—	_	INTEDG	164
PIE0	_	—	TMR0IE	IOCIE	—	—	_	INTE	165
PIE1	OSFIE	CSWIE	—	-	—	—	ADTIE	ADIE	166
PIE2	-	ZCDIE	_		—	—	C2IE	C1IE	167
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	_	_	BCL1IE	SSP1IE	168
PIE4	_	—	_	_	TMR4IE	—	TMR2IE	TMR1IE	169
PIE5	CLC4IE	CLC3IE	CLC2IE	CLC1IE	—	—	_	TMR1GIE	170
PIE6	CRIE	—	_	-	—	—	CCP2IE	CCP1IE	171
PIE7	_	—	NVMIE	_	—	—	_	CWG1IE	172
PIE8	LCDIE	RTCCIE	_	_	—	SMT1PWAIE	SMT1PRAIE	SMT1IE	173
PIR0	_	—	TMR0IF	IOCIF	—	—	—	INTF	174
PIR1	OSFIF	CSWIF	_		—	—	ADTIF	ADIF	175
PIR2	_	ZCDIF	_	_	_	_	C2IF	C1IF	176
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF	177
PIR4	_	_	_	_	TMR4IF	_	TMR2IF	TMR1IF	178
PIR5	CLC4IF	CLC3IF	CLC2IF	CLC1IF	_	_	_	TMR1GIF	179
PIR6	CRIF	_	_	_	_	_	CCP2IF	CCP1IF	180
PIR7	_	_	NVMIF	_	_	_	_	CWG1IF	181
PIR8	LCDIF	RTCCIF	_	_	_	SMT1PWAIF	SMT1PRAIF	SMT1IF	182

TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0
bit 7		•		•			bit 0
Legend:							

REGISTER 14-3: LATA: PORTA DATA LATCH REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 LATA<7:6>: RA<7:6> Output Latch Value bit	s ⁽¹⁾
---	------------------

bit 5 **Unimplemented:** Read as '0'

bit 4-0 LATA<4:0>: RA<4:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 14-4: ANSELA: PORTA ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSA7	ANSA6	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **ANSA<7:6>**: Analog Select between Analog or Digital Function on pins RA<7:6>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

bit 5 Unimplemented: Read as '0'

bit 4-0 **ANSA<4:0>**: Analog Select between Analog or Digital Function on pins RA<4:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—		_		PWM4MD	PWM3MD	CCP2MD	CCP1MD
bit 7						•	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is un	changed	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	R/Value at all o	other Resets
'1' = Bit is se	et	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 3	1 = PWM4 r	Disable Pulse-W module disabled module enabled	idth Modulator	PWM4 bit			
bit 2	1 = PWM3 r	Disable Pulse-W module disabled module enabled	idth Modulator	PWM3 bit			
bit 1	CCP2MD: D 1 = CCP2 m	isable CCP2 bit nodule disabled nodule enabled					
bit 0		isable CCP1 bit					

REGISTER 16-4: PMD3: PMD CONTROL REGISTER 3

- 1 = CCP1 module disabled
- 0 = CCP1 module enabled

© 2017 Microchip Technology Inc.

REGISTER 19-11: ADACQL: ADC ACQUISITION TIME CONTROL REGISTER (LOW BYTE)

						•	,
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ACQ	<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable b	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	inged	x = Bit is unkne	own	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 ACQ<7:0>: Acquisition (charge share time) Select bits See Table 19-6.

REGISTER 19-12: ADACQH: ADC ACQUISITION TIME CONTROL REGISTER (HIGH BYTE)

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—				ACQ<12:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 ACQ<12:8>: Acquisition (charge share time) Select bits See Table 19-6.

TABLE 19-5: ACQUISITION TIME

ADACQ	Acquisition time
1 1111 1111 1111	8191 clocks of the selected ADC clock
1 1111 1111 1110	8190 clocks of the selected ADC clock
1 1111 1111 1101	8189 clocks of the selected ADC clock
0 0000 0000 0010	2 clocks of the selected ADC clock
0 0000 0000 0001	1 clock of the selected ADC clock
0 0000 0000 0000	Not included in the data conversion cycle ⁽¹⁾

Note 1: If ADPRE is not equal to '0', then ADACQ = b' 0_0000_0000 means Acquisition time is 8192 clocks of the selected ADC clock.

REGISTER 22-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	_	_	—	_	_	MC2OUT	MC10UT
bit 7							bit 0

Legend:

•		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1 MC2OUT: Mirror Copy of C2OUT bit

bit 0 MC1OUT: Mirror Copy of C1OUT bit

TABLE 22-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CMxCON0	ON	OUT	—	POL	_	—	HYS	SYNC	340
CMxCON1	_		—	—		—	INTP	INTN	341
CMOUT	_		—	—		_	MC2OUT	MC1OUT	343
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAF\	/R<1:0>	ADFV	R<1:0>	285
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1P	SS<1:0>	—	—	332
DAC1CON1	_	_	_		_	DAC1R<4:0>			332
INTCON	GIE	PEIE	—					INTEDG	164
PIE2	_	ZCDIE	_		_	_	C2IE	C1IE	167
PIR2	_	ZCDIF	_	_	_	_	C2IF	C1IF	176
CLCINxPPS	—	_	—	CLCIN0PPS<4:0>					264
T1GPPS	_	_	_		-	T1GPPS<4:0>			264

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	T0CS<2:0>		TOASYNC		T0CKP	S<3:0>	
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is unch	nanged	x = Bit is unki	nown	-n/n = Value a	t POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-5	111 = CLC1 110 = SOSC 101 = MFIN 100 = LFINT 011 = HFIN 010 = Fosc/	FOSC (500 kHz OSC FOSC 4 IPPS (Inverted)	;)	its			
bit 4	1 = The inpu	MR0 Input Asy ut to the TMR0 ut to the TMR0	counter is not :	synchronized to		5	
bit 3-0	TOCKPS<3: 1111 = 1:32 1110 = 1:163 1101 = 1:819 1100 = 1:409 1011 = 1:200 1010 = 1:100 1001 = 1:510 1000 = 1:250 0111 = 1:125 0110 = 1:40 0010 = 1:40 0011 = 1:80 0010 = 1:40 0000 = 1:11	384 92 96 48 24 2 5 8	ate Select bit				

FIGURE 26-6:	TIMER1 GATE SINGLE	PULSE AND TOGGLE COMBIN	NED MODE
TMRxGE			
TxGP <u>OL</u>			
TxGSPM			
TxGTM			
TxGG <u>O/</u> DONE	 Set by software Counting enabled o 	n	Cleared by hardware on falling edge of TxGVAL
selected gate source	rising edge of selected s		
ТхСКІ			
TxGVAL			
TMRxH:TMRxL Count	Ν	$\underbrace{\times N+1} \times N+2 \underbrace{\times N+3} \times N+4$	
TMRxGIF	- Cleared by software	Set by hardware on falling edge of TxGVAL —	Cleared by software

26.11 Peripheral Module Disable

When a peripheral module is not used or inactive, the module can be disabled by setting the Module Disable bit in the PMD registers. This will reduce power consumption to an absolute minimum. Setting the PMD bits holds the module in Reset and disconnects the module's clock source. The Module Disable bit for Timer1 (TMR1MD) are in the PMD1 register. See **Section 16.0 "Peripheral Module Disable (PMD)"** for more information.

33.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 33-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set).

The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 33-6, Figure 33-8, Figure 33-9 and

Figure 33-10, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

If SMP = 0, it is necessary to select the SCK pin as an input using SCKPPS. The input and output PPS selectors must go to the same pin.

If SMP = 1 this is not required, and only the SCK output has to be routed; the input selection is ignored.

Figure 33-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

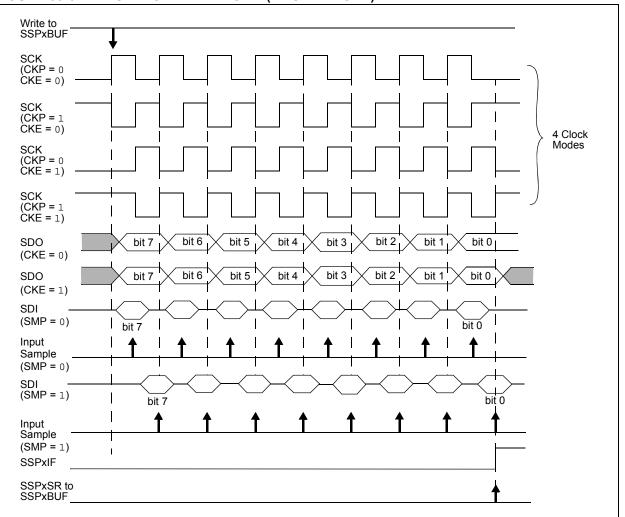


FIGURE 33-6: SPI MODE WAVEFORM (MASTER MODE)

0	Configuration Bits			Boud Data Formula		
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula		
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]		
0	0	1	8-bit/Asynchronous			
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]		
0	1	1	16-bit/Asynchronous			
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]		
1	1	x	16-bit/Synchronous			

TABLE 34-3: BAUD RATE FORMULAS

Legend: x = Don't care, n = value of SPxBRGH, SPxBRGL register pair.

TABLE 34-4: BAUD RATE FOR ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300			_			_			_	_		_
1200	—	_	—	1221	1.73	255	1200	0.00	239	1200	0.00	143
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2
115.2k	—		—	—		—	_	_	—	—		—

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	_
9600	9615	0.16	12	_	_	_	9600	0.00	5	—	_	_
10417	10417	0.00	11	10417	0.00	5	_	_	_	—	_	_
19.2k	_	_	_	_	_	_	19.20k	0.00	2	—	_	_
57.6k	—	_	_	—	_	_	57.60k	0.00	0	—	_	_
115.2k	—	—	_	—	_	_	—	_	_	—	—	—

35.8 LCD Multiplex Types

The LCD driver module can be configured into four multiplex types:

- Static (only COM0 used)
- 1/2 multiplex (COM0 and COM1 are used)
- 1/3 multiplex (COM0, COM1 and COM2 are used)1/4 multiplex (COM0, COM1, COM2 and COM3
- are used)1/5 multiplex (COM0, COM1, COM2, COM3 and COM4 are used)
- 1/6 multiplex (COM0, COM1, COM2, COM3, COM4 and COM5 are used)
- 1/7 multiplex (COM0, COM1, COM2, COM3, COM4, COM5 and COM6 are used)
- 1/8 multiplex (COM0, COM1, COM2, COM3, COM4, COM5, COM6 and COM7 are used)

The LMUX<3:0> setting (LCDCON<3:0>) decides the function of the COM pins. (For details, see Table 35-8).

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. If the pin is a COM drive, the TRIS setting of that pin is overridden.

Note: On a Power-on Reset, the LMUX<3:0> bits are '0000'.

LMUX<3:0>	COM7 Pin	COM6 Pin	COM5 Pin	COM4 Pin	COM3 Pin	COM2 Pin	COM1 Pin	COM0 Pin
1000	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COM0
0111	I/O Pin	COM6	COM5	COM4	COM3	COM2	COM1	COM0
0110	I/O Pin	I/O Pin	COM5	COM4	COM3	COM2	COM1	COM0
0101	I/O Pin	I/O Pin	I/O Pin	COM4	COM3	COM2	COM1	COM0
0100	I/O Pin	I/O Pin	I/O Pin	I/O Pin	COM3	COM2	COM1	COM0
0011	I/O Pin	COM2	COM1	COM0				
0010	I/O Pin	COM1	COM0					
0001	I/O Pin	COM0						
0000	I/O Pin							

TABLE 35-8: COM<7:0> PIN FUNCTIONS

35.9 Segment Enables

The LCDSENx registers are used to select the pin function for each segment pin. The selection allows the designated SEG pins to be configured as LCD segment driver pins. To configure the pin as a segment pin, the corresponding bits in the LCDSENx registers must be set to '1'.

If the pin is a digital I/O, the corresponding TRIS bit controls the data direction. Any bit set in the LCDSENx registers overrides any bit settings in the corresponding TRIS register.

Note: On a Power-on Reset, these pins are configured as digital I/O.

35.10 Pixel Control

The LCDDATAx registers contain bits that define the state of each pixel. Each bit defines one unique pixel. Table 35-2 shows the correlation of each bit in the LCDDATAx registers to the respective common and segment signals.

35.11 LCD Frame Frequency

The rate at which the COM and SEG outputs change is called the LCD frame frequency.

Clock Source/ $(1 \times 5 \times (LP < 3:0 > + 1))$

Clock Source/(1 x 6 x (LP<3:0> + 1))

Clock Source/ $(1 \times 7 \times (LP < 3:0 > + 1))$

Clock Source/(1 x 8 x (LP<3:0> + 1))

Multiplex	Frame Frequency =
Static ('0001')	Clock Source/(4 x 1 x (LP<3:0> + 1))
1/2 ('0010')	Clock Source/(2 x 2 x (LP<3:0> + 1))
1/3 ('0011')	Clock Source/(1 x 3 x (LP<3:0> + 1))
1/4 ('0100')	Clock Source/(1 x 4 x (LP<3:0> + 1))

TABLE 35-9:FRAME FREQUENCY FORMULAS

1/8 ('1000')Note:The clock source is SOSC/32 or LFINTOSC/32.

1/5 ('0101')

1/6 ('0110')

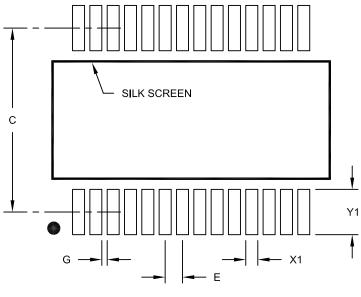
1/7 ('0111')

35.12 LCD Waveform Generation

LCD waveform generation is based on the theory that the net AC voltage across the dark pixel should be maximized and the net AC voltage across the clear pixel should be minimized. The net DC voltage across any pixel should be zero.

The COM signal represents the time slice for each common, while the SEG contains the pixel data.

The pixel signal (COM-SEG) will have no DC component and can take only one of the two rms values. The higher rms value will create a dark pixel and a lower rms value will create a clear pixel.


As the number of commons increases, the delta between the two rms values decreases. The delta represents the maximum contrast that the display can have.

The LCDs can be driven by two types of waveforms: Type-A and Type-B. In a Type-A waveform, the phase changes within each common type, whereas a Type-B waveform's phase changes on each frame boundary. Thus, Type-A waveforms maintain 0 VDC over a single frame, whereas Type-B waveforms take two frames.

Figure 35-8 through Figure 35-19 provide waveforms for static, half-multiplex, one-third multiplex and quarter multiplex drives for Type-A and Type-B waveforms.

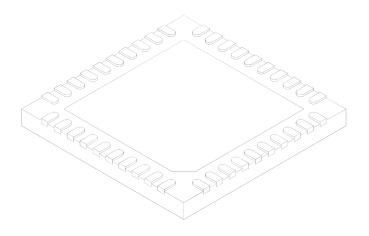
28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Contact Pitch E			
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Dimension Limits						
Number of Pins	N	40					
Pitch	е		0.40 BSC				
Overall Height	Α	0.45	0.50	0.55			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3		0.127 REF				
Overall Width	E		5.00 BSC				
Exposed Pad Width	E2	3.60	3.70	3.80			
Overall Length	D	5.00 BSC					
Exposed Pad Length	D2	3.60	3.70	3.80			
Contact Width	b	0.15	0.20	0.25			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2