

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 39x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf19186t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

							13100/00/1	0110100100		~)			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Banks 25-2	anks 25-28												
	CPU CORE REGISTERS; see Table 4-3 for specifics												
C8Ch — C9Fh	_		Unimplemented										
D0Ch — D1Fh	—				Unimplen	nented							
D8Ch — D9Fh	_		Unimplemented										
E0Ch — E1Fh	_				Unimplen	nented							

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Note 1: Unimplemented data memory locations, read as '0'.

TABLE 4-12: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-63 PIC16(L)F19155/56/75/76/85/86 (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	V <u>alue o</u> n: MCLR		
Banks 30-5	Banks 30-57												
CPU CORE REGISTERS; see Table 4-3 for specifics													
F0Ch — 1C9Fh	F0ChUnimplemented												
Legend:	x = unknown, u	= unchanged, g	= depends on cor	ndition, - = unimple	emented, read as '0',	r = reserved. Sh	aded locations un	implemented, rea	ad as '0'.				

Note 1: Unimplemented data memory locations, read as '0'.

	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
	WDTCCS2	WDTCCS1	WDTCCS0	WDTCWS2	WDTCWS1	WDTCWS0
	bit 13					bit 8
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
WDTE1	WDTE0	WDTCPS4	WDTCPS3	WDTCPS2	WDTCPS1	WDTCPS0
						bit 0

Legend:

bit 7

U-1

R = Readable bit	P = Programmable bit	x = Bit is unknown	U = Unimplemented bit, read as '1'
'0' = Bit is cleared	'1' = Bit is set	W = Writable bit	n = Value when blank or after Bulk Erase

bit 13-11 WDTCCS<2:0>: WDT Input Clock Selector bits

000 = WDT reference clock is the 31.25 kHz HFINTOSC (MFINTOSC) output 001 = WDT reference clock is the 31.0 kHz LFINTOSC (default value) 010 = Reserved

- .
- 110 = Reserved
- 111 = Software Control

bit 10-8 WDTCWS<2:0>: WDT Window Select bits

		WDTWS at POR		Coffman	Kouod	
WDTCWS	Value	Window delay Percent of time	Window opening Percent of time	control of WDTWS?	Reyed access required?	
000	000	87.5	12.5			
001	001	75	25		Yes	
010	010	62.5	37.5			
011	011	50	50	No		
100	100	37.5	62.5			
101	101	25	75			
110	111	n/a	100			
111	111	n/a	100	Yes	No	

bit 7 Unimplemented: Read as '1'

bit 6-5 **WDTE<1:0>**: WDT Operating mode:

00 =WDT disabled, SWDTEN is ignored

- 01 =WDT enabled/disabled by SWDTEN bit in WDTCON0
- 10 =WDT enabled while Sleep = 0, suspended when Sleep = 1; SWDTEN ignored
- 11 =WDT enabled regardless of Sleep; SWDTEN is ignored

REGISTER	10-14: PIR3:	PERIPHERA	L INTERRU	PT REQUES	T REGISTER	3	
R-0	R-0	R-0	R-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
RC2IF	TX2IF	RC1IF	TX1IF	_	_	BCL1IF	SSP1IF
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	HS = Hardwa	are clearable		
bit 7	RC2IF: EUSA 1 = The EUS 0 = The EUS	ART2 Receive ART2 receive ART2 receive	Interrupt Flag buffer is not e buffer is empt	(read-only) bit mpty (contains y	(1) at least one by	rte)	
bit 6	1 = The EUSA 1 = The EUS 0 = The EUS TXxREG	ART2 Transmit SART2 transmit SART2 transm	Interrupt Flag buffer contain it buffer is cu	(read-only) bit ns at least one urrently full. Th	unoccupied spanne application f	ace firmware shoul	d not write to
bit 5	RC1IF: EUSA 1 = The EUS 0 = The EUS	ART1 Receive SART1 receive SART1 receive	Interrupt Flag buffer is not e buffer is empt	(read-only) bit mpty (contains y	(1) at least one by	rte)	
bit 4	TX1IF: EUSA	RT1 Transmit	Interrupt Flag	(read-only) bit	(2)		
	1 = The EUS 0 = The EUS TXxREG	SART1 transm SART1 transm Gagain, until m	it buffer contai hit buffer is cu ore room beco	ins at least one urrently full. T omes available	e unoccupied sp he application t in the transmit	ace firmware shoul buffer.	d not write to
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1	BCL1IF: MSS	SP1 Bus Collis	ion Interrupt F	lag bit			
	1 = A bus co 0 = No bus c	llision was dete collision was de	ected (must be tected	e cleared in so	ftware)		
bit 0	SSP1IF: Synd 1 = The Tran 0 = Waiting fo	chronous Seria Ismission/Rece or the Transmi	I Port (MSSP ption/Bus Co ssion/Reception	1) Interrupt Fla ndition is comp on/Bus Conditi	g bit blete (must be cl on in progress	leared in softwa	are)
Note 1: T ti	The RCxIF flag is a imes to remove al	a read-only bit. Il bytes from th	To clear the F	RCxIF flag, the er.	firmware must	read from RCx	REG enough
2 : T tł T	The TXxIF flag is a he firmware must TXxIF flag does no	a read-only bit, write enough o ot indicate trans	indicating if th data to TXxRE smit completio	nere is room in G to complete on (use TRMT	the transmit bu ly fill all availabl for this purpose	ffer. To clear th le bytes in the t instead).	e TXxIF flag, ouffer. The
Note: I	nterrupt flag bits a	re set when an	interrupt				

NOLC.	interrupt hay bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the Global
	Enable bit, GIE, of the INTCON register.
	User software should ensure the
	appropriate interrupt flag bits are clear
	prior to enabling an interrupt.

© 2017 Microchip Technology Inc.

R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
LCDIF	RTCCIF	_	_	_	SMT1PWAIF	SMT1PRAIF	SMT1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set		
bit 7	LCDIF: LCD I	nterrupt Flag b	it				
	1 = A LCDIF i	interrupt condit	ion has occuri	red (must be c	leared in softwa	ire)	
hit 6		Interrupt Eleg	hit	1			
DILO	1 = A RTCCIF	= interrupt cond	lition has occu	urred (must be	cleared in softv	vare)	
	0 = No RTCC	IF interrupt eve	ent has occurr	ed			
bit 5-3	Unimplemen	ted: Read as '	o'				
bit 2	SMT1PWAIF:	SMT1 Pulse-V	Vidth Acquisit	ion Interrupt F	lag bit		
	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 1	SMT1PRAIF:	SMT1 Period	Acquisition Int	errupt Flag bit	I		
\perp = Interrupt is pending							
bit 0 SMT1E: SMT1 Ovorflow Interrupt Eleg bit							
bit 0	1 = An SMT c	verflow event l	nas occurred ((must be clear	ed in software)		
	0 = No overflo	ow event detec	ted				

REGISTER 10-19: PIR8: PERIPHERAL INTERRUPT REQUEST REGISTER 8

13.4.9 WRERR BIT

The WRERR bit can be used to determine if a write error occurred.

WRERR will be set if one of the following conditions occurs:

- If WR is set while the NVMADRH:NMVADRL points to a write-protected address
- A Reset occurs while a self-write operation was in progress
- An unlock sequence was interrupted

The WRERR bit is normally set by hardware, but can be set by the user for test purposes. Once set, WRERR must be cleared in software.

Free	LWLO	Actions for PFM when WR = 1	Comments
1	x	Erase the 32-word row of NVMADRH:NVMADRL location. See Section 13.4.4 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set All 32 words are erased NVMDATH:NVMDATL is ignored
0	1	Copy NVMDATH:NVMDATL to the write latch corresponding to NVMADR LSBs. See Section 13.4.4 "NVMREG Erase of PFM"	Write protection is ignoredNo memory access occurs
0	0	Write the write-latch data to PFM row. See Sec- tion 13.4.4 "NVMREG Erase of PFM"	 If WP is enabled, WR is cleared and WRERR is set Write latches are reset to 3FFh NVMDATH:NVMDATL is ignored

TABLE 13-4: ACTIONS FOR PFM WHEN WR = 1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	229
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	229
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	230
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	230
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	231
ODCONB	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	231
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	232
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	232
HIDRVB	_		_	—	_	_	HIDB1	—	232

TABLE 14-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVR<1:0>		285
ADCON0	ON	CONT	_	CS	-	FM	-	GO	305
ADCON1	PPOL	IPEN	GPOL	-	-	-	-	DSEN	306
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E2	DAC1PSS<1:0>				332

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: -= unimplemented locations read as '0'. Shaded cells are not used with the Fixed Voltage Reference.

19.2.5 AUTO-CONVERSION TRIGGER

The Auto-conversion Trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO bit is set by hardware.

The Auto-conversion Trigger source is selected by the ADACT register.

Using the Auto-conversion Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Register 19-33 for auto-conversion sources.

19.2.6 ADC CONVERSION PROCEDURE (BASIC MODE)

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRISx register)
 - Configure pin as analog (Refer to the ANSELx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Select voltage reference
 - Select ADC input channel
 - Precharge and acquisition
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable global interrupt (GIE bit)⁽¹⁾
- If ADACQ = 0, software must wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - · Polling the GO bit
 - Polling the ADIF bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

> 2: Refer to Section 19.3 "ADC Acquisition Requirements".

23.9 Register Definitions: ZCD Control

REGISTER 23-1: ZCDCON: ZERO-CROSS DETECTION CONTROL REGISTER

R/W-q/q	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
SEN	—	OUT	POL	—	—	INTP	INTN		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is cle	ared	q = value de	pends on Config	guration bits			
bit 7 SEN : Zero-Cross Detection Enable bit 1 = Zero-cross detect is enabled. ZCD pin is forced to output to source and sink current. 0 = Zero-cross detect is disabled. ZCD pin operates according to PPS and TRIS controls.									
bit 6	Unimplemen	ted: Read as '	0'						
bit 5	OUT: Zero-Cr	oss Detection	Logic Level bi	t					
	POL bit = 1: 1 = ZCD pin is sourcing current 0 = ZCD pin is sinking current POL bit = 0: 1 = ZCD pin is sinking current 0 = ZCD pin is sourcing current								
bit 4	POL: Zero-Cr 1 = ZCD logic 0 = ZCD logic	oss Detection c output is inve c output is not	Logic Output erted inverted	Polarity bit					
bit 3-2	Unimplemen	ted: Read as '	0'						
bit 1	INTP: Zero-C	ross Positive E	dge Interrupt	Enable bit					
	1 = ZCDIF bi 0 = ZCDIF bi	t is set on low- t is unaffected	to-high ZCDx <u></u> by low-to-high	_output transit n ZCDx_outpu	ion t transition				
bit 0	INTN: Zero-C	ross Negative	Edge Interrup	t Enable bit					
	1 = ZCDIF bi 0 = ZCDIF bi	t is set on high t is unaffected	-to-low ZCDx <u></u> by high-to-low	_output transit / ZCDx_outpu	ion t transition				

TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
PIE3	RC2IE	TX2IE	RC1IE	TX1IE	—	—	BCL1IE	SSP1IE	168
PIR3	RC2IF	TX2IF	RC1IF	TX1IF	—	—	BCL1IF	SSP1IF	177
ZCDxCON	SEN	_	OUT	POL	_	_	INTP	INTN	349

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 23-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8	_	-	DEBUG	STVREN	PPS1WAY	ZCDDIS	BORV	_	121
	7:0	BOREN <1:0>		LPBOREN	_	_		PWRTE	MCLRE	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

When ALRMRPT = 00 and the CHIME bit = 0 (ALRMCON), the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading the ALRMRPT register with FFh with the CHIME bit = 1.

After each alarm is issued, the ALRMRPT register is decremented by one. Once the register has reached '00', the alarm will be issued one last time. After the alarm is issued a last time, the ALRMEN bit is cleared automatically and the alarm turned off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the ALRMRPT register reaches '00', it will roll over to FFh and continue counting when CHIME = 1.

24.2.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated and the RTCCIF bit is set. Additionally, an alarm pulse output is provided that operates at half the frequency of the alarm.

The alarm pulse output is completely synchronous with the RTCC clock and can be used as a trigger clock to other peripherals.

24.3 VBAT Operation

This device is equipped with a VBAT pin that allows the user to connect an external battery or Supercap. In the event of the VDD supply failing or dropping below the supply voltage level on the VBAT pin, the power source connected to the VBAT pin will keep the SOSC and RTCC blocks running. VBAT is enabled via the VBATEN bit in Configuration Word 1.

24.4 Sleep Mode

The timer and alarm continue to operate while in Sleep mode. The operation of the alarm is not affected by Sleep, as an alarm event can always wake-up the CPU. Idle mode does not affect the operation of the timer or alarm.

24.5 Resets

The RTCCON and RTCCAL registers are only reset on a POR or BOR event. Only a POR or BOR event will turn the RTCC module off if VBAT is invalid.

If the VBAT module is enabled and active during a POR or BOR, the RTCCON and RTCCAL registers will not reset. The RTCC module will continue with normal operation during the reset.

The timer prescaler values can only be reset by writing to the SECONDS register. No device reset will affect the prescaler values.

27.5.5 SOFTWARE START ONE-SHOT MODE

In One-Shot mode the timer resets and the ON bit is cleared when the timer value matches the PRx period value. The ON bit must be set by software to start another timer cycle. Setting MODE<4:0> = 01000 selects One-Shot mode which is illustrated in Figure 27-8. In the example, ON is controlled by BSF and BCF instructions. In the first case, a BSF instruction sets ON and the counter runs to completion and clears ON. In the second case, a BSF instruction starts the cycle, BCF/BSF instructions turn the counter off and on during the cycle, and then it runs to completion.

When One-Shot mode is used in conjunction with the CCP PWM operation the PWM pulse drive starts concurrent with setting the ON bit. Clearing the ON bit while the PWM drive is active will extend the PWM drive. The PWM drive will terminate when the timer value matches the CCPRx pulse width value. The PWM drive will remain off until software sets the ON bit to start another cycle. If software clears the ON bit after the CCPRx match but before the PRx match then the PWM drive will be extended by the length of time the ON bit remains cleared. Another timing cycle can only be initiated by setting the ON bit after it has been cleared by a PRx period count match.

FIGURE 27-8: SOFTWARE START ONE-SHOT MODE TIMING DIAGRAM (MODE = 01000)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
PSYNC ^{(1,}	2) CKPOL ⁽³⁾	CKSYNC ^(4, 5)		Ν	/IODE<4:0> ^{(6, 7}	7)				
bit 7							bit 0			
Legend:										
R = Readal	ble bit	W = Writable bi	t	U = Unimplen	nented bit, read	d as '0'				
u = Bit is ur	nchanged	x = Bit is unkno	wn	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is s	set	'0' = Bit is clear	ed							
bit 7	bit 7 PSYNC: Timer2/4 Prescaler Synchronization Enable bit ^(1, 2) 1 = TMRx Prescaler Output is synchronized to Fosc/4 0 = TMRx Prescaler Output is not synchronized to Fosc/4									
bit 6	CKPOL: Tim 1 = Falling e 0 = Rising e	er2/4 Clock Pola dge of input clock dge of input clock	ity Selection c clocks timer c clocks timer	bit ⁽³⁾ /prescaler /prescaler						
bit 5	CKSYNC: Til 1 = ON regis 0 = ON regis	mer2/4 Clock Syr ster bit is synchro ster bit is not sync	nchronization nized to TMR chronized to T	Enable bit ^(4, 5) 2_clk input ⁻ MR2_clk input						
bit 4-0	MODE<4:0> See Table 27	: Timer2/4 Contro -1.	I Mode Selec	tion bits ^(6, 7)						
Note 1:	Setting this bit er	nsures that readir	ng TMRx will	return a valid va	alue.					
2:	When this bit is '	1', Timer2/4 cann	ot operate in	Sleep mode.						
3:	CKPOL should n	ot be changed w	nile ON = 1.							
4:	Setting this bit er	nsures glitch-free	operation wh	en the ON is er	nabled or disab	oled.				
5:	When this bit is s	et then the timer o	peration will	be delayed by t	wo TMRx input	clocks after the	e ON bit is set.			
6:	Unless otherwise ing the value of 1	e indicated, all mo ſMRx).	des start upoi	n ON = 1 and st	op upon ON =	0 (stops occur	without affect-			

REGISTER 27-3: TxHLT: TIMER2/4 HARDWARE LIMIT CONTROL REGISTER

7: When TMRx = PRx, the next clock clears TMRx, regardless of the operating mode.

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT}, \\ 0 \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. See Section 11.2 "Sleep Mode" for more information.

SUBWF	Subtract W	/ from f						
Syntax:	[label] SL	JBWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$							
Operation:	(f) - (W) \rightarrow (d	(f) - (W) \rightarrow (destination)						
Status Affected:	C, DC, Z	C, DC, Z						
Description:	Subtract (2's register from result is store register. If 'd' back in regis	complement method) W register 'f'. If 'd' is '0', the ed in the W is '1', the result is stored ter 'f.						
	C = 0	W > f						
	C = 1	$W \leq f$						
	DC = 0	W<3:0> > f<3:0>						

 $W<3:0> \le f<3:0>$

SUBLW Subtract W from literal							
Syntax:	[label] SL	JBLW k					
Operands:	$0 \leq k \leq 255$	$0 \le k \le 255$					
Operation:	k - (W) → (W	$k - (W) \to (W)$					
Status Affected:	C, DC, Z						
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the v register.						
	C = 0	W > k					

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	W<3:0> ≤ k<3:0>

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

DC = 1

SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
1E5Eh			Unimplemented								
1E5Fh	_		Unimplemented								
1E60h	_		Unimplemented								
1E61h	_				Unimpl	emented					
1E62h	_				Unimpl	emented					
1E63h	_				Unimpl	emented					
1E64h	_				Unimpl	emented					
1E65h	_				Unimpl	emented					
1E66h	_				Unimpl	emented					
1E67h	_		Unimplemented								
1E68h	_				Unimpl	emented					
1E69h	_				Unimpl	emented					
1E6Ah	_				Unimpl	emented					
1E6Bh	_				Unimpl	emented					
1E6Ch	_				Unimpl	emented					
1E6Dh	_				Unimpl	emented					
1E6Eh	—				Unimpl	emented					
1E6Fh	_				Unimpl	emented					
1E8Ch					Unimpl	emented					
1E8Dh	_				Unimpl	emented					
1E8Eh	—				Unimpl	emented					
1E8Fh	PPSLOCK	_	_	_		_	_	_	PPSLOCKED	265	
1E90h	INTPPS	—	_	_			INTPPS<4:0>			264	
1E91h	TOCKIPPS	_	_	_			T0CKIPPS<4:0	>		264	
1E92h	T1CKIPPS	_	_	_			T1CKIPPS<4:0	>		264	
1E93h	T1GPPS	_	_	_			T1GPPS<4:0>			264	
1E94h	_				Unimpl	emented					

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

Unimplemented data memory locations, read as '0'.

Note 1:

© 2017 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
1EBEh	CLCIN3PPS	CLCIN3PPS<4:0>								264		
1EBFh	—		Unimplemented									
1EC0h	—		Unimplemented									
1EC1h	_		Unimplemented									
1EC2h	_				Unimple	emented						
1EC3h	ADCACTPPS	_	ADCACTPPS<5:0>							264		
1EC4h	_				Unimplemented							
1EC5h	SSP1CLKPPS	_	_			SSP1CLKPPS<4:0>						
1EC6h	SSP1DATPPS	_	_	_	SSP1DATPPS<4:0>							
1EC7h	SSP1SSPPS	_	_	_	SSP1SSPPS<4:0>							
1EC8h	_		L		Unimplemented							
1EC9h	_				Unimplemented							
1ECAh	_				Unimpl	emented						
1ECBh	RX1PPS	_	_	_			RX1PPS<4·0>			264		
1ECCh	TX1PPS	_		_						264		
1ECDh	RX2PPS											
1ECEh	TX2PPS				TY2DDC-4-0>							
1ECFh	-	Unimplemented							204			
1ED0h		Unimplemented										
1ED1h		Unimplemented										
1ED2h	_	Unimplemented										
1ED3h	—	Unimplemented										
1ED4h	_	Unimplemented										
1ED5h		Unimplemented										
1ED6h	—		Unimplemented									
1ED7h	_		Unimplemented									
1ED8h	_	Unimplemented										
1ED9h	—	Unimplemented										
1EDAh	—	Unimplemented										
1EDBh	—	Unimplemented										
1EDCh	_	Unimplemented										
1EDDh	_	Unimplemented										
1EDEh	—	Unimplemented										
1EDFh	—	Unimplemented										
1EE0h	_	Unimplemented										
1EE1h		Unimplemented										
1EE20	—				Unimpl							
1EE3II					Unimpl					-		
1EE5h					Unimple	emented						
1EE6h	_				Unimpl	emented						
1EE7h	_											
1EE8h	_	Unimplemented										
1EE9h	_	Unimplemented										
1EEAh					Unimpl	emented						
L												

TABLE 38-1: REGISTER FILE SUMMARY FOR PIC16(L)F19155/56/75/76/85/86 DEVICES

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Note 1: Unimplemented data memory locations, read as '0'.

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N	48				
Pitch	е		0.40 BSC			
Overall Height	A	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.127 REF				
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2	4.45	4.60	4.75		
Overall Length	D	6.00 BSC				
Exposed Pad Length	D2	4.45	4.60	4.75		
Contact Width	b	0.15	0.20	0.25		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	ĸ	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2