

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	60
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 4.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	· ·
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/w79l659a25fl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. General Description

The W79E659 is a fast, 8051/52-compatible microcontroller with a redesigned processor core that eliminates wasted clock and memory cycles. Typically, the W79E659 executes instructions 1.5 to 3 times faster than that of the traditional 8051/52, depending on the type of instruction, and the overall performance is about 2.5 times better at the same crystal speed. As a result, with the fully-static CMOS design, the W79E659 can accomplish the same throughput with a lower clock speed, reducing power consumption.

The W79E659 provides 256 bytes of on-chip RAM; 1-KB of auxiliary RAM; seven 8-bit, bi-directional and bit-addressable I/O ports; an additional 4-bit port P4; three 16-bit timer/counters; an UART serial port, 2 channels of I2C with master/slave capability and 8 channels of 10-bit ADC. These peripherals are all supported by ten interrupt sources with 2 levels of priority.

The W79E659 contains a 32-KB Flash EPROM whose contents may be updated in-system by a loader program stored in an auxiliary, 4-KB Flash EPROM. Once the contents are confirmed, it can be protected for security.

Note: If the applied V_{DD} is not stable, especially with long transition time of power on/off, it's recommended to apply an external RESET IC to the RST pin for improving the stability of system.

2. Features

- Fully-static-design 8-bit Turbo 51 CMOS microcontroller up to 40MHz
- 32-KB of in-system-programmable Flash EPROM (AP Flash EPROM with ISP)
- 4-KB of Auxiliary Flash EPROM for the loader program (LD Flash EPROM)
- 1-KB auxiliary RAM, software-selectable, accessed by MOVX instruction
- 256 bytes of scratch-pad RAM
- Seven 8-bit bi-directional ports
- All pins with Schmitt trigger inputs
- One 4-bit multipurpose I/O port4 with Chips select(CS) and boot function
- Three 16-bit timers
- 6 channels of 8-bit PWM
- One enhanced full-duplex UART with framing-error detection and automatic address recognition
- 2-channels of I2C with master/slave capability
- 10-bit ADC with 8-channel inputs
- Software programmable access cycle to external RAM/peripherals
- 10 interrupt sources with two levels of priority
- Software reset function
- Optional H/L state of ALE/PSEN during power down mode
- Built-in power management
- Code protection
- Development tool
 - JTAG ICE(In Circuit Emulator) tool
- Packages:
 - Lead Free(RoHS) QFP 100: W79E659A40FL, W79L659A25FL

4. PIN DESCRIPTION

	SYMBOL	TYPE ¹	DESCRIPTIONS						
	ĒĀ	1	EXTERNAL ACCESS ENABLE: This pin forces the processor to execute the external ROM. The ROM address and data are not presented on the bus if the \overline{EA} pin is high.						
	PSEN	он	PROGRAM STORE ENABLE: PSEN enables the external ROM data in the Port 0 address/data bus. When internal ROM access is performed, no PSEN strobe signal outputs originate from this pin.						
	ALE	он	ADDRESS LATCH ENABLE: ALE enables the address latch that separates the address from the data on Port 0.						
	RST	IL	RESET: Set this pin high for two machine cycles while the oscillator is running to reset the device.						
	XTAL1	Ι	CRYSTAL 1: Crystal oscillator input or external clock input.						
	XTAL2	0	CRYSTAL 2: Crystal oscillator output.						
	V _{SS}	I	GROUND: ground potential.						
	V _{DD}	Ι	POWER SUPPLY: Supply voltage for operation.						
	AV _{SS}	I	Analog GROUND: for ADC						
	AV_{DD}	I	Analog Power Supply: for ADC						
	P0.0-P0.7	I/O D S H	PORT 0: 8-bit, bi-directional I/O port with internal pull-up resisters. This port also provides a multiplexed, low-order address / data bus during accesses to external memory.						
	P1.0-P1.7	I/O S H	 PORT 1: 8-bit, bi-directional I/O port with internal pull-up resistors. This port also provides alternate functions as below. P1.0 ~ P1.5 provide PWM0 ~ PWM5. P1.4 ~ P1.7 provide ADC0 ~ ADC3. P1.0 alternately provides Timer2 external count input.(T2) P1.1 alternately provides Timer2 Reload/Capture/Direction control.(T2Ex) 						
and	P2.0-P2.7	I/O S H	PORT 2: 8-bit, bi-directional I/O port with internal pull-ups. This port also provides the upper address bits when accessing external memory. P2.4 to P2.7 can be software configured as I2C serial ports						
Q		8	PORT 3: 8-bit, bi-directional I/O port with internal pull-up resistors. All bits have alternate functions, which are described below: RXD (P3.0): Serial Port 0 input TXD (P3.1): Serial Port 0 output						
	P3 0-P3 7	I/O	INT0 (P3.2): External Interrupt 0						
		SH	INT1(P3.3): External Interrupt 1 T0 (P3.4):Timer 0 External Input T1 (P3.5):Timer 1 External Input						
		Nº C	WR (P3.6): External Data Memory Write Strobe						
			TO (F3.7). EXternal Data Memory Read Strobe						

PWM Control Register2 Bit: 7 3 2 0 6 5 4 1 PWM40E _ _ _ PWM50E ENPWM5 ENPWM4 _ Mnemonic: PWMCON2 Address: CEh BIT NAME **FUNCTION** 7~4 Reserved. Output enable for PWM5 0: Disable PWM5 Output. 3 PWM5OE 1: Enable PWM5 Output. Output enable for PWM4 PWM4OE 2 0: Disable PWM4 Output. 1: Enable PWM4 Output. Enable PWM5 ENPWM5 1 0: Disable PWM5. 1: Enable PWM5. Enable PWM4 ENPWM4 0 0: Disable PWM4. 1: Enable PWM4. PWM4 Register Bit: 7 6 5 4 3 2 1 0 Mnemonic: PWM4 Address: CFH **PROGRAM STATUS WORD** Bit: 7 6 5 4 3 2 0 1 F0 F1 Р CY AC RS1 RS0 OV Mnemonic: PSW Address: D0h BIT NAME **FUNCTION** Carry flag: Set when an arithmetic operation results in a carry being generated from 7 CY the ALU. It is also used as the accumulator for bit operations. Auxiliary carry: Set when the previous operation resulted in a carry from the high-6 AC order nibble. 5 F0 User flag 0: A general-purpose flag that can be set or cleared by the user. RS1 Register Bank select bits. See table below. 4 3 RS0 Register Bank select bits. See table below. Overflow flag: Set when a carry was generated from the seventh bit but not from the 2 OV eighth bit, or vice versa, as a result of the previous operation. 1 F1 User flag 1: A general-purpose flag that can be set or cleared by the user. Parity flag: Set and cleared by the hardware to indicate an odd or even number of 1's Ρ 0 in the accumulator.

W79E659A/W79L659A

nuvoTon

	C7H G D8H							
CROON REG	MOV	TA, #AAH						
	MOV	TA, #55H						
	SETB	WDCON.0			; Reset	Watch	ndog Timer	
	ORL	CKCON, #	11000000B	X	; Select	26 bit	s Watchdog	g Timer
	MOV	TA, #AAH						
	MOV	TA, #55H		_	- 57	2	A	
The other bits in M/F		WDCON, #	¢00000010E	3	; Enable	watc	hdog	
PWM Pre-scale I	Register	unrestricted	write acces	55.				
Bit:	7	6	5	4	3	2	2	0
	-	-	-	-	-	-	-40	
	Mnemonic	: PWMP				Addre	ess: D9h	200
	2\//\ froque		Fo	sc				
F VVIVIE. / O AUJUST	www.ineque	ncy. rpwin=	2×(1+PW	MP) × 255				
PWM0								
Bit:	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	-	-
	Mnemonic	: PWM0	· · · · · · · · · · · · · · · · · · ·			Addre	ess: DAh	
			n high/low rat		n_ PV	/Mn		
	wino duty		in high/low rat		255 - (PWMn)	
PWM1								
	7	6	5	4	3	2	1	0
Bit:	-	-	-	-	-	-	-	-
Bit:			1					
Bit:	Mnemonic	· PWM1				Addre	ess' DRh	
Bit: PWM1.7-0 Adjust F	Mnemonic 2WM1 duty	: PWM1 cvcle				Addre	ess: DBh	
Bit: PWM1.7-0 Adjust F	Mnemonic WM1 duty aister1	: PWM1 cycle.				Addre	ess: DBh	
Bit: PWM1.7-0 Adjust F PWM Control Re Bit: 7	Mnemonic PWM1 duty P gister1	: PWM1 cycle. 5	4	3	2	Addre	ess: DBh	0
Bit: PWM1.7-0 Adjust F PWM Control Re Bit: 7 PWM30E	Mnemonic PWM1 duty gister1 6 PWM2OE	: PWM1 cycle. 5 ENPWM3	4 ENPWM2	3 PWM10	2 E PWM	Addre	ess: DBh 1 ENPWM1	0 ENPWM0

OP-CODE	HEX CODE	BYTES	W79E659 MACHINE CYCLE	W79E659 CLOCK CYCLES	8032 CLOCK CYCLES	W79E659 V 8032 SPEE RATIO
XCH A, @R0	C6	1	1 0	4	12	3
XCH A, @R1	C7	1	1	4	12	3
XCHD A, @R0	D6	1	1	4	12	3
XCHD A, @R1	D7	1	1	4	12	3
XCH A, direct	C5	2	2	8	12	1.5
CLR C	C3	1	1	4	12	3
CLR bit	C2	2	2	8	12	1.5
SETB C	D3	1	1	4	12	3
SETB bit	D2	2	2	8	12	1.5
CPL C	B3	1	1	4	12	3
CPL bit	B2	2	2	8	12	1.5
ANL C, bit	82	2	2	8	24	3
ANL C, /bit	B0	2	2	6	24	3
ORL C, bit	72	2	2	8	24	3
ORL C, /bit	A0	2	2	6	24	3
MOV C, bit	A2	2	2	8	12	1.5
MOV bit, C	92	2	2	8	24	3
ACALL addr11	71, 91, B1, 11, 31, 51, D1, F1	2	3	12	24	2
LCALL addr16	12	3	4	16	24	1.5
RET	22	1	2	8	24	3
RETI	32	1	2	8	24	3
AJMP ADDR11	01, 21, 41, 61, 81, A1, C1, E1	2	3	12	24	2
LJMP addr16	02	3	4	16	24	1.5
JMP @A+DPTR	73	1	2	6	24	3
SJMP rel	80	2	3	12	24	2
JZ rel	60	2	3	12	24	2
JNZ rel	70	2	3	12	24	2
JC rel	40	2	3	12	24	2
JNC rel	50	2	3	12	24	2
JB bit. rel	20	3	4	16	24	1.5

Instruction	Set for	W79E659,	continued
-------------	---------	----------	-----------

NAIIO
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
2
2
2
2
2
2
2
2
1.5
1. <u>1.</u> <u>1.</u> <u>1.</u> <u>1.</u> <u>1.</u> <u>1.</u> <u>1.</u> <u>1</u>

W79E659A/W79L659A

nuvoTon

Figure 7-3 Three Cycle Instruction Timing

- 50 -

9.5 Reset State

When the device is reset, most registers return to their initial state. The Watchdog Timer is disabled if the reset source was a power-on reset. The port registers are set to FFh, which puts most of the port pins in a high state and makes Port 0 float (as it does not have on-chip pull-up resistors). The Program Counter is set to 0000h, and the stack pointer is reset to 07h. After this, the device remains in the reset state as long as the reset conditions are satisfied.

Reset does not affect the on-chip RAM, however, so RAM is preserved as long as VDD remains above approximately 2 V, the minimum operating voltage for the RAM. If VDD falls below 2 V, the RAM contents are also lost. In either case, the stack pointer is always reset, so the stack contents are lost.

The WDCON SFR bits are set/cleared in reset condition depends on the source of the reset. The WDCON SFR is set to a 0x0x0xx0b on an external reset. WTRF is set to a 1 on a Watchdog timer reset, but to a 0 on power on/down resets. WTRF is not altered by an external reset. POR is set to 1 by a power-on reset. EWT is cleared to 0 on a Power-on reset and unaffected by other resets. All the bits in this SFR have unrestricted read access. The bits of POR, WDIF, EWT and RWT require Timed Access (TA) procedure to write. The remaining bits have unrestricted write accesses. Please refer TA register description.

Table 9-1 lists the different reset values.

	Table 9-1 The	WDCON res	et values in	three reset	conditions
--	---------------	-----------	--------------	-------------	------------

											0x0x 0	xx0B Exte	ernal reset
WDCON	Watch-Dog Control	D8H	(DF) -	(DE) POR	(DD) -	(DC) -	(DB) WDIF	(DA) WTRF	(D9) EWT	(D8) RWT	0x0x reset	01x0B	Watchdog
											0100 0	000B Pov	ver on reset

nuvoton

10. Interrupts

The W79E659 has a two priority level interrupt structure with 10 interrupt sources. Each interrupt source has a separate priority bit, interrupt flag, interrupt enable bit, and interrupt vector. In addition, all the interrupts can be globally disabled.

10.1 Interrupt Sources

External Interrupts INTO and INT1 can be edge-triggered or level-triggered, depending on bits ITO and IT1. In edge-triggered mode, the INTx input is sampled every machine cycle. If the sample is high in one cycle and low in the next, then a high-to-low transition is detected, and the interrupt request flag IEx in TCON is set. This flag requests the interrupt, and it is automatically cleared when the interrupt service routine is called. Since external interrupts are sampled every machine cycle, the input has to be held high or low for at least one complete machine cycle. In level-triggered mode, the requesting source has to hold the pin low until the interrupt is serviced. The IEx flag is not cleared automatically when the service routine is called, and, if the input continues to be held low after the service routine is completed, the signal may generate another interrupt request.

Timer 0 and 1 interrupts are generated by the TF0 and TF1 flags. These flags are set by a timer overflow, and they are cleared automatically when the interrupt service routine is called. The Timer 2 interrupt is generated by a logical-OR of the TF2 (overflow) and the EXF2 (capture / reload events) flags. The hardware does not clear these flags when the interrupt service routine is called, so the software has to resolve the cause of the interrupt and clear the appropriate flag(s).

When ADC conversion is completed hardware will set flag ADCI to logic high to request ADC interrupt if bit EADC (IE.6) is in high state. ADCI is cleared by software only. W79E659 provides 2 identically independent I2C serial ports, I2C1 and I2C2. When a new SIO1 state is present in the S1STA register, the SI flag is set by hardware, and if the EA and EI2C2 bits are both set, the I2C2 interrupt is requested. SI must be cleared by software.

The Watchdog Timer can be used as a system monitor or a simple timer. In either case, when the time-out count is reached, the Watchdog Timer interrupt flag WDIF (WDCON.3) is set. If the interrupt is enabled by bit EIE.4, then an interrupt is generated.

All of the interrupt flags can be set or reset by software, as well as hardware, by setting or clearing the appropriate bit in the IE register. This register also has the global disable bit EA, which can be cleared

Publication Release Date: Oct 08, 2010 Revision A5.0

11.1.3 Mode 1

Mode 1 is the same as Mode 0, except that the timer/counter is 16 bits, instead of 13 bits.

Figure 11-1 Timer/Counters 0/1 in Mode 0 & Mode 1

11.1.4 Mode 2

In Mode 2, the timer/counter is in the Auto Reload Mode. In this mode, TLx acts as a 8 bit count register, while THx holds the reload value. When the TLx register overflows from FFh to 00h, the TFx bit in TCON is set and TLx is reloaded with the contents of THx, and the counting process continues from here. The reload operation leaves the contents of the THx register unchanged. Counting is enabled by the TRx bit and proper setting of GATE and INTx pins. As in the other two modes 0 and 1 mode 2 allows counting of either clock cycles (clock/12 or clock/4) or pulses on pin Tn.

Figure 11-2 Timer/Counter 0/1 in Mode 2

start:

	mov	ckcon,#01h	; select 2 ^ 17 timer
;	mov	ckcon,#61h	; select 2 ^ 20 timer
,	mov	ckcon,#81h	; select 2 ^ 23 timer
,	mov	ckcon,#c1h	; select 2 ^ 26 timer
	mov	TA,#aah	
	mov	TA,#55h	
	mov	WDCON,#00000011B	
	setb	EWDI	
	setb	ea	
	jmp	\$; wait time out

Clock Control

WD1, WD0: CKCON.7, CKCON.6 - Watchdog Timer Mode select bits. These two bits select the timeout interval for the Watchdog Timer. The reset interval is 512 clocks longer than the selected interval. The default time-out is 2¹⁷ clocks, the shortest time-out period.

	0				1.						
SYMBOL	DEFINITION	ADDRESS		MSB	BIT	_ADDR	ESS, SYN	IBOL	LSB		RESET
I2TIMER2	I2C2 Timer Counter Register	FFH	-	-	- an		-	ENTI2	DIV42	TIF2	0000 0000B
I2CLK2	I2C2 Clock Rate	FEH	I2CLK.7	I2CLK.6	I2CLK.5	I2CLK.4	I2CLK.3	I2CLK.2	I2CLK.1	I2CLK.0	0000 0000B
I2STATUS2	I2C2 Status Register	FDH				X	2	1	-	-	0000 0000B
I2DAT2	I2C2 Data	FCH	I2DAT.7	I2DAT.6	I2DAT.5	I2DAT.4	I2DAT.3	I2DAT.2	I2DAT.1	I2DAT.0	xxxx xxxxxB
I2ADDR21	I2C2 Slave Address1	FBH	ADDR.7	ADDR.6	ADDR.5	ADDR.4	ADDR.3	ADDR.2	ADDR.1	-	xxxx xxxxxB
I2ADDR20	I2C2 Slave Address0	FAH	ADDR.7	ADDR.6	ADDR.5	ADDR.4	ADDR.3	ADDR.2	ADDR.1	GC	xxxx xxxx0B
I2CON2	I2C2 Control Register	F9H	-	ENS2	STA	STO	SI	AA	-2 N	PSEL2	x000 00x0B
I2TIMER	I2C1 Timer Counter Register	EFH	-	-	-	-	-	ENTI	DIV4	TIF	0000 0000B
I2CLK	I2C1 Clock Rate	EEH	I2CLK.7	I2CLK.6	I2CLK.5	I2CLK.4	I2CLK.3	I2CLK.2	I2CLK.1	I2CLK.0	0000 0000B
I2STATUS	I2C1 Status Register	EDH						-	-	5	0000 0000B
I2DAT	I2C1 Data	ECH	I2DAT.7	I2DAT.6	I2DAT.5	I2DAT.4	I2DAT.3	I2DAT.2	I2DAT.1	I2DAT.0	xxxx xxxxxB
I2ADDR11	I2C1 Slave Address1	EBH	ADDR.7	ADDR.6	ADDR.5	ADDR.4	ADDR.3	ADDR.2	ADDR.1	-	xxxx xxxxxB
I2ADDR10	I2C1 Slave Address0	EAH	ADDR.7	ADDR.6	ADDR.5	ADDR.4	ADDR.3	ADDR.2	ADDR.1	GC	xxxx xxxx0B
I2CON	I2C1 Control Register	E9H	-	ENS1	STA	STO	SI	AA	-	PSEL1	x000 00x0B

Table 15-1 Control Registers of I2C Ports

15.1.1 Slave Address Registers, I2ADDRxx

Each I2C port is equipped with two slave address registers. The contents of the register are irrelevant when I2C is in master mode. In the slave mode, the seven most significant bits must be loaded with the MCU's own slave address. The I2C hardware will react if the contents of I2ADDRxx are matched with the received slave address.

The I2C ports support the "General Call" function. If the GC bit is set the I2C port1 hardware will respond to General Call address (00H). Clear GC bit to disable general call function.

15.1.2 Data Register, I2DAT

This register contains a byte of serial data to be transmitted or a byte which has just been received. The CPU can read from or write to this 8-bit directly addressable SFR while it is not in the process of shifting a byte. Data in I2DAT remains stable as long as SI is set. The MSB is shifted out first. While data is being shifted out, data on the bus is simultaneously being shifted in; I2DAT always contains the last data byte present on the bus.

I2DAT and the acknowledge bit form a 9-bit shift register which shifts in or out an 8-bit byte, followed by an acknowledge bit. The acknowledge bit is controlled by the hardware and cannot be accessed by the CPU. Serial data is shifted into I2DAT on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into I2DAT, the serial data is available in I2DAT, and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. Serial data is shifted out from I2DAT on the falling edges of SCL clock pulses.

15.3.4 Slave/Receiver Mode

20. In-System Programming

20.1 The Loader Program Locates at LDFlash Memory

CPU is Free Run at APFlash memory. CHPCON register had been set #03H value before CPU has entered idle state. CPU will switch to LDFlash memory and execute a reset action. H/W reboot mode will switch to LDFlash memory, too. Set SFRCN register where it locates at user's loader program to update APFlash memory. Set a SWRESET (CHPCON.7) to switch back APFlash after CPU has updated APFlash program. CPU will restart to run program from reset state.

20.2 The Loader Program Locates at APFlash Memory

CPU is Free Run at APFlash memory. CHPCON register had been set #01H value before CPU has entered idle state. Set SFRCN register to update LDFlash. CPU will continue to run user's APFlash program after CPU has updated program. Please refer demonstrative code to understand other detail description.

21. H/W Writer Mode

This mode is for the writer to write / read Flash EPROM operation. A general user may not enter this mode.

22. Security Bits

During the on-chip FLASH EPROM programming mode, the FLASH EPROM can be programmed and verified repeatedly. And the program code can be protected by setting security bits. The protection of FLASH EPROM and those operations on it are described below.

The W79E659 has several Special Setting Registers, including the Security Register and Company/Device ID Registers, which can not be accessed in programming mode. Those bits of the Security bits can not be changed once they have been programmed from high to low. They can only be reset to the default value FFh through "Erase-All" operation. The contents of the Company ID and Device ID registers have been set in factory.

If user doesn't need ISP function, do not fill "FFh" code in LD Flash memory. The writer always writes both AP and LD flash in a completed program procedure.

BIT	DESCRIPTION
B0	=0: Lock data out
B1	=0: MOVC Inhibited
B2	Reserved
B3	Reserved
B4	=1: Disable H/W reboot by P2.6 and P2.7 =0: Enable H/W reboot by P2.6 and P2.7
B5	=1: Disable H/W reboot by P4.3 =0: Enable H/W reboot by P4.3
B6	Reserved
B7	=1: Crystal > 24MHz =0: Crystal < 24MHz

Table 22-1 Security Bits

B0: Lock bit

This bit is used to protect the customer's program code in the W79E659. After the programmer finishes the programming and verifies sequence B0 can be cleared to logic 0 to protect code from reading by any access path. Once this bit is set to logic 0, both the Flash EPROM data and Special Setting Registers can not be accessed again.

B1: MOVC Inhibit

This bit is used to restrict the accessible region of the MOVC instruction. It can prevent the MOVC instruction in external program memory from reading the internal program code. When this bit is set to logic 0, a MOVC instruction in external program memory space will be able to access code only in the external memory, not in the internal memory. A MOVC instruction in internal program memory space will always be able to access the ROM data in both internal and external memory. If this bit is logic 1, there are no restrictions on the MOVC instruction.

23. Electrical Characteristics

23.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	CONDITION	RATING	UNIT
DC Power Supply	$V_{\text{DD}} - V_{\text{SS}}$	-0.3	+7.0	V
Input Voltage	V _{IN}	V _{SS} -0.3	V _{DD} +0.3	V
Operating Temperature	T _A	0	+70	°C
Storage Temperature	T _{st}	-55	+150	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

23.2 DC Characteristics

 $(V_{DD} - V_{SS} = 5V \pm 10\%, TA = 25^{\circ}C, Fosc = 20 MHz, unless otherwise specified.)$

DADAMETED	SYMPOL	SPECIFICATION		ION	TEST CONDITIONS	
FARAMETER	STMBOL	MIN.	MAX.	UNIT	TEST CONDITIONS	
Operating Voltage	V _{DD}	4.5 3.0	5.5 4.5	V	For W79E659 version For W79L659 version	
Operating Current	I _{DD}	-	30	mA	No load $V_{DD} = RST = 5.5V$	
Idle Current	I _{IDLE}	-	24	mA	Idle mode V _{DD} = 5.5V	
Power Down Current	I _{PWDN}	-	10	μA	Power-down mode $V_{DD} = 5.5V$	
Input Current P0, P1, P2, P3,P4, P5, P6, P7	I _{IN1}	-50	+10	μA	$V_{DD} = 5.5V$ $V_{IN} = 0V$ or VDD	
Input Current RST ^[*1]	I _{IN2}	-	100	μA	$V_{DD} = 5.5V$ 0< V_{IN} <vdd< td=""></vdd<>	
Input Leakage Current	I _{LK}	-10	+10	μA	$V_{DD} = 5.5V$ $0V < V_{IN} < V_{DD}$	
Logic 1 to 0 Transition Current P0, P1, P2, P3, P4, P5, P6, P7	I _{TL} ^[*4]	-500	-200	μA	$V_{DD} = 5.5V$ $V_{IN} = 2.0V$	
Input Low Voltage P0, P1, P2, P3, P4, P5, P6, P7, EA	V _{IL1}	0	0.8	V	$V_{DD} = 4.5 V$	
Input Low Voltage RST ^[*1]	V _{IL2}	0	0.8	V	V _{DD} = 4.5V	
Input Low Voltage XTAL1 ^[*3]	V _{IL3}	0	0.8	V	V _{DD} = 4.5V	

- 99 -

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	NOTES
Clock High Time	t _{CHCX}	12	and a	-	nS	
Clock Low Time	t _{CLCX}	12		-	nS	
Clock Rise Time	t _{CLCH}	-	<u>-</u> VZ	10	nS	
Clock Fall Time	t _{CHCL}	-	- ~	10	nS	

23.3.1 External Clock Characteristics

23.3.2 AC Specification

 $(V_{DD} - V_{SS} = 5V \pm 10\%, TA = 25^{\circ}C, Fosc = 20 MHz, unless otherwise specified.$

PARAMETER	SYMBOL	VARIABLE CLOCK MIN.	VARIABLE CLOCK MAX.	UNITS
Oscillator Frequency	1/t _{CLCL}	0	40 ¹	MHz
Oscillator Frequency	1/t _{CLCL}	0	33 ²	MHz
ALE Pulse Width	t _{LHLL}	1.5t _{CLCL} - 5		nS
Address Valid to ALE Low	t _{AVLL}	0.5t _{CLCL} - 5		nS
Address Hold After ALE Low	t _{LLAX1}	0.5t _{CLCL} - 5		nS
Address Hold After ALE Low for MOVX Write	t _{LLAX2}	0.5t _{CLCL} - 5		nS
ALE Low to Valid Instruction In	t _{LLIV}		2.5t _{CLCL} - 20	nS
ALE Low to PSEN Low	t _{LLPL}	0.5t _{CLCL} - 5		nS
PSEN Pulse Width	t _{PLPH}	2.0t _{CLCL} - 5		nS
PSEN Low to Valid Instruction In	t _{PLIV}		2.0t _{CLCL} - 20	nS
Input Instruction Hold After PSEN	t _{PXIX}	0		nS
Input Instruction Float After PSEN	t _{PXIZ}		t _{CLCL} - 5	nS
Port 0 Address to Valid Instr. In	t _{AVIV1}		3.0t _{CLCL} - 20	nS
Port 2 Address to Valid Instr. In	t _{AVIV2}		3.5t _{CLCL} - 20	nS
PSEN Low to Address Float	t _{PLAZ}	0		nS
Data Hold After Read	t _{RHDX}	0		nS
Data Float After Read	t _{RHDZ}		t _{CLCL} - 5	nS
RD Low to Address Float	t _{RLAZ}		0.5t _{CLCL} - 5	nS

Note: 1. CPU executes the program stored in the internal APFlash at V_{DD} =5.0V

2. CPU executes the program stored in the external memory at V_{DD} =5.0V

M2	M1	MO	MOVX CYCLES	T _{MCS}
0	0	0	2 machine cycles	0
0	0	1	3 machine cycles	4 t _{CLCL}
0	1	0	4 machine cycles	8 t _{CLCL}
0	1	1	5 machine cycles	12 t _{CLCL}
1	0	0	6 machine cycles	16 t _{CLCL}
1	0	1	7 machine cycles	20 t _{CLCL}
1	1	0	8 machine cycles	24 t _{CLCL}
1	1	1	9 machine cycles	28 t _{CLCL}

Explanation of Logics Symbols

In order to maintain compatibility with the original 8051 family, this device specifies the same parameter for each device, using the same symbols. The explanation of the symbols is as follows.

t	Time	А	Address
С	Clock	D	Input Data
Н	Logic level high	L	Logic level low
I	Instruction	Ρ	PSEN
Q	Output Data	R	RD signal
V	Valid	W	WR signal
Х	No longer a valid state	Z	Tri-state

23.4 The ADC Converter DC ELECTRICAL CHARACTERISTICS

(V_{DD}-V_{SS} = 3.0~5V \pm 10\%, T_A = -40~85°C, Fosc = 20MHz, unless otherwise specified.)

DADAMETED	SYMBOL	SPECIFICATION			TEST CONDITIONS	
PARAMETER	STWBOL	MIN.	MAX.	UNIT		
Analog input	AVin	V _{SS} -0.2	V _{DD} +0.2	V		
ADC clock	ADCCLK	200KHz	5MHz	Hz	ADC circuit input clock	
Conversion time	t _C	52t _{ADC} ^[1]		us		
Differential non-linearity	DNL	-1	+1	LSB		
Internal new linearity	INL	-2	+2	LSB	Fosc=20MHz	
integral non-intearity		-5	+5	LSB	Fosc=40MHz	
Offect error	Ofe	-1.5	+1.5	LSB	Fosc=20MHz	
Onset end	Ole	-2.5	+2.5	LSB	Fosc=40MHz	
Gain error	Ge	-1	+1	%		
	10	-5	+5	LSB	Fosc=20MHz	
Absolute voltage ello	Ae	-11	+11	LSB	Fosc=40MHz	

Notes: 1. t_{ADC}: The period time of ADC input clock.

W79E659A/W79L659A

nuvoTon

MOV A,P1	; SCAN P1.0
ANL A,#01H	
CJNE A,#01H,PRO	GRAM_APFlash ; IF P1.0 = 0, ENTER IN-SYSTEM PROGRAMMING ; MODE
JMP NORMAL_MO	DE
PROGRAM_64:	
MOV TA, #AAH MOV TA, #55H	; CHPCON register is written protect by TA register.
MOV CHPCON, #03 MOV SFRCN. #0H	3H ; CHPCON = 03H, ENTER IN-SYSTEM PROGRAMMING MODE
MOV TCON, #00H	; TR = 0 TIMER0 STOP
MOV IP, #00H MOV IE, #82H	; TIMER0 INTERRUPT ENABLE FOR WAKE-UP FROM IDLE MOD
MOV R6, #F0H	; TL0 = F0H
MOV R7, #FFH	; TH0 = FFH
MOV TLU, R6 MOV TH0, R7	
MOV TMOD, #01H	; TMOD = 01H, SET TIMER0 A 16-BIT TIMER
MOV TCON, #10H	; TCON = 10H, TR0 = 1,GO
MOV PCON, #01H	; ENTER IDLE MODE FOR LAUNCHING THE IN-SYSTEM ; PROGRAMMING
•*************************************	******
;* Normal mode APFlash pro	gram: depending user's application
, NORMAL_MODE:	
	; User's application program
EXAMPLE 2.	

.RAMCHK OFF .symbols

CHPCON EQU

0

9FH

W79E659A/W79L659A

nuvoTon

		; DEPENDING ON USER'S SYSTEM CLOCK RA	TE.
MOV R7,#8AH			
MOV TL0,R6			
MOV THO,R7			
,			
ERASE P 4K:			
MOV SFRCN.#22H	: SFF	RCN = 22H, ERASE APFlash0	
)	: SFF	RCN = A2H, ERASE APFlash1	
MOV_TCON.#10H	: TCO	DN = 10H, TR0 = 1.GO	
MOV PCON #01H	· FN	TER IDLE MODE (FOR FRASE OPERATION)	
	,		
•*************************************	******	*****	
, * BLANK CHECK			
,	******	*****	
, MOV SFRCN.#0H	: SFF	RCN = 00H. READ APFlash0	
	: SFF	RCN = 80H, READ APFlash1	
MOV SFRAH.#0H	; ST/	ART ADDRESS = 0H	
MOV SFRAL #0H	, 017		
MOV R6 #FDH	· SET	TIMER FOR READ OPERATION ABOUT 1.5S	
MOV R7 #FFH	, 02		
MOV TIOR6			
blank check loop:			
SETB TRO		· enable TIMER 0	
MOV PCON #	01H	; enter idle mode	
MOV A SERE	רויס	; read one hyte	
C.INE A #FFH	- blank	check error	
INC SERAL	,orani <u>r</u>	· next address	
MOV A.SFRAL			
JNZ blank ch	- eck lo	non	
INC SFRAH		-F	
MOV A.SFRAH	4		
CJNE A.#0H.b	lank (check_loop; end address = FFFFH	
JMP PROGRA	M AF	PElashROM	
Con the			
blank check error:			
JMP \$			
•*************************************	******	*********	
, :* RE-PROGRAMMING		ash BANK	
.**************************************	******	*********	
PROGRAM APFlashR	OM:		
_			
		- 112 -	