

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

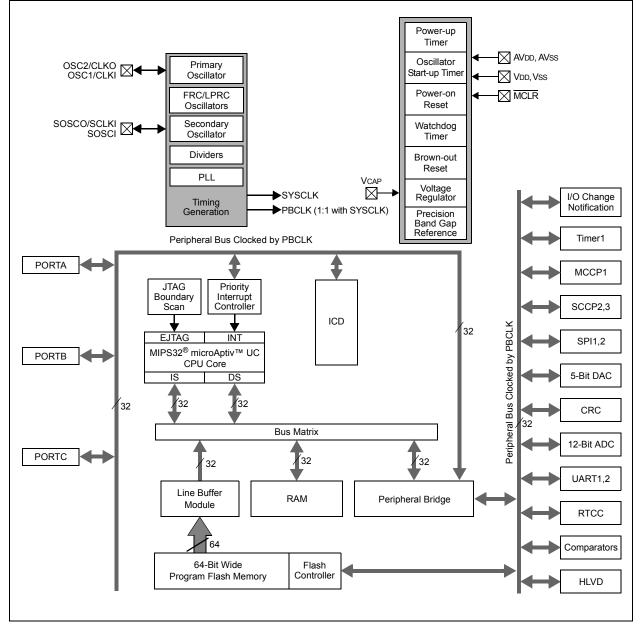
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0016gpl020-e-ss

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.0 DEVICE OVERVIEW

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. This data sheet contains device-specific information for the PIC32MM0064GPL036 family devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MM0064GPL036 family of devices.

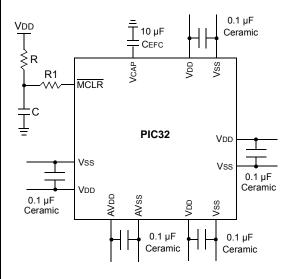

Table 1-1 lists the pinout I/O descriptions for the pins shown in the device pin tables.

FIGURE 1-1: PIC32MM0064GPL036 FAMILY BLOCK DIAGRAM

NOTES:

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

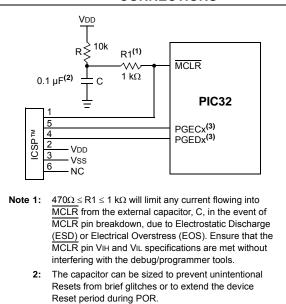
2.2.1 BULK CAPACITORS

The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- Device Reset
- Device Programming and Debugging


Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS^(1,2,3)

^{3:} No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.4 Capacitor on Internal Voltage Regulator (VCAP)

A low-ESR (<1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. The recommended value of the CEFC capacitor is 10 μ F. On the printed circuit board, it should be placed as close to the VCAP pin as possible. If the board is experiencing high-frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to this capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F.

4.0 MEMORY ORGANIZATION

PIC32MM microcontrollers provide 4 Gbytes of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The data memory can be made executable, allowing the CPU to execute code from data memory.

Key features include:

- 32-Bit Native Data Width
- Separate Boot Flash Memory (BFM) for Protected Code
- Robust Bus Exception Handling to Intercept Runaway Code
- Simple Memory Mapping with Fixed Mapping Translation (FMT) Unit

The PIC32MM0064GPL036 family devices implement two address spaces: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions. Physical addresses are used by peripherals, such as Flash controllers, that access memory independently of the CPU.

The virtual address space is divided into two segments of 512 Mbytes each, labeled kseg0 and kseg1. The Program Flash Memory (PFM) and Data RAM Memory (DRM) are accessible from either kseg0 or kseg1, while the Boot Flash Memory (BFM) and peripheral SFRs are accessible only from kseg1. The Fixed Mapping Translation (FMT) unit translates the memory segments into corresponding physical address regions. Figure 4-1 through Figure 4-3 illustrate the fixed mapping scheme, implemented by the PIC32MM0064GPL036 family core, between the virtual and physical address space.

The mapping of the memory segments depends on the CPU error level, set by the ERL bit in the CPU STATUS Register (SR). Error level is set (ERL = 1) by the CPU on a Reset, Soft Reset or NMI. In this mode, the CPU can access memory by the physical address. This mode is provided for compatibility with other MIPS[®] processor cores that use a TLB-based MMU. The C start-up code clears the ERL bit to zero, so that when application software starts up, it sees the proper virtual to physical memory mapping.

4.1 Alternate Configuration Bits Space

Every Configuration Word has an associated Alternate Word (designated by the letter A as the first letter in the name of the word). During device start-up, Primary Words are read, and if uncorrectable ECC errors are found, the BCFGERR (RCON<27>) flag is set and Alternate Words are used. If uncorrectable ECC errors are found in Primary and Alternate Words, the BCFGFAIL (RCON<26>) flag is set, and the default configuration is used. The Primary Configuration bits area is located at the address range, from 0x1FC01780 to 0x1FC017E8. The Alternate Configuration bits area is located at the address range, from 0x1FC01700 to 0x1FC01768.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_		_		_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_		_		_	_	—
45-0	R/W-0, HC	R/W-0	R-0, HS, HC	R-0, HS, HC	r-0	U-0	U-0	U-0
15:8	WR ^(1,4)	WREN ⁽¹⁾	WRERR ^(1,2)	LVDERR ^(1,2)	—	_	_	—
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		-		—		NVMOP	<3:0> ⁽³⁾	

REGISTER 5-1: NVMCON: NVM PROGRAMMING CONTROL REGISTER

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared r = Reserved bit

bit 31-16 Unimplemented: Read as '0'

- bit 15 WR: Write Control bit^(1,4)
 - This bit cannot be cleared and can be set only when WREN = 1, and the unlock sequence has been performed. 1 = Initiates a Flash operation
 - 0 = Flash operation is complete or inactive

bit 14 WREN: Write Enable bit⁽¹⁾

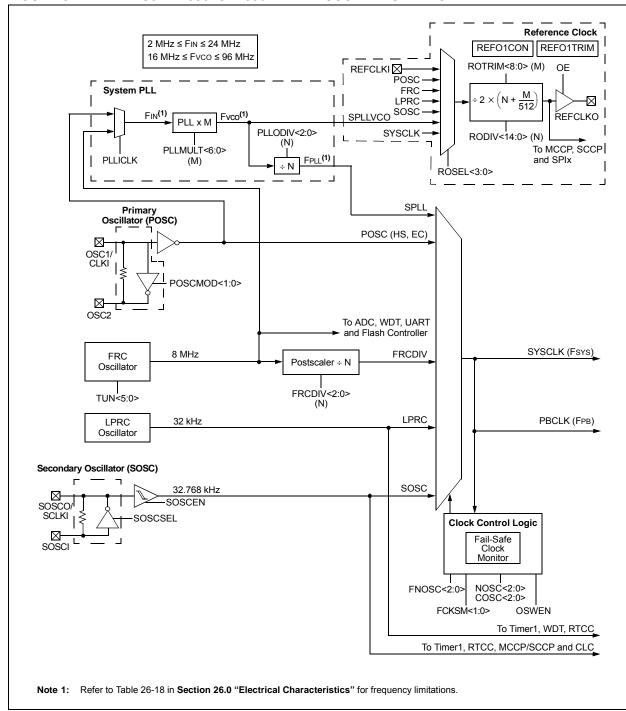
- 1 = Enables writes to the WR bit and disables writes to the NVMOP<3:0> bits
- 0 = Disables writes to the WR bit and enables writes to the NVMOP<3:0> bits

bit 13 WRERR: Write Error bit^(1,2)

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation.

- 1 = Program or erase sequence did not complete successfully
- 0 = Program or erase sequence completed normally

bit 12 LVDERR: Low-Voltage Detect Error bit^(1,2)


This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation. 1 = Low voltage is detected (possible data corruption if WRERR is set)

- 0 = Voltage level is acceptable for programming
- bit 11 Reserved: Maintain as '0'
- bit 10-4 Unimplemented: Read as '0'
- **Note 1:** These bits are only reset by a Power-on Reset (POR) and are not affected by other Reset sources.
 - 2: These bits are cleared by setting NVMOP<3:0> = 0000 and initiating a Flash operation (i.e., WR).
 - 3: NVMOP<3:0> bits are write-protected if the WREN bit is set.
 - 4: Writes to the WR bit require an unlock sequence. Refer to Section 5.1 "Flash Controller Registers Write Protection" for details.

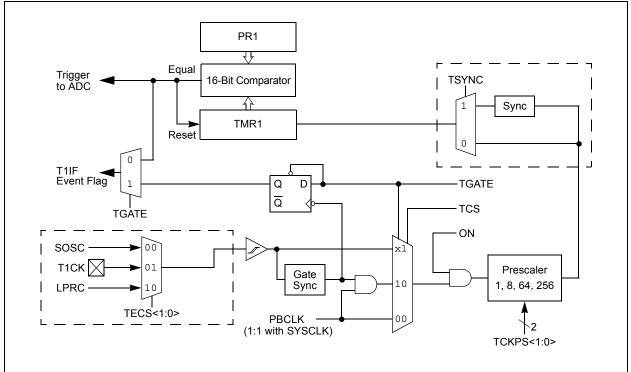
REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x⁽¹⁾ (CONTINUED)

- bit 12-10 IP1<2:0>: Interrupt Priority bits
- 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 9-8 IS1<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 Unimplemented: Read as '0' bit 7-5 bit 4-2 IP0<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 1-0 ISO<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- **Note 1:** This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

PIC32MM0064GPL036 FAMILY

FIGURE 8-1: PIC32MM0064GPL036 FAMILY OSCILLATOR DIAGRAM

10.0 TIMER1


Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Timers" (DS60001105) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

PIC32MM0064GPL036 family devices feature one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can be clocked from different sources, such as the Peripheral Bus Clock (PBCLK, 1:1 with SYSCLK), Secondary Oscillator (SOSC), T1CK pin or LPRC oscillator.

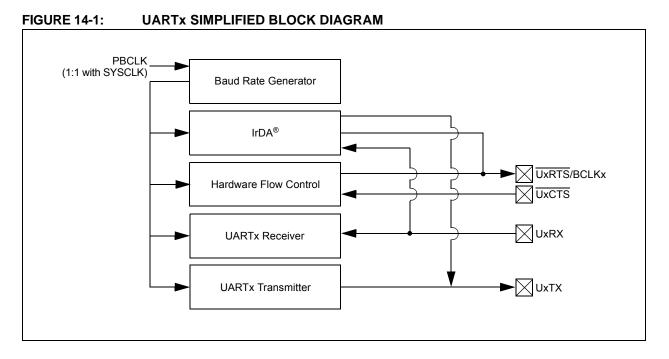
The following modes are supported by Timer1:

- · Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

The timer has a selectable clock prescaler and can operate in Sleep and Idle modes.

FIGURE 10-1: TIMER1 BLOCK DIAGRAM

14.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)


Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 21. "UART"** (DS61107) in the *"PIC32 Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM.

The UART module is one of the serial I/O modules available in the PIC32MM0064GPL036 family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN/J2602 and IrDA[®]. The module also supports the hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8-Bit or 9-Bit Data Transmission
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop Bits
- Hardware Auto-Baud Feature
- · Hardware Flow Control Option
- Fully Integrated Baud Rate Generator (BRG) with 16-Bit Prescaler
- Baud Rates Ranging from 47.7 bps to 6.26 Mbps at 25 MHz
- 8-Level Deep First-In-First-Out (FIFO) Transmit Data Buffer
- 8-Level Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for Interrupt Only on Address Detect (9th bit = 1)
- Separate Transmit and Receive Interrupts
- · Loopback mode for Diagnostic Support
- LIN/J2602 Protocol Support
- IrDA Encoder and Decoder with 16x Baud Clock Output for External IrDA Encoder/Decoder Support
- · Supports Separate UART Baud Clock Input
- Ability to Continue to Run when a Receive Overflow (ROV) Condition Exists
- Ability to Run and Receive Data during Sleep mode

Figure 14-1 illustrates a simplified block diagram of the UART module.

© 2015-2016 Microchip Technology Inc.

15.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 28. "RTCC with Timestamp" (DS60001362) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Lowpower optimization provides extended battery lifetime while keeping track of time. Key features of the RTCC module are:

- Time: Hours, Minutes and Seconds
- 24-Hour Format (military time)
- · Visibility of One-Half Second Period
- · Provides Calendar: Weekday, Date, Month and Year
- Alarm Intervals are Configurable for Half of a second, One Second, 10 Seconds, One Minute, 10 Minutes, One Hour, One Day, One Week, One Month and One Year
- Alarm Repeat with Decrementing Counter
- · Alarm with Indefinite Repeat: Chime
- Year Range: 2000 to 2099
- Leap Year Correction
- · BCD Format for Smaller Firmware Overhead
- Optimized for Long-Term Battery Operation
- · Fractional Second Synchronization
- User Calibration of the Clock Crystal Frequency with Auto-Adjust
- Uses External 32.768 kHz Crystal, 32 kHz Internal Oscillator, PWRLCLK Input Pin or Peripheral Clock
- Alarm Pulse, Seconds Clock or Internal Clock
 Output on RTCC Pin

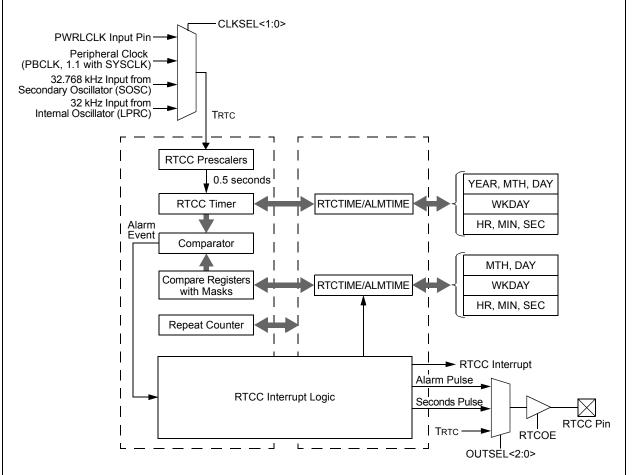


FIGURE 15-1: RTCC BLOCK DIAGRAM

	REGISTER 16-7:	AD1CHIT: ADC COMPARE HIT REGISTER
--	----------------	-----------------------------------

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_		_	-	-	_	—
00.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_		-	_		-	—
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8 — — CHH<13:8> ^(1,2)								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHH<7	/:0>			

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-0 CHH<13:0>: ADC Compare Hit bits^(1,2)

If CM<1:0> = 11:

1 = ADC Result Buffer x has been written with data or a match has occurred

0 = ADC Result Buffer x has not been written with data

For All Other Values of CM<1:0>:

1 = A match has occurred on ADC Result Channel n

0 = No match has occurred on ADC Result Channel n

Note 1: The CHH<13:11> bits are not implemented in 20-pin devices.

2: The CHH<13:12> bits are not implemented in 28-pin devices.

TABLE 18-1: CLC1 AND CLC2 REGISTER MAP

	1																		1
ess		0								E	Bits								6
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0A80	CLC1CON	32:16	_				—		_			—		_	G4POL	G3POL	G2POL	G1POL	0000
0A00	CLUTCON	15:0	ON		_		INTP	INTN		—	LCOE	LCOUT	LCPOL			I	MODE<2:0	>	0000
0A90	CLC1SEL	32:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
UA9U	GLUISEL	15:0	_		DS4<2:0>		—		DS3<2:0>				DS2<2:0>				DS1<2:0>		0000
0AA0	CLC1GLS	32:16	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000
UAAU	CLUIGLS	15:0	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000
0B00	CLC2CON	32:16	_		_		—			—		—			G4POL	G3POL	G2POL	G1POL	0000
0600	CLC2CON	15:0	ON		_		INTP	INTN		—	LCOE	LCOUT	LCPOL			I	MODE<2:0	>	0000
0B10	CLC2SEL	32:16	_		_		—	_	_	—		—	-	-		—	—		0000
UBIU	CLC2SEL	15:0	_		DS4<2:0>		—		DS3<2:0>		_		DS2<2:0>				DS1<2:0>		0000
0B20	CLC2GLS	32:16	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	0000
0620	ULUZGLS	15:0	G2D4T	G2D4N	G2D3T	G2D3N	G2D2T	G2D2N	G2D1T	G2D1N	G1D4T	G1D4N	G1D3T	G1D3N	G1D2T	G1D2N	G1D1T	G1D1N	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

20.1 CDAC Control Registers

TABLE 20-1: CDAC REGISTER MAP

ess		a.	Bits											6					
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	DACICON	31:16	_	—	—	_	_	—	_	-	—	—	—		D	ACDAT<4:	0>		0000
0980	DAC1CON	15:0	ON		—			_		DACOE		_	—	_	—	_	REFSE	L<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	_	-	_		_	—
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	_						
15.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	ON	_			_		_	DACOE
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0	_	_	_	_	_		REFSE	EL<1:0>

REGISTER 20-1: DAC1CON: CDAC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20-16 **DACDAT<4:0>:** CDAC Voltage Reference Selection bits

11111 = (DACDAT<4:0> * VREF+/32) or (DACDAT<4:0> * AVDD/32) volts depending on the REFSEL<1:0> bits •

•

• 00000 = 0.0 volts

bit 15 **ON:** Voltage Reference Enable bit

- 1 = Voltage reference is enabled
- 0 = Voltage reference is disabled

bit 14-9 **Unimplemented:** Read as '0'

bit 8 DACOE: CDAC Voltage Reference Output Enable bit

- 1 = Voltage level is output on the CDAC1 pin
- 0 = Voltage level is disconnected from the CDAC1 pin

bit 7-2 Unimplemented: Read as '0'

- bit 1-0 REFSEL<1:0>: CDAC Voltage Reference Source Select bits
 - 11 = Reference voltage is AVDD
 - 10 = No reference is selected output is AVss
 - 01 = Reference voltage is the VREF+ input pin voltage
 - 00 = No reference is selected output is AVss

REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER (CONTINUED)

- bit 3-0 HLVDL<3:0>: High/Low-Voltage Detection Limit bits
 - 1111 = External analog input is used (input comes from the LVDIN pin and is compared with 1.2V band gap) 1110 = VDD trip point is $2.11V^{(1)}$
 - 1101 = VDD trip point is $2.21V^{(1)}$
 - 1100 = VDD trip point is 2.30V⁽¹⁾
 - 1011 = VDD trip point is 2.40V⁽¹⁾
 - 1010 = VDD trip point is $2.52V^{(1)}$
 - 1001 = VDD trip point is 2.63V⁽¹⁾
 - $1000 = \text{VDD trip point is } 2.82\text{V}^{(1)}$
 - 0111 = VDD trip point is $2.92V^{(1)}$
 - 0110 = VDD trip point is $3.13V^{(1)}$
 - 0101 = VDD trip point is $3.44V^{(1)}$
 - 0100-0000 = Reserved; do not use
- Note 1: The voltage is typical. It is for design guidance only and not tested. Refer to Table 26-13 in Section 26.0 "Electrical Characteristics" for minimum and maximum values.

Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions				
DC60	134	198	μA	-40°C						
	136	208	μA	+25°C	2.0V					
	141	217	μA	+85°C		Sleep with active main voltage regulator				
	139	209	μA	-40°C		(VREGS (PWRCON<0>) = 1, RETEN (PWRCON<1>) =0)				
	141	217	μA	+25°C	3.3V					
	143	231	μA	+85°C						
DC61	4.3	11.7	μA	-40°C						
	5.1	15.6	μA	+25°C	2.0V	Sleep with main voltage regulator in				
	11.4	34.3	μA	+85°C		Standby mode				
	6.1	16.8	μA	-40°C		(VREGS (PWRCON<0>) = 0,				
	6.9 20.1 μA +25°C 3.3	3.3V	RETEN (PWRCON<1>) = 0)							
	12.7	36.0	μA	+85°C						
DC62	2.3	_	μA	-40°C		Sleep with enabled retention voltage				
	2.7	_	μA	+25°C	2.0V					
	5.2		μA	+85°C		regulator (VREGS (PWRCON<0>) = 1,				
	2.3	-	μA	-40°C		RETEN (PWRCON<1>) = 1,				
	2.7		μA	+25°C	3.3V	RETVR(FPOR<2>)=0)				
	5.4	_	μA	+85°C						
DC63	0.28	-	μA	-40°C						
	0.44		μA	+25°C	2.0V	Sleep with enabled retention voltage				
	2.52	_	μA	+85°C		regulator (VREGS (PWRCON<0>) = 0,				
	0.29	_	μA	-40°C		RETEN (PWRCON<1>) = 1,				
	0.44	_	μA	+25°C	3.3V	RETVR(FPOR<2>)=0)				
	2.62	_	μA	+85°C						

TABLE 26-6: POWER-DOWN CURRENT (IPD)⁽²⁾

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with:

- Oscillator is configured in FRC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 000)
- OSC2 is configured as I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
- FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
- Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
- Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
- Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
- All I/O pins are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

TABLE 26-8: I/O PIN INPUT SPECIFICATIONS

Operati	Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)											
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions					
	VIL	Input Low Voltage ⁽²⁾										
DI10		I/O Pins with ST Buffer	Vss	_	0.2 Vdd	V						
DI15		MCLR	Vss		0.2 VDD	V						
DI16		OSC1/CLKI (XT mode)	Vss	_	0.2 Vdd	V						
DI17		OSC1/CLKI (HS mode)	Vss	_	0.2 Vdd	V						
DIOO	Viн	Input High Voltage ⁽²⁾										
DI20		I/O Pins with ST Buffer: without 5V Tolerance with 5V Tolerance	0.8 Vdd 0.8 Vdd		VDD 5.5	V V						
DI25		MCLR	0.8 Vdd	_	Vdd	V						
DI26		OSCI/CLKI (XT mode)	0.7 Vdd		Vdd	V						
DI27		OSC1/CLKI (HS mode)	0.7 Vdd	_	Vdd	V						
DI30	ICNPU	CNPUx Pull-up Current	_	350	_	μA	VPIN = 0V, VDD = 3.3V					
DI30A	ICNPD	CNPDx Pull-Down Current	—	300	—	μA	VPIN = 3.3V, VDD = 3.3V					
	lı∟	Input Leakage Current										
DI50		I/O Pins – 5V Tolerant	—	0.1	1.0	μA	VPIN = 3.3V, VDD = 3.3V, pin at high-impedance					
DI51		I/O Pins – Not 5V Tolerant	—	0.1	1.0	μA	VPIN = 3.3V, VDD = 3.3V, pin at high-impedance					
DI55		MCLR	—	0.1	1.0	μA	VPIN = 3.3V, VDD = 3.3V					
DI56		OSC1/CLKI	—	0.1	1.0	μA	VPIN = 3.3V, VDD = 3.3V					

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Refer to Table 1-1 for I/O pin buffer types.

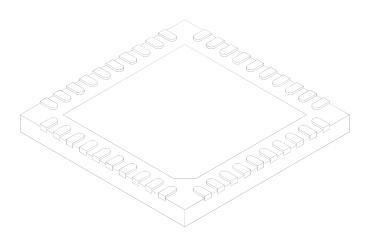
TABLE 26-14: COMPARATOR SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)						
Param No.	Symbol	Characteristic	Min	Тур ⁽²⁾	Мах	Units
D300	VIOFF	Input Offset Voltage	-20		20	mV
D301	VICM	Input Common-Mode Voltage	AVss - 0.3V	—	AVDD + 0.3V	V
D307	TRESP ⁽¹⁾	Response Time		150	—	ns

Note 1: Measured with one input at VDD/2 and the other transitioning from Vss to VDD.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-15: VOLTAGE REFERENCE SPECIFICATIONS


Operating Conditions: $2.0V < VDD < 3.6V$, $-40^{\circ}C < TA < +85^{\circ}C$ (unless otherwise stated)						
Param No.	Symbol	Characteristic	Min	Тур ⁽²⁾	Max	Units
VRD310	TSET	Settling Time ⁽¹⁾	_		10	μs
VRD311	VRA	Accuracy	-1	_	1	LSb
VRD312	VRur	Unit Resistor Value (R)		4.5		kΩ

Note 1: Measures the interval while VRDAT<4:0> transitions from '11111' to '00000'.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX		
Number of Pins	N		40			
Pitch	е		0.40 BSC			
Overall Height	Α	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.127 REF				
Overall Width	E	5.00 BSC				
Exposed Pad Width	E2	3.60	3.70	3.80		
Overall Length	D	5.00 BSC				
Exposed Pad Length	D2	3.60	3.70	3.80		
Contact Width	b	0.15	0.20	0.25		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

F

Fail-Safe Clock Monitor (FSCM)	65
Flash Program Memory	
Write Protection	

G

19
19
19
21
21
21
21

н

High/Low-Voltage Detect (HLVD)1	73
High/Low-Voltage Detect. See HLVD.	

L

I/O Ports	77
Analog/Digital Port Pins Configuration	78
Open-Drain Configuration	78
Parallel I/O (PIO)	78
Pull-up/Pull-Down Pins	
Write/Read Timing	78
Input Change Notification (ICN)	78
Instruction Set	203
Inter-IC Sound. See I ² S.	
Internet Address	

Μ

MCCP/SCCP	
Registers	
Memory Maps	
Devices with 16 Kbytes Program Memory	
Devices with 32 Kbytes Program Memory	
Devices with 64 Kbytes Program Memory	
Memory Organization	
Alternate Configuration Bits Space	
Microchip Internet Web Site	
MIPS32® microAptiv™ UC Core Configuration	
MPLAB Assembler, Linker, Librarian	
MPLAB ICD 3 In-Circuit Debugger	201
MPLAB PM3 Device Programmer	201
MPLAB REAL ICE In-Circuit Emulator System	201
MPLAB X Integrated Development	
Environment Software	
MPLAB X SIM Software Simulator	201
MPLIB Object Librarian	200
MPLINK Object Linker	200
Multiply/Divide Unit Latencies and Repeat Rates	
0	
Oscillator Configuration	65
Р	
Package Thermal Resistance	206
Packaging	
Details	
Marking	
Peripheral Pin Select (PPS)	
PICkit 3 In-Circuit Debugger/Programmer	

Pinout Description14

Power-Saving Features	177
Idle Mode	177
Low-Power Brown-out Reset	179
On-Chip Voltage Regulator Low-Power Modes	179
Regulator Retention	179
Regulator Standby	179
Peripheral Module Disable	
Sleep Mode	
PPS	
Available Peripherals	79
Available Pins	
Controlling	
Controlling Configuration Changes	
Input Mapping	
Input Pin Selection	
Output Mapping	
Output Pin Selection	
Programming and Diagnostics	

R

Real-Time Clock and Calendar (RTCC)	123
Real-Time Clock and Calendar. See RTCC.	
Register Map	
ADC	135
Alternate Configuration Words Summary	184
Band Gap	195
CDAC	
CLC1 and CLC2	155
Comparator 1 and 2	164
Configurations Words Summary	
CRC	148
Flash Controller	38
High/Low Voltage Detect	174
Interrupts	
MCCP/SCCP	
Oscillator Configuration	67
Peripheral Module Disable	
Peripheral Pin Select	
PORTA	82
PORTB	
PORTC	84
RAM Configuration, Device ID and System Lock	192
Reserved Registers	
Resets	
RTCC	124
SPI1 and SPI2	
Timer1	
UART1 and UART2	118
UDID	197
Watchdog Timer	
Registers	
AD1CHIT (ADC Compare Hit)	145
AD1CHS (ADC Input Select)	
AD1CON1 (ADC Control 1)	
AD1CON2 (ADC Control 2)	
AD1CON3 (ADC Control 3)	
AD1CON5 (ADC Control 5)	
AD1CSS (ADC Input Scan Select)	
ALMDATE (Alarm Date)	
ANCFG (Band Gap Control)	
CCPxCON1 (Capture/Compare/PWMx	
Control 1)	
CCPxCON2 (Capture/Compare/PWMx	
Control 2)	102