

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0016gpl020-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 20-PIN SSOP DEVICES

Pin	Function	Pin	Function
1	MCLR	11	RP11 /RB7
2	PGEC2/VREF+/AN0/ RP1 /OCM1E/INT3/RA0	12	TCK/ RP7 /U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾
3	PGED2/VREF-/AN1/ RP2 /OCM1F/RA1	13	TMS/REFCLKI/ RP8 /T1CK/T1G/ <mark>U1RTS</mark> /U1BCLK/SDO1/C2OUT/OCM1B/ INT2/RB9 ⁽¹⁾
4	PGED1/AN2/C1IND/C2INB/ RP14 /RB0	14	VCAP
5	PGEC1/AN3/C1INC/C2INA/ RP15 /RB1	15	TDO/AN7/LVDIN/ RP12 /RB12
6	AN4/ RP16 /RB2	16	TDI/AN8/ RP13 /RB13
7	OSC1/CLKI/AN5/C1INB/RP3/OCM1C/RA2	17	CDAC1/AN9/RP9/RTCC/U1TX/SDI1/C1OUT/INT1/RB14
8	OSC2/CLKO/AN6/C1INA/ RP4 /OCM1D/RA3 ⁽¹⁾	18	AN10/REFCLKO/RP10/U1RX/SS1/FSYNC1/INT0/RB15 ⁽¹⁾
9	PGED3/SOSCI/ RP5 /RB4	19	AVss/Vss
10	PGEC3/SOSCO/SCLKI/ RP6 /PWRLCLK/RA4	20	AVdd/Vdd

Note 1: Pin has an increased current drive strength.

Pin Diagrams (Continued)

TABLE 5: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 28-PIN QFN/UQFN DEVICES

Pin	Function	Pin	Function
1	PGED1/AN2/C1IND/C2INB /RP14 /RB0	15	TMS/REFCLKI/ RP8 /T1CK/T1G/U1RTS/U1BCLK/SDO1/C2OUT/OCM1B/ INT2/RB9 ⁽¹⁾
2	PGEC1/AN3/C1INC/C2INA/ RP15 /RB1	16	RP19/RC9
3	AN4/C1INB/ RP16 /RB2	17	VCAP
4	AN11/C1INA/RB3	18	PGED2/TDO/ RP17 /RB10
5	Vss	19	PGEC2/TDI/ RP18 /RB11
6	OSC1/CLKI/AN5/RP3/OCM1C/RA2	20	AN7/LVDIN/ RP12 /RB12
7	OSC2/CLKO/AN6/ RP4 /OCM1D/RA3 ⁽¹⁾	21	AN8/ RP13 /RB13
8	SOSCI/ RP5 /RB4	22	CDAC1/AN9/ RP9 /RTCC/U1TX/SDI1/C1OUT/INT1/RB14
9	SOSCO/SCLKI/ RP6 /PWRLCLK/RA4	23	AN10/REFCLKO/ RP10 /U1RX/SS1/FSYNC1/INT0/RB15 ⁽¹⁾
10	Vdd	24	AVss
11	PGED3/RB5	25	AVDD
12	PGEC3/RB6	26	MCLR
13	RP11 /RB7	27	VREF+/AN0/ RP1 /OCM1E/INT3/RA0
14	TCK/RP7/U1CTS/SCK1/OCM1A/RB8 ⁽¹⁾	28	VREF-/AN1/ RP2 /OCM1F/RA1

Note 1: Pin has an increased current drive strength.

Table of Contents

1.0	Device Overview	13
2.0	Guidelines for Getting Started with 32-Bit Microcontrollers	19
3.0	CPU	23
4.0	Memory Organization	33
5.0	Flash Program Memory	
6.0	Resets	45
7.0	CPU Exceptions and Interrupt Controller	51
8.0	Oscillator Configuration	65
9.0	I/O Ports	77
10.0	Timer1	87
11.0	Watchdog Timer (WDT)	
12.0	Capture/Compare/PWM/Timer Modules (MCCP and SCCP)	95
13.0	Serial Peripheral Interface (SPI) and Inter-IC Sound (I ² S)	109
14.0	Universal Asynchronous Receiver Transmitter (UART)	117
15.0	Real-Time Clock and Calendar (RTCC)	123
16.0	12-Bit Analog-to-Digital Converter with Threshold Detect	133
17.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	147
18.0	Configurable Logic Cell (CLC)	151
19.0	Comparator	163
20.0	Control Digital-to-Analog Converter (CDAC)	169
21.0	High/Low-Voltage Detect (HLVD)	173
22.0	Power-Saving Features	177
23.0	Special Features	181
24.0	Development Support	199
25.0	Instruction Set	203
26.0	Electrical Characteristics	205
27.0	Packaging Information	233
Appe	ndix A: Revision History	257
Index	۲	259
The N	Vicrochip Web Site	263
Custo	omer Change Notification Service	263
Custo	omer Support	263
Produ	uct Identification System	265

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	r-1	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	r-0
31:24	—		K23<2:0>			KU<2:0>		—
00.40	r-0	R-0	R-1	R-0	r-0	r-0	r-0	R-1
23:10	-	UDI	SB	MDU	—	—	—	DS
45.0	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-1
15:8	BE	AT<	1:0>	AR<2:0>			MT<2:1>	
7:0	R-1	r-0	r-0	r-0	r-0	R/W-0	R/W-1	R/W-0
7:0	MT<0>	—	—	_	_	K0<2:0>		

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: This bit is hardwired to '1' to indicate the presence of the CONFIG1 register

bit 30-28	K23<2:0>: Cacheability of the kseg2 and kseg3 Segments bits
h:+ 07 05	KIL 200 - Coshashility of the lugar and user Cormente hits
DIL 27-25	KU<2:U>: Cacheability of the kuseg and useg Segments bits
	010 = Cache is not implemented
bit 24-23	Reserved: Must be written as zeros; returns zeros on reads
bit 22	UDI: User-Defined bit
	0 = CorExtend user-defined instructions are not implemented
bit 21	SB: SimpleBE bit
	1 = Only simple byte enables are allowed on the internal bus interface
bit 20	MDU: Multiply/Divide Unit bit
	0 = Fast, high-performance MDU
bit 19-17	Reserved: Must be written as zeros; returns zeros on reads
bit 16	DS: Dual SRAM Interface bit
	1 = Dual instruction/data SRAM interface
bit 15	BE: Endian Mode bit
	0 = Little-endian
bit 14-13	AT<1:0>: Architecture Type bits
	00 = MIPS32 [®]
bit 12-10	AR<2:0>: Architecture Revision Level bits
	001 = MIPS32 Release 2
bit 9-7	MT<2:0>: MMU Type bits
	011 = Fixed mapping
bit 6-3	Reserved: Must be written as zeros; returns zeros on reads

bit 2-0 **K0<2:0>:** kseg0 Coherency Algorithm bits 010 = Cache is not implemented

© 2015-2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	-	—	-	—
45.0	R/W-0, HC	R/W-0	R-0, HS, HC	R-0, HS, HC	r-0	U-0	U-0	U-0
15:8	WR ^(1,4)	WREN ⁽¹⁾	WRERR ^(1,2)	LVDERR ^(1,2)	_	—	_	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	_	_		NVMOP<3:0>(3)		

REGISTER 5-1: NVMCON: NVM PROGRAMMING CONTROL REGISTER

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	r = Reserved bit	

bit 31-16 Unimplemented: Read as '0'

- bit 15 WR: Write Control bit^(1,4)
 - This bit cannot be cleared and can be set only when WREN = 1, and the unlock sequence has been performed. 1 = Initiates a Flash operation
 - 0 = Flash operation is complete or inactive

bit 14 WREN: Write Enable bit⁽¹⁾

- 1 = Enables writes to the WR bit and disables writes to the NVMOP<3:0> bits
- 0 = Disables writes to the WR bit and enables writes to the NVMOP<3:0> bits

bit 13 WRERR: Write Error bit^(1,2)

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation.

- 1 = Program or erase sequence did not complete successfully
- 0 = Program or erase sequence completed normally

bit 12 LVDERR: Low-Voltage Detect Error bit^(1,2)

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation. 1 = Low voltage is detected (possible data corruption if WRERR is set)

- 0 = Voltage level is acceptable for programming
- bit 11 Reserved: Maintain as '0'
- bit 10-4 Unimplemented: Read as '0'
- **Note 1:** These bits are only reset by a Power-on Reset (POR) and are not affected by other Reset sources.
 - 2: These bits are cleared by setting NVMOP<3:0> = 0000 and initiating a Flash operation (i.e., WR).
 - 3: NVMOP<3:0> bits are write-protected if the WREN bit is set.
 - 4: Writes to the WR bit require an unlock sequence. Refer to Section 5.1 "Flash Controller Registers Write Protection" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:10	—	—	—	—	—	—	—	—
45.0	R/W-1	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
15:8	BWPULOCK	_	—	—	—	BWP2 ⁽²⁾	BWP1 ⁽²⁾	BWP0 ⁽²⁾
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	_	_	_	_

REGISTER 5-7: NVMBWP: NVM BOOT FLASH (PAGE) WRITE-PROTECT REGISTER⁽¹⁾

Legend:

3					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BWPULOCK:** Boot Alias Write-Protect Unlock bit
 - 1 = BWPx bits are not locked and can be modified
 - 0 = BWPx bits are locked and cannot be modified
 - This bit is only clearable and cannot be set except by any Reset.
- bit 14-11 Unimplemented: Read as '0'
- bit 10 **BWP2:** Boot Alias Page 2 Write-Protect bit⁽²⁾
 - 1 = Write protection for physical address, 0x1FC00000 through 0x1FC007FF, is enabled 0 = Write protection for physical address, 0x1FC00000 through 0x1FC007FF, is disabled
- bit 9 **BWP1:** Boot Alias Page 1 Write-Protect bit⁽²⁾
 - 1 = Write protection for physical address, 0x1FC00800 through 0x1FC00FFF, is enabled
 - 0 = Write protection for physical address, 0x1FC00800 through 0x1FC00FFF, is disabled
- bit 8 **BWP0:** Boot Alias Page 0 Write-Protect bit⁽²⁾
 - 1 = Write protection for physical address, 0x1FC01000 through 0x1FC017FF, is enabled
 - 0 = Write protection for physical address, 0x1FC01000 through 0x1FC017FF, is disabled
- bit 7-0 Unimplemented: Read as '0'
- Note 1: Writes to this register require an NVMKEY unlock sequence. Refer to Section 5.1 "Flash Controller Registers Write Protection" for details.
 - 2: These bits can be modified only when the associated unlock bit (BWPULOCK) is set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_	—	—	IP3<2:0>			IS3<1:0>		
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	-	—	—		IP2<2:0>			IS2<1:0>	
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	—	—		IP1<2:0>			:1:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		_	_	IP0<2:0>			IS0<	:1:0>	

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26 IP3<2:0>: Interrupt Priority bits

- 111 = Interrupt priority is 7
- •
- •
- 010 =Interrupt priority is 2
- 001 = Interrupt priority is 1
- 000 = Interrupt is disabled

bit 25-24 **IS3<1:0>:** Interrupt Subpriority bits

- 11 = Interrupt subpriority is 3
- 10 = Interrupt subpriority is 2
- 01 = Interrupt subpriority is 1
- 00 = Interrupt subpriority is 0

bit 23-21 Unimplemented: Read as '0'

- bit 20-18 **IP2<2:0>:** Interrupt Priority bits
 - 111 = Interrupt priority is 7
 - •
 - •
 - 010 = Interrupt priority is 2
 - 001 = Interrupt priority is 1
 - 000 = Interrupt is disabled
- bit 17-16 **IS2<1:0>:** Interrupt Subpriority bits
 - 11 = Interrupt subpriority is 3
 - 10 = Interrupt subpriority is 2
 - 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- bit 15-13 Unimplemented: Read as '0'
- **Note 1:** This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x⁽¹⁾ (CONTINUED)

- bit 12-10 IP1<2:0>: Interrupt Priority bits
- 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 9-8 IS1<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 Unimplemented: Read as '0' bit 7-5 bit 4-2 IP0<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 1-0 ISO<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- **Note 1:** This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

REGISTER 14-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	0 = UxRTS pin is in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits ⁽¹⁾
	 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
bit 7	WAKE: Enable Wake-up on Start Bit Detect During Sleep Mode bit
	1 = Wake-up is enabled0 = Wake-up is disabled
bit 6	LPBACK: UARTx Loopback Mode Select bit
	1 = Loopback mode is enabled0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enables baud rate measurement on the next character – requires reception of a Sync character (0x55); cleared by hardware upon completion 0 = Baud rate measurement is disabled or has completed
bit 4	RXINV: Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = High-Speed mode – 4x baud clock is enabled 0 = Standard Speed mode – 16x baud clock is enabled
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Selection bit
	1 = 2 Stop bits 0 = 1 Stop bit

Note 1: These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 9.8 "Peripheral Pin Select (PPS)" for more information).

REGISTER 18-2: CLCxSEL: CLCx INPUT MUX SELECT REGISTER (CONTINUED)

bit 10-8 DS3<2:0>: Data Selection MUX 3 Signal Selection bits

For CLC1:

- 111 = SCCP3 compare match event
- 110 = SCCP2 compare match event
- 101 = SCCP2 OCM2 output
- 100 = UART1 RX input
- 011 = SPI1 SDO output
- 010 = Comparator 2 output
- 001 = CLC1 output
- 000 = CLCINA I/O pin

For CLC2:

- 111 = SCCP3 compare match event
- 110 = SCCP2 compare match event
- 101 = SCCP2 OCM2 output
- 100 = UART2 RX input
- 011 = SPI2 SDO output
- 010 = Comparator 2 output
- 001 = CLC2 output
- 000 = CLCINA I/O pin
- bit 7 Unimplemented: Read as '0'
- bit 6-4 DS2<2:0>: Data Selection MUX 2 Signal Selection bits

For CLC1:

- 111 = Reserved
- 110 = MCCP1 compare match event
- 101 = Reserved
- 100 = ADC End-of-Conversion (EOC) event
- 011 = UART1 TX output
- 010 = Comparator 1 output
- 001 = CLC2 output
- 000 = CLCINB I/O pin

For CLC2:

- 111 = Reserved
- 110 = MCCP1 compare match event
- 101 = Reserved
- 100 = ADC End-of-Conversion event
- 011 = UART2 TX output
- 010 = Comparator 1 output
- 001 = CLC1 output
- 000 = CLCINB I/O pin

bit 3 Unimplemented: Read as '0'

- bit 2-0 DS1<2:0>: Data Selection MUX 1 Signal Selection bits
 - 111 = MCCP1 OCM1C output
 - 110 = MCCP1 OCM1B output
 - 101 = MCCP1 OCM1A output
 - 100 = REFCLKO output
 - 011 = LPRC clock source
 - 010 = SOSC clock source
 - 001 = System clock (FSYS)
 - 000 = CLCINA I/O pin

19.1 Comparator Control Registers

TABLE 19-1: COMPARATOR 1 AND 2 REGISTER MAP

ess		n		Bits													s			
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset	
0000	CMOTAT	31:16	_	_	—	_	_	—	_	_	—	—	—	—	—	—	C2EVT	C1EVT	0000	
0900	CIVISTAT	15:0	-	-	SIDL	_	_	_	_	CVREFSEL	_	_	_	_	_	_	C2OUT	C10UT	0000	
0010		31:16	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000	
0910 CM1CO	CINICON	15:0	ON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000	
0930 CM2C	CM2CON	31:16	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000	
	CM2CON	CM2CON	CM2CON	15:0	ON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	—	CREF	_	_	CCH	<1:0>

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

20.0 CONTROL DIGITAL-TO-ANALOG CONVERTER (CDAC)

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 45. "Control Digital-to-Analog Converter (CDAC)" (DS60001327) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The Control Digital-to-Analog Converter (CDAC) generates analog voltage corresponding to the digital input.

The CDAC has the following features:

- 32 Output Levels are Available
- Internally Connected to Comparators to Conserve Device Pins
- · Output can be Connected to a Pin

A block diagram of the CDAC module is illustrated in Figure 20-1.

FIGURE 20-1: CDAC BLOCK DIAGRAM

REGISTER 23-2: FICD/AFICD: ICD/DEBUG CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	—	—	—	—	—	—		—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:10	—	—	—	—	—	—	_	—
45.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	_	—	—	—	_	—	_	_
7:0	r-1	r-1	r-1	R/P	R/P	R/P	r-1	r-1
	_	_	_	ICS<	<1:0>	JTAGEN	_	_

Legend:	r = Reserved bit	P = Programmable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-5 Reserved: Program as '1'

bit 4-3 ICS<1:0>: ICE/ICD Communication Channel Selection bits

11 = Communicates on PGEC1/PGED1

10 = Communicates on PGEC2/PGED2

01 = Communicates on PGEC3/PGED3

00 = Not connected

bit 2 JTAGEN: JTAG Enable bit

1 = JTAG is enabled

0 = JTAG is disabled

bit 1-0 Reserved: Program as '1'

REGISTER 23-5: FOSCSEL/AFOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER (CONTINUED)

- bit 2-0 FNOSC<2:0>: Oscillator Selection bits
 - 110 and 111 = Reserved (selects Fast RC (FRC) Oscillator with Divide-by-N)
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Reserved
 - 010 = Primary Oscillator (XT, HS, EC)
 - 001 = Primary or FRC Oscillator with PLL
 - 000 = Fast RC (FRC) Oscillator with Divide-by-N

REGISTER 23-6: FSEC/AFSEC: CODE-PROTECT CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
01.04	R/P	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	CP	—	_	_	—	—	—	—
00.40	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
23:10	—	—	-	-	—	—	-	—
15.0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
15:8	—	—	-	-	—	—	—	—
7:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
			_	_		_	_	

Legend:	r = Reserved bit	P = Programmable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31 CP: Code Protection Enable bit

1 = Code protection is disabled

0 = Code protection is enabled

bit 30-0 Reserved: Program as '1'

NOTES:

25.0 INSTRUCTION SET

The PIC32MM0064GPL036 family instruction set complies with the MIPS[®] Release 3 instruction set architecture. Only microMIPS32[™] instructions are supported. The PIC32MM0064GPL036 family does not have the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note:	Refer to the "M	IPS [®] Archite	ecture for
	Programmers	Volume II-	B: The
	microMIPS32™	Instruction	Set" at
	www.imgtec.com f	or more infori	mation.

Parameter No.	Typical ⁽¹⁾	Max	Units	Operating Temperature	Vdd	Conditions			
DC60	134	198	μA	-40°C					
	136	208	μA	+25°C	2.0V				
	141	217	μA	+85°C		Sleep with active main voltage regulate			
	139	209	μA	-40°C		PWRCON<0> = 1, RETEN (PWRCON<1>) = 0)			
	141	217	μA	+25°C	3.3V				
	143	231	μA	+85°C					
DC61	4.3	11.7	μA	-40°C					
	5.1	15.6	μA	+25°C	2.0V	Sleep with main voltage regulator in			
	11.4	34.3	μA	+85°C		Standby mode			
	6.1	16.8	μA	-40°C		(VREGS (PWRCON<0>) = 0,			
	6.9	20.1	μA	+25°C	3.3V	RETEN (PWRCON<1>) = 0)			
	12.7	36.0	μA	+85°C					
DC62	2.3	—	μA	-40°C					
	2.7	—	μA	+25°C	2.0V	Sleep with enabled retention voltage			
	5.2	—	μA	+85°C		regulator (VREGS (PWRCON<0>) = 1			
	2.3	—	μA	-40°C		RETEN (PWRCON<1>) = 1,			
	2.7	_	μA	+25°C	3.3V	REIVR(FPOR<2>)=0)			
	5.4	—	μA	+85°C					
DC63	0.28	_	μA	-40°C					
	0.44	_	μA	+25°C	2.0V	Sleep with enabled retention voltage			
	2.52	_	μA	+85°C		regulator (VREGS (PWRCON<0>) = 0,			
	0.29	—	μA	-40°C		RETEN (PWRCON<1>) = 1,			
	0.44		μA	+25°C	3.3V	REIVR(FPOR<2>)=0)			
-	2.62		μA	+85°C					

TABLE 26-6: POWER-DOWN CURRENT (IPD)⁽²⁾

Note 1: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with:

- Oscillator is configured in FRC mode without PLL (FNOSC<2:0> (FOSCSEL<2:0>) = 000)
- OSC2 is configured as I/O in Configuration Words (OSCIOFNC (FOSCSEL<10>) = 1)
- FSCM is disabled (FCKSM<1:0> (FOSCSEL<15:14>) = 00)
- Secondary Oscillator circuits are disabled (SOSCEN (FOSCSEL<6>) = 0 and SOSCSEL (FOSCSEL<12>) = 0)
- Main and low-power BOR circuits are disabled (BOREN<1:0> (FPOR<1:0>) = 00 and LPBOREN (FPOR<3>) = 0)
- Watchdog Timer is disabled (FWDTEN (FWDT<15>) = 0)
- All I/O pins are configured as outputs and driving low
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	/ILLIMETERS	;	
Dimer	nsion Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.50	0.55	0.70	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Number of Pins	N		28				
Pitch	е		0.40 BSC				
Overall Height	Α	-	-	0.60			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3		0.152 REF				
Overall Width	E	4.00 BSC					
Exposed Pad Width	E2	1.80	1.90	2.00			
Overall Length	D		4.00 BSC				
Exposed Pad Length	D2	1.80	1.90	2.00			
Terminal Width	b	0.15	0.20	0.25			
Corner Anchor Pad	b1	0.40	0.45	0.50			
Corner Pad, Metal Free Zone	b2	0.18	0.23	0.28			
Terminal Length	L	0.30	0.45	0.50			
Terminal-to-Exposed-Pad	К	-	0.60	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-333-M6 Rev A Sheet 2 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support