

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0016gpl020t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Exception Type (In Order of Priority)	Description	Branches to	Status Bits Set	Debug Bits Set	EXCCODE	XC32 Function Name
CpU	Execution of a coprocessor instruction for a coprocessor that is not enabled.	EBASE + 0x180	CU, EXL	_	CpU (0x0B)	_general_exception_handler
RI	Execution of a reserved instruction.	EBASE + 0x180	EXL	—	RI (0x0A)	_general_exception_handler
Ov	Execution of an arithmetic instruction that overflowed.	EBASE + 0x180	EXL	_	Ov (0x0C)	_general_exception_handler
Tr	Execution of a trap (when trap condition is true).	EBASE + 0x180	EXL	_	Tr (0x0D)	_general_exception_handler
DDBL	EJTAG data address break (address only) or EJTAG data value break on load (address and value).	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)	_	DDBL for a load instruction or DDBS for a store instruction	_	_
DDBS	EJTAG data address break (address only) or EJTAG data value break on store (address and value).	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)	_	DDBL for a load instruction or DDBS for a store instruction	_	_
AdES	Store address alignment error.	EBASE + 0x180	EXL	—	ADES (0x05)	_general_exception_handler
DBE	Load or store bus error.	EBASE + 0x180	EXL	—	DBE (0x07)	_general_exception_handler
CBrk	EJTAG complex breakpoint.	0xBFC0_0480 (ProbEn = 0 in ECR) 0xBFC0_0200 (ProbEn = 1 in ECR)		DIBImpr, DDBLImpr and/or DDBSImpr	_	_
	1	Lowest Priority	1	1		1

TABLE 7-1: MIPS32[®] microAptiv[™] UC MICROPROCESSOR CORE EXCEPTION TYPES (CONTINUED)

		Vector		Interrupt Rela	ted Bits Location	on	Persistent
Interrupt Source	MPLAB [®] XC32 vector name	Number	Flag	Enable	Priority	Subpriority	Interrupt
UART1 Reception	_UART1_RX_VECTOR	23	IFS0<23>	IEC0<23>	IPC5<28:26>	IPC5<25:24>	Yes
UART1 Transmission	_UART1_TX_VECTOR	24	IFS0<24>	IEC0<24>	IPC6<4:2>	IPC6<1:0>	Yes
UART1 Error	_UART1_ERR_VECTOR	25	IFS0<25>	IEC0<25>	IPC6<12:10>	IPC6<9:8>	Yes
CCP1 Input Capture or Output Compare	_CCP1_VECTOR	29	IFS0<29>	IEC0<29>	IPC7<12:10>	IPC7<9:8>	No
CCP1 Timer	_CCT1_VECTOR	30	IFS0<30>	IEC0<30>	IPC7<20:18>	IPC7<17:16>	No
CCP2 Input Capture or Output Compare	_CCP2_VECTOR	31	IFS0<31>	IEC0<31>	IPC7<28:26>	IPC7<25:24>	No
CCP2 Timer	_CCT2_VECTOR		IFS1<0>	IEC1<0>	IPC8<4:2>	IPC8<1:0>	No
CCP3 Input Capture or Output Compare	CCP3_VECTOR		IFS1<1>	IEC1<1>	IPC8<12:10>	IPC8<9:8>	No
CCP3 Timer	_CCT3_VECTOR	34	IFS1<2>	IEC1<2>	IPC8<20:18>	IPC8<17:16>	No
RESERVED		35	_	—	—	—	—
RESERVED		36	_	—	—	—	—
SPI2 Error	_SPI2_ERR_VECTOR	37	IFS1<5>	IEC1<5>	IPC9<12:10>	IPC9<9:8>	Yes
SPI2 Transmission	_SPI2_TX_VECTOR	38	IFS1<6>	IEC1<6>	IPC9<20:18>	IPC9<17:16>	Yes
SPI2 Reception	_SPI2_RX_VECTOR	39	IFS1<7>	IEC1<7>	IPC9<28:26>	IPC9<25:24>	Yes
UART2 Reception	_UART2_RX_VECTOR	40	IFS1<8>	IEC1<8>	IPC10<4:2>	IPC10<1:0>	Yes
UART2 Transmission	_UART2_TX_VECTOR	41	IFS1<9>	IEC1<9>	IPC10<12:10>	IPC10<9:8>	Yes
UART2 Error	_UART2_ERR_VECTOR	42	IFS1<10>	IEC1<10>	IPC10<20:18>	IPC10<17:16>	Yes
NVM Program or Erase Complete	_NVM_VECTOR	46	IFS1<14>	IEC1<14>	IPC11<20:18>	IPC11<17:16>	Yes
Core Performance Counter	_PERFORMANCE_COUNTER_VECTOR	47	IFS1<15>	IEC1<15>	IPC11<28:26>	IPC11<25:24>	No

Bit Range	Bit 31/23/15/7	Bit 30/22/14/ 6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0 U-0 U-0		U-0	U-0	U-0	U-0	U-0	
31:24	_	—	—	—	_	—	—	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—	_
45.0	U-0	U-0	U-0 U-0		U-0	U-0	U-0	U-0
15:8			—	—	—	—	—	
7.0	R-0, HS, HC	U-0	R-0, HS, HC	R-0, HS, HC	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	SPLLRDY	—	LPRCRDY	SOSCRDY	—	POSCRDY	SPDIVRDY	FRCRDY

REGISTER 8-5: CLKSTAT: CLOCK STATUS REGISTER

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-8 **Unimplemented:** Read as '0'

bit 7

- SPLLRDY: PLL Lock bit 1 = PLL is locked and ready 0 = PLL is not locked
- bit 6 Unimplemented: Read as '0'
- bit 5 LPRCRDY: LPRC Oscillator Ready bit 1 = LPRC oscillator is stable and ready 0 = LPRC oscillator is not stable
- bit 4 **SOSCRDY:** Secondary Oscillator (SOSC) Ready bit
 - 1 = SOSC is stable and ready
 - 0 = SOSC is not stable
- bit 3 Unimplemented: Read as '0'
- bit 2 **POSCRDY:** Primary Oscillator (POSC) Ready bit
 - 1 = POSC is stable and ready
 - 0 = POSC is not stable
- bit 1 SPDIVRDY: System PLL (with postscaler, SPLLDIV) Clock Ready Status bit
 - 1 = SPLLDIV is stable and ready
 - 0 = SPLLDIV is not stable
- bit 0 FRCRDY: Fast RC (FRC) Oscillator Ready bit
 - 1 = FRC oscillator is stable and ready
 - 0 = FRC oscillator is not stable

13.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (I²S)

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS61106) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

The SPI/I²S module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well

as digital audio devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital Converters (ADC), etc.

The SPI/I²S module is compatible with Motorola[®] SPI and SIOP interfaces.

Some of the key features of the SPI module are:

- · Master and Slave modes Support
- Four Different Clock Formats
- Enhanced Framed SPI Protocol Support
- · User-Configurable 8-Bit, 16-Bit and 32-Bit Data Width
- Separate SPI FIFO Buffers for Receive and Transmit:
 - FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable Interrupt Event on Every 8-Bit, 16-Bit and 32-Bit Data Transfer
- Operation during Sleep and Idle modes
- Audio Codec Support:
 - I²S protocol

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
31:24	—	—	—		RXBUFELM<4:0>						
00.40	6 U-0 U-0 U-0		R-0	R-0							
23.10	—	—	—		Tک	(BUFELM<4:0)>				
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0			
15:8	—	—	—	FRMERR	SPIBUSY	—	—	SPITUR			
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0			
7:0	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF			

REGISTER 13-3: SPIxSTAT: SPIx STATUS REGISTER

Legend:	C = Clearable bit	HS = Hardware Settable	bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 FRMERR: SPIx Frame Error status bit 1 = Frame error is detected 0 = No frame error is detected This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPIx Activity Status bit
 - 1 = SPIx peripheral is currently busy with some transactions
 - 0 = SPIx peripheral is currently Idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPITUR: SPIx Transmit Underrun (TUR) bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When the SPIx Shift register is empty
 - 0 = When the SPIx Shift register is not empty
- bit 6 SPIROV: SPIx Receive Overflow (ROV) Flag bit
 - 1 = New data is completely received and discarded; the user software has not read the previous data in the SPIxBUF register
 - 0 = No overflow has occurred
 - This bit is set in hardware; it can only be cleared (= 0) in software.
- bit 5 SPIRBE: SPIx RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CPU Read Pointer (CRPTR) = SPI Write Pointer (SWPTR))
 - 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'

TABLE 16-1: ADC REGISTER MAP (CONTINUED)

ess							-			Bits	5								
Virtual Addr (BF80_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0750		31:16																	0000
0720		15:0																	0000
07E0		31:16			ADC1BUF15<31:0>													0000	
0/10		15:0	15:0													0000			
0800	AD1CON1	31:16	—	—								—	—	0000					
0000	AB TOOLL	15:0	ON		SIDL	—	_	F	ORM<2:0	>		SSR	C<3:0>		MODE12	ASAM	SAMP	DONE	0000
0810	AD1CON2	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0010	AB TOOL	15:0		VCFG<2:0)>	OFFCAL	BUFREGEN	CSCNA	_	_	BUFS	—		SMI	PI<3:0>		BUFM	—	0000
0820	AD1CON3	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—		—	—	0000
0020	1.5.100.10	15:0	ADRC	EXTSAM	_		SAN	/IC<4:0>						AD	DCS<7:0>				0000
0840	AD1CHS	31:16	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—	0000
0010	7.010110	15:0	—	—	—	—	—	—	—	—	С	H0NA<2	0>		(CH0SA<4:0	>		0000
0850	AD1CSS	31:16	—		CSS<30:28	>	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	7101000	15:0	—	—			T	•			CSS<13	:0> (1,2)			T				0000
0870	AD1CON5	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
00/0	1.5100110	15:0	ASEN	LPEN	_	BGREQ	—	—	ASIN	۲<1:0>	—	—	—	—	WM<	:1:0>	CM<	:1:0>	0000
0880	AD1CHIT	31:16	—	—	_	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	—	—							CHH<13	:0> (1,2)							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The CSS<13:11> and CHH<13:11> bits are not implemented in 20-pin devices.

2: The CSS<13:12> and CHH<13:12> bits are not implemented in 28-pin devices.

3: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 19-2: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 AND 2) (CONTINUED)

bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits

11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)10 = Trigger/event/interrupt is generated on transition of the comparator output:

If CPOL = 0 (non-inverted polarity):

High-to-low transition only. If CPOL = 1 (inverted polarity):

Low-to-high transition only.

01 = Trigger/event/interrupt is generated on transition of the comparator output:

If CPOL = 0 (non-inverted polarity):

Low-to-high transition only.

If CPOL = 1 (inverted polarity):

High-to-low transition only.

00 = Trigger/event/interrupt generation is disabled

- bit 5 **Unimplemented:** Read as '0'
- bit 4 CREF: Comparator Reference Select bit (non-inverting input)
 - 1 = Non-inverting input connects to the internal reference defined by the CVREFSEL bit in the CMSTAT register 0 = Non-inverting input connects to the CXINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to the band gap reference voltage
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CxINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	Bit 22/14/6 Bit 29/21/13/5 Bit 28/20/12/ U-0 U-0 U-0 U-0 U-0 R/W-0 U-0 U-0 R/W-0 U-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	_	—	_	_	_
00.40	U-0	U-0 U-0 U-0 R/V		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:10	—	—	—		C	ACDAT<4:0>	it Bit Bit /10/2 25/17/9/1 24/16/8/ -0 U-0 U-0 -0 R/W-0 R/W-0 -0 R/W-0 R/W-0 T<4:0> DACOE -0 U-0 R/W-0 -0 R/W-0 R/W-0 -0 R/W-0 R/W-0 -0 R/W-0 R/W-0	
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	ON	—	—	—	—	—	—	DACOE
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0		_			—	—	REFSE	EL<1:0>

REGISTER 20-1: DAC1CON: CDAC CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-21 Unimplemented: Read as '0'

bit 20-16 **DACDAT<4:0>:** CDAC Voltage Reference Selection bits

11111 = (DACDAT<4:0> * VREF+/32) or (DACDAT<4:0> * AVDD/32) volts depending on the REFSEL<1:0> bits \cdot

•

00000 = 0.0 volts

- bit 15 **ON:** Voltage Reference Enable bit
 - 1 = Voltage reference is enabled
 - 0 = Voltage reference is disabled

bit 14-9 Unimplemented: Read as '0'

- bit 8 DACOE: CDAC Voltage Reference Output Enable bit
 - 1 = Voltage level is output on the CDAC1 pin
 - 0 = Voltage level is disconnected from the CDAC1 pin

bit 7-2 Unimplemented: Read as '0'

- bit 1-0 REFSEL<1:0>: CDAC Voltage Reference Source Select bits
 - 11 = Reference voltage is AVDD
 - 10 = No reference is selected output is AVss
 - 01 = Reference voltage is the VREF+ input pin voltage
 - 00 = No reference is selected output is AVss

TABLE 23-6: BAND GAP REGISTER MAP

Virtual Address (BF80_#)										В	its								6
	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
0000	ANOFO(1)	31:16	_	—	_	_	—	—	—	_	—	_	—	_	—	—	—	_	0000
2300	ANCEG	15:0	_	_	_		_	_					_			VBGADC	VBGCMP	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

TABLE 26-12: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)									
Param No.	Symbol	Characteristics	Min	Typ ⁽¹⁾	Max	Units	Comments		
DVR10	Vbg	Band Gap Reference Voltage	_	1.2	—	V			
DVR20	Vrgout	Regulator Output Voltage	-	1.8	-	V	Vdd > 1.9V		
DVR21	CEFC	External Filter Capacitor Value	4.7	10	-	μF	Series Resistance < 3Ω recommended; < 5Ω required		
DVR30	Vlvr	Low-Voltage Regulator Output Voltage	0.9	—	1.2	V	RETEN = 1, RETVR (FPOR<2>) = 0		

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-13: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)								
Param No.	Symbol	Characteristic			Тур ⁽²⁾	Max	Units	
DC18	C18 VHLVD ⁽¹⁾ HLVD Voltage on VDD		HLVDL<3:0> = 0101	3.25		3.63	V	
Transition		Transition	HLVDL<3:0> = 0110	2.95		3.30	V	
			HLVDL<3:0> = 0111	2.75		3.09	V	
		HLVDL<3:0> = 1000	2.65		2.98	V		
	HLVDL<3:0> = 1001	2.45		2.80	V			
		HLVDL<3:0> = 1010	2.35	—	2.69	V		
		HLVDL<3:0> = 1011	2.25		2.55	V		
			HLVDL<3:0> = 1100	2.15		2.44	V	
			HLVDL<3:0> = 1101	2.08	—	2.33	V	
			HLVDL<3:0> = 1110	2.00		2.22	V	
DC101	VTHL	HLVD Voltage on LVDIN Pin Transition	HLVDL<3:0> = 1111	—	1.2		V	

Note 1: Trip points for values of HLVD<3:0>, from '0000' to '0100', are not implemented.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

26.2 AC Characteristics and Timing Parameters

FIGURE 26-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-16: CAPACITIVE LOADING CONDITIONS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
DO50	Cosco	OSC2/CLKO Pin	_	15	pF	In XT and HS modes when external clock is used to drive OSC1/CLKI
DO56	Сю	All I/O Pins and OSC2	—	50	pF	EC mode

TABLE 26-33: EJTAG TIMING REQUIREMENTS

Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)								
Param. No.	Symbol	Description ⁽¹⁾	Min	Max	Units	Conditions		
EJ1	Ттсксүс	TCK Cycle Time	25	_	ns			
EJ2	Ттскнідн	TCK High Time	10	-	ns			
EJ3	TTCKLOW	TCK Low Time	10	_	ns			
EJ4	TTSETUP	TAP Signals Setup Time before Rising TCK	5		ns			
EJ5	TTHOLD	TAP Signals Hold Time after Rising TCK	3		ns			
EJ6	TTDOOUT	TDO Output Delay Time from Falling TCK	—	5	ns			
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	—	5	ns			
EJ8	TTRSTLOW	TRST Low Time	25	_	ns			
EJ9	TRF	TAP Signals Rise/Fall Time, All Input and Output			ns			

Note 1: These parameters are characterized but not tested in manufacturing.

27.1 Package Marking Information (Continued)

28-Lead SSOP

28-Lead QFN

28-Lead UQFN

36-Lead VQFN

40-Lead UQFN

Example

Example

Example

Example

Example

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

2

4x b1

N

BOTTOM VIEW

е

С

AB

0.07M C

0.05M

Κ

28X b

Φ

36-Terminal Very Thin Plastic Quad Flatpack No-Lead (M2) - 6x6x1.0mm Body [VQFN] SMSC Legacy "Sawn Quad Flatpack No-Lead [SQFN]"

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Number of Terminals	Ν		36				
Pitch	е	0.50 BSC					
Overall Height	Α	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3		0.20 REF				
Overall Width	E		6.00 BSC				
Exposed Pad Width	E2	3.60	3.70	3.80			
Overall Length	D		6.00 BSC				
Exposed Pad Length	D2	3.60	3.70	3.80			
Terminal Width	b	0.18	0.25	0.30			
Terminal Length	L	0.50	0.60	0.75			
Terminal-to-Exposed-Pad	K	0.45	0.55	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-272B-M2 Sheet 2 of 2

36-Terminal Very Thin Plastic Quad Flatpack No-Lead (M2) - 6x6x0.9 mm Body [VQFN] SMSC Legacy "Sawn Quad Flatpack No-Lead [SQFN]"

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.50 BSC			
Optional Center Pad Width	X2			3.80	
Optional Center Pad Length	Y2			3.80	
Contact Pad Spacing	C1		5.60		
Contact Pad Spacing	C2		5.60		
Contact Pad Width (X36)	X1			0.30	
Contact Pad Length (X36)	Y1			1.10	
Contact Pad to Center Pad (X36)	G1	0.35			
Space Between Contact Pads (X32)	G2	0.20			
Thermal Via Diameter	V		0.30		
Thermal Via Pitch	EV		1.00		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2272B-M2

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES: