

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 11x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0016gpl020t-i-ss

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The MIPS[®] architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS architecture also defines a Multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. These configuration options and other system information is available by accessing the CP0 registers listed in Table 3-2.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake from Sleep Flag bit
	1 = Device was in Sleep mode
	0 = Device was not in Sleep mode
bit 2	IDLE: Wake from Idle Flag bit ⁽²⁾
	 1 = Device was in Idle mode 0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = Brown-out Reset has occurred
	0 = Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = Power-on Reset has occurred
	0 = Power-on Reset has not occurred

- Note 1: User software must clear bits in this register to view the next detection.
 - 2: The IDLE bit will also be set when the device wakes from Sleep mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	_		-	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_	—	-	_	_	-	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	_		_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC
7:0	_	_	_	_	_		_	SWRST ^(1,2)

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Legend: HC = Hardware Clearable bit							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit^(1,2)
 - 1 = Enables Software Reset event
 - 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 23.4 "System Registers Write Protection" for details.
 - 2: Once this bit is set, any read of the RSWRST register will cause a Reset to occur.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	—		IP3<2:0>		IS3<1:0>		
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	—	_	_		IP2<2:0>	IS2<1:0>			
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_		IP1<2:0>		IS1<	1:0>	
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	_	_		IP0<2:0>		IS0<	1:0>	

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x⁽¹⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-29 Unimplemented: Read as '0'

bit 28-26 IP3<2:0>: Interrupt Priority bits

- 111 = Interrupt priority is 7
- •
- •
- 010 =Interrupt priority is 2
- 001 = Interrupt priority is 1
- 000 = Interrupt is disabled

bit 25-24 **IS3<1:0>:** Interrupt Subpriority bits

- 11 = Interrupt subpriority is 3
- 10 = Interrupt subpriority is 2
- 01 = Interrupt subpriority is 1
- 00 = Interrupt subpriority is 0

bit 23-21 Unimplemented: Read as '0'

- bit 20-18 **IP2<2:0>:** Interrupt Priority bits
 - 111 = Interrupt priority is 7
 - •
 - •
 - 010 = Interrupt priority is 2
 - 001 = Interrupt priority is 1
 - 000 = Interrupt is disabled
- bit 17-16 **IS2<1:0>:** Interrupt Subpriority bits
 - 11 = Interrupt subpriority is 3
 - 10 = Interrupt subpriority is 2
 - 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- bit 15-13 Unimplemented: Read as '0'
- **Note 1:** This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER x⁽¹⁾ (CONTINUED)

- bit 12-10 IP1<2:0>: Interrupt Priority bits
- 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 9-8 IS1<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1 00 = Interrupt subpriority is 0 Unimplemented: Read as '0' bit 7-5 bit 4-2 IP0<2:0>: Interrupt Priority bits 111 = Interrupt priority is 7 010 = Interrupt priority is 2 001 = Interrupt priority is 1 000 = Interrupt is disabled bit 1-0 ISO<1:0>: Interrupt Subpriority bits 11 = Interrupt subpriority is 3 10 = Interrupt subpriority is 2 01 = Interrupt subpriority is 1
 - 00 = Interrupt subpriority is 0
- **Note 1:** This register represents a generic definition of the IPCx register. Refer to Table 7-3 for the exact bit definitions.

9.9 I/O Ports Control Registers

TABLE 9-4: PORTA REGISTER MAP

ess		æ									Bits								
Virtual Address (BF80_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2600	ANSELA	31:16	_	_	_	_	—	_	—	—	_	—	_	—	—	—	_	—	0000
2000	/ NOLL/	15:0	_	—	—	—	—			_	_	_	_	_		ANSA	<3:0>		000F
2610	TRISA	31:16	_	_	—	—	—		—	_	_	_	_	—	—	—	_	_	0000
2010	INIOA	15:0	_	—	—	—	—	_	TRISA9 ^(1,2)	_	—	—	_			TRISA<4:0>			021F
2620	PORTA	31:16	_	_	—	—	—		—	_	_	_	_	—	—	—	_	_	0000
2020	1 OKIA	15:0	_	—	—	—	—		RA9 ^(1,2)	_	_	_	_			RA<4:0>			xxxx
2630	LATA	31:16	_	—	—	—	—			_	_	_	_	—	—	—	_	_	0000
2000	DAIX	15:0	_	—	—	—	—		LATA9 ^(1,2)	_	_	_	_			LATA<4:0>			0000
2640	ODCA	31:16	_	—	—	—	—			_	_	_	_	—	—	_	_	_	0000
2040	000/1	15:0	_	—	—	—	—		ODCA9 ^(1,2)	_	_	_	_		1	ODCA<4:0>			0000
2650	CNPUA	31:16	_	—	—	—	—			_	_	_	_	—	—	_	_	_	0000
2000		15:0	_	—	—	—	—		CNPUA9 ^(1,2)	_	_	_	_		(CNPUA<4:0>			0000
2660	CNPDA	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
2000		15:0	—	—	—	—	—	_	CNPDA9 ^(1,2)	—	—	—	—		0	CNPDA<4:0>			0000
2670	CNCONA	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
2010		15:0	ON	—	—	—	CNSTYLE			_	_	_	_	_	—	_	_	_	0000
2680	CNEN0A	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
2000		15:0	—	—	—	—	—	_	CNIEA9 ^(1,2)	—	—	—	—			CNIEA<4:0>			0000
2690	CNSTATA	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
2000	01101/11/1	15:0	—	—	—	—	—	_	CNSTATA9(1,2)	—	—	—	—		С	NSTATA<4:0	>		0000
26A0	CNEN1A	31:16	—	—	—	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
20/10	SNENIA	15:0	_	—	—	—	—	_	CNIE1A9 ^(1,2)	—	_	—	_		C	CNIE1A<4:0>			0000
26B0	CNFA	31:16	_	—	—	—	—	_		—	_	—	_	—	—	—	_	—	0000
2000		15:0	_	—	—	—	—	_	CNFA9 ^(1,2)		_	—	-			CNFA<4:0>			0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

3: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

12.0 CAPTURE/COMPARE/PWM/ TIMER MODULES (MCCP AND SCCP)

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 30. "Capture/Compare/PWM/Timer (MCCP and SCCP)" (DS60001381) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM.

12.1 Introduction

PIC32MM0064GPL036 family devices include three Capture/Compare/PWM/Timer (CCP) modules. These modules are similar to the multipurpose timer modules found on many other 32-bit microcontrollers. They also provide the functionality of the comparable input capture, output compare and general purpose timer peripherals found in all earlier PIC32 devices.

CCP modules can operate in one of three major modes:

- General Purpose Timer
- Input Capture
- Output Compare/PWM

There are two different forms of the module, distinguished by the number of PWM outputs that the module can generate. Single Capture/Compare/PWM/Timer (SCCPs) output modules provide only one PWM output. Multiple Capture/Compare/PWM/Timer (MCCPs) output modules can provide up to six outputs and an extended range of output control features, depending on the pin count of the particular device.

All modules (SCCP and MCCP) include these features:

- User-Selectable Clock Inputs, including System Clock and External Clock Input Pins
- Input Clock Prescaler for Time Base
- Output Postscaler for module Interrupt Events or Triggers
- Synchronization Output Signal for Coordinating other MCCP/SCCP modules with User-Configurable Alternate and Auxiliary Source Options

- Fully Asynchronous Operation in all modes and in Low-Power Operation
- Special Output Trigger for ADC Conversions
- 16-Bit and 32-Bit General Purpose Timer modes with Optional Gated Operation for Simple Time Measurements
- · Capture modes:
 - Backward compatible with previous input capture peripherals of the PIC32 family
 - 16-bit or 32-bit capture of time base on external event
 - Up to four-level deep FIFO capture buffer
 - Capture source input multiplexer
 - Gated capture operation to reduce noise-induced false captures
- · Output Compare/PWM modes:
 - Backward compatible with previous output compare peripherals of the PIC32 family
 - Single Edge and Dual Edge Compare modes
 - Center-Aligned Compare mode
 - Variable Frequency Pulse mode
 - External Input mode

MCCP modules also include these extended PWM features:

- Single Output Steerable mode
- Brush DC Motor (Forward and Reverse) modes
- Half-Bridge with Dead-Time Delay mode
- Push-Pull PWM mode
- Output Scan mode
- Auto-Shutdown with Programmable Source and Shutdown State
- Programmable Output Polarity

The SCCP and MCCP modules can be operated in only one of the three major modes (Capture, Compare or Timer) at any time. The other modes are not available unless the module is reconfigured.

A conceptual block diagram for the module is shown in Figure 12-1. All three modes use the time base generator and the common Timer register pair (CCPxTMR). Other shared hardware components, such as comparators and buffer registers, are activated and used as a particular mode requires. NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
31:24	-	_		RXBUFELM<4:0>								
00.40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
23:16	_	_	_	TXBUFELM<4:0>								
15.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0				
15:8	_	_		FRMERR	SPIBUSY	_	_	SPITUR				
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0				
7:0	SRMT	SPIROV	SPIRBE	_	SPITBE	—	SPITBF	SPIRBF				

REGISTER 13-3: SPIxSTAT: SPIx STATUS REGISTER

Legend:	C = Clearable bit	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 FRMERR: SPIx Frame Error status bit 1 = Frame error is detected 0 = No frame error is detected This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPIx Activity Status bit
 - 1 = SPIx peripheral is currently busy with some transactions
 - 0 = SPIx peripheral is currently Idle
- bit 10-9 **Unimplemented:** Read as '0'
- bit 8 SPITUR: SPIx Transmit Underrun (TUR) bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When the SPIx Shift register is empty
 - 0 = When the SPIx Shift register is not empty
- bit 6 SPIROV: SPIx Receive Overflow (ROV) Flag bit
 - 1 = New data is completely received and discarded; the user software has not read the previous data in the SPIxBUF register
 - 0 = No overflow has occurred
 - This bit is set in hardware; it can only be cleared (= 0) in software.
- bit 5 SPIRBE: SPIx RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CPU Read Pointer (CRPTR) = SPI Write Pointer (SWPTR))
 - 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'

TABLE 23-4: ALTERNATE CONFIGURATION WORDS SUMMARY

sse										E	Bits							
Virtual Address (BFC0_#)	Register Name	Bit Range	31\15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0
1740		31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1740	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
4744		31:16			•					USERI	D<15:0>			•	•			
1744	AFDEVOPT	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	SOSCHP	r-1	r-1	r-1
1748	AFICD	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1748	AFICD	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	ICS	<1:0>	JTAGEN	r-1	r-1
174C	AFPOR	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1740	AFFUR	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	LPBOREN	RETVR	BOREN	√<1:0>
1750	AFWDT	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1750	AFWDI	15:0	FWDTEN	RCLKSE	EL<1:0>		R	WDTPS<4:0>			WINDIS	FWDTWIN	ISZ<1:0>		SW	DTPS<4:0	>	
1754	AFOSCSEL	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
17.54	AI USUSEE	15:0	FCKSM	<1:0>	r-1	SOSCSEL	r-1	OSCIOFNC	POSCM	OD<1:0>	IESO	SOSCEN	r-1	PLLSRC	r-1	F	NOSC<2:0	>
1758	AFSEC	31:16	CP	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1750		15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
175C	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1750	RESERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1760	RESERVED	31:16	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1700	NEGERVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1764	RESERVED	31:16	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1
1704	NEGENVED	15:0	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1	r-1

Legend: r-0 = Reserved bit, must be programmed as '0'; r-1 = Reserved bit, must be programmed as '1'.

25.0 INSTRUCTION SET

The PIC32MM0064GPL036 family instruction set complies with the MIPS[®] Release 3 instruction set architecture. Only microMIPS32[™] instructions are supported. The PIC32MM0064GPL036 family does not have the following features:

- · Core extend instructions
- Coprocessor 1 instructions
- Coprocessor 2 instructions

Note:	Refer to the "MIPS® Architecture for
	Programmers Volume II-B: The
	microMIPS32™ Instruction Set" at
	www.imgtec.com for more information.

TABLE 26-10: I/O PIN OUTPUT SPECIFICATIONS

Operatir	Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)										
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions					
	Vol	Output Low Voltage									
DO10		I/O Ports	_	0.36	V	IOL = 6.0 mA, VDD = 3.6V					
			_	0.21	V	IOL = 3.0 mA, VDD = 2V					
DO16		RA3, RB8, RB9 and RB15 I/O Ports	—	0.16	V	IOL = 6.0 mA, VDD = 3.6V					
			_	0.12	V	IOL = 3.0 mA, VDD = 2V					
	Voн	Output High Voltage									
DO20		I/O Ports	3.25	—	V	IOH = -6.0 mA, VDD = 3.6V					
			1.4	—	V	IOH = -3.0 mA, VDD = 2V					
DO26		RA3, RB8, RB9 and RB15 I/O Ports	3.3	—	V	IOH = -6.0 mA, VDD = 3.6V					
			1.55	—	V	IOH = -3.0 mA, VDD = 2V					

TABLE 26-11: PROGRAM FLASH MEMORY SPECIFICATIONS

Operat	Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)							
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
D130	Eр	Cell Endurance	10000	20000	_	E/W		
D131	VICSP	VDD for In-Circuit Serial Programming™ (ICSP™)	VBOR	_	3.6	V		
D132	VRTSP	VDD for Run-Time Self-Programming (RTSP)	2.0	_	3.6	V		
D133	Tiw	Self-Timed Double-Word Write Cycle Time	19.7	21.0	22.3	μs	8 bytes, data is not all '1's	
		Self-Timed Row Write Cycle Time	1.3	1.4	1.5	ms	256 bytes, data is not all '1's, SYSCLK > 2 MHz	
D133	TIE	Self-Timed Page Erase Time	15.0	16.0	17.0	ms	2048 bytes	
D134	TRETD	Characteristic Retention	20	—	_	Year	If no other specifications are violated	
D136	TCE	Self-Timed Chip Erase Time	16.0	17.0	18.0	ms		

Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

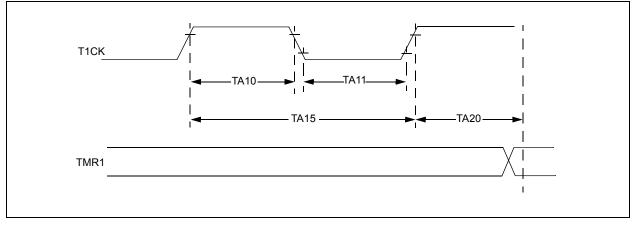
TABLE 26-14: COMPARATOR SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)								
Param No.	Symbol	Characteristic	Min	Тур ⁽²⁾	Мах	Units		
D300	VIOFF	Input Offset Voltage	-20		20	mV		
D301	VICM	Input Common-Mode Voltage	AVss - 0.3V	—	AVDD + 0.3V	V		
D307	TRESP ⁽¹⁾	Response Time		150	—	ns		

Note 1: Measured with one input at VDD/2 and the other transitioning from Vss to VDD.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-15: VOLTAGE REFERENCE SPECIFICATIONS

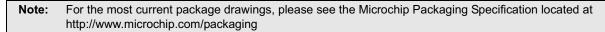

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)							
Param No.	Symbol	Characteristic	Min	Тур ⁽²⁾	Max	Units	
VRD310	TSET	Settling Time ⁽¹⁾	_		10	μs	
VRD311	VRA	Accuracy	-1	_	1	LSb	
VRD312	VRur	Unit Resistor Value (R)		4.5		kΩ	

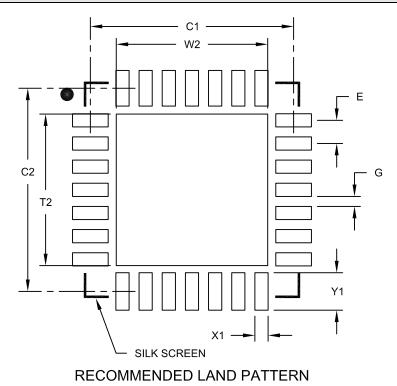
Note 1: Measures the interval while VRDAT<4:0> transitions from '11111' to '00000'.

2: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

PIC32MM0064GPL036 FAMILY

FIGURE 26-5: TIMER1 EXTERNAL CLOCK TIMING CHARACTERISTICS




TABLE 26-23: MCCP/SCCP TIMER1 EXTERNAL CLOCK TIMING CHARACTERISTICS

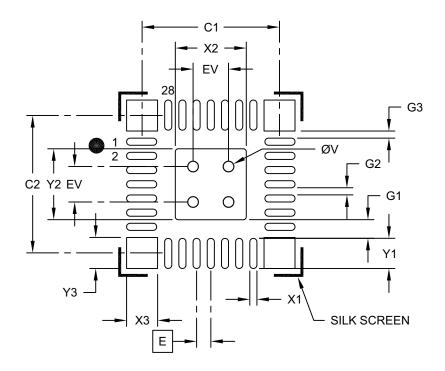
Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)							
Param. No.	Symbol	Characte	ristics ⁽¹⁾	Min	Max	Units	Conditions
TA10	Тскн	T1CK High Time	Synchronous	1	_	TPBCLK	Must also meet Parameter TA15
			Asynchronous	10	_	ns	
TA11	TCKL	T1CK Low Time	Synchronous	1	_	TPBCLK	Must also meet Parameter TA15
			Asynchronous	10	_	ns	
TA15	Тскр	T1CK Input	Synchronous	2	_	TPBCLK	
		Period	Asynchronous	20	_	ns	
TA20	TCKEXTMRL	Delay from Exterr Edge to Timer Inc			3	TPBCLK	Synchronous mode

Note 1: These parameters are characterized but not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

	MILLIMETERS					
Dimension Limits		MIN	NOM	MAX		
Contact Pitch	Contact Pitch E		0.65 BSC			
Optional Center Pad Width	W2			4.25		
Optional Center Pad Length	T2			4.25		
Contact Pad Spacing			5.70			
Contact Pad Spacing	C2		5.70			
Contact Pad Width (X28)	X1			0.37		
Contact Pad Length (X28)	Y1			1.00		
Distance Between Pads		0.20				

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	E		0.40 BSC	
Center Pad Width	X2			2.00
Center Pad Length	Y2			2.00
Contact Pad Spacing	C1		3.90	
Contact Pad Spacing	C2		3.90	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.85
Contact Pad to Center Pad (X28)	G1		0.52	
Contact Pad to Pad (X24)	G2	0.20		
Contact Pad to Corner Pad (X8)	G3	0.20		
Corner Anchor Width (X4)	X3			0.78
Corner Anchor Length (X4)	Y3			0.78
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2333-M6 Rev B

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain info	rmation, e.g., on pricing or delivery, refer to the factory or the listed sales o	office.
Family Key Feature Set _ Pin Count Tape and Reel Flag		Example: PIC32MM0064GPL036-I/M2: PIC32 General Purpose Device with MIPS32 [®] microAptiv™ UC Core, 64-Kbyte Program Memory, 36-Pin Package.
Architecture	MM = MIPS32 [®] microAptiv™ UC CPU Core	
Flash Memory Size	0016 = 16 Kbytes 0032 = 32 Kbytes 0064 = 64 Kbytes	
Family	GP = General Purpose Family	
Key Feature	L = Up to 25 MHz operating frequency with basic peripheral set of 2 UART and 2 SPI modules	
Pin Count	020 = 20-pin 028 = 28-pin 036 = 36/40-pin	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0653-2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15