

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Active
Core Processor	MIPS32® microAptiv™
Core Size	32-Bit Single-Core
Speed	25MHz
Connectivity	IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, I ² S, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10/12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mm0016gpl028-e-m6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Architecture Overview

The MIPS32[®] microAptiv[™] UC microprocessor core in the PIC32MM0064GPL036 family devices contains several logic blocks, working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- General Purpose Register (GPR)
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Memory Management Unit (MMU)
- Power Management
- microMIPS Instructions Decoder
- Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The processor core execution unit implements a load/ store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous Multiply/ Divide Unit (MDU). The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port, and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- Load aligner
- Bypass multiplexers used to avoid Stalls when executing instruction streams where data producing instructions are followed closely by consumers for their results
- Leading zero/one detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations
- · Shifter and store aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The microAptiv UC core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows the longrunning MDU operations to be partially masked by system Stalls and/or other Integer Unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, Result/Accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the rs operand. The second number ('16' of 32x16) represents the rt operand. The microAptiv UC core only checks the value of the rt operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

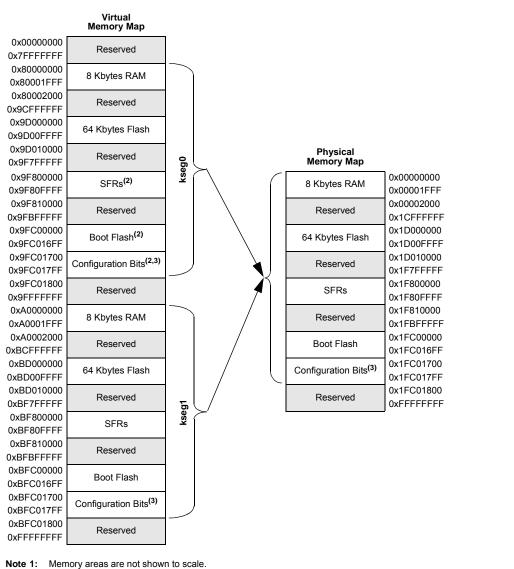

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back, 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU. Divide operations are implemented with a simple 1-bit-per-clock iterative algorithm. An early-in detection checks the sign extension of the dividend (rs) operand. If rs is 8 bits wide, 23 iterations are skipped. For a 16-bit wide rs, 15 iterations are skipped, and for a 24-bit wide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline Stall until the divide operation has completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be re-issued), and latency (number of cycles until a result is available) for the microAptiv UC core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

Opcode	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	1	1
MSUB/MSUBU	32 bits	2	2
MUL (GPR destination)	16 bits	2	1
	32 bits	3	2
DIV/DIVU	8 bits	12	11
	16 bits	19	18
	24 bits	26	25
	32 bits	33	32

TABLE 3-1: MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

FIGURE 4-3: MEMORY MAP FOR DEVICES WITH 64 Kbytes OF PROGRAM MEMORY⁽¹⁾

2: This region should be accessed from kseg1 space only.

3: Primary Configuration bits area is located at the address range, from 0x1FC01780 to 0x1FC017E8. Alternate Configuration bits area is located at the address range, from 0x1FC01700 to 0x1FC01768. Refer to Section 4.1 "Alternate Configuration Bits Space" for more information.

5.2 Flash Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		0								Bi	ts								6
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2380	NVMCON ⁽¹⁾	31:16	_							_									0000
2300	INVINCOIN.	15:0	WR	WREN	WRERR	LVDERR	_		_	_	—		—			NVMO	P<3:0>		0000
2390	NVMKEY	31:16									/~31.0>								0000
2390		15:0		NVMKEY<31:0>															
23A0	NVMADDR ⁽¹⁾	31:16		NVMADDR<31:0>										0000					
2370	NUMADOR	15:0								NVINADD	1(51.02								0000
23B0	NVMDATA0	31:16								NVMDAT	A0<31·0>								0000
2020		15:0									10 10 1.0								0000
23C0	NVMDATA1	31:16								NVMDAT	A1<31·0>								0000
2000		15:0									11.01.0								0000
23D0	NVMSRCADDR	31:16							N	VMSRCA	DDR<31:0	>							0000
2020		15:0																	0000
23E0	NVMPWP ⁽¹⁾	31:16	PWPULOCK	—	—	—	_	—	—	—				PWP<	23:16>				8000
-0-0		15:0								PWP<	15:0>								0000
23F0	NVMBWP ⁽¹⁾	31:16	—	—	—	—	_	_		_	_	_	—	_	_	_	_	—	0000
2010		15:0	BWPULOCK	_	_	—	—		BWP<2:0>		_	_	—	_	_	_	_	—	8700

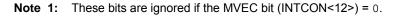
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER (CONTINUED)

- bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge
- bit 0 INTOEP: External Interrupt 0 Edge Polarity Control bit
 - 1 = Rising edge
 - 0 = Falling edge

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER


Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24		PRI7SS	<3:0> ⁽¹⁾			PRI6SS	<3:0> ⁽¹⁾	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16		PRI5SS	<3:0> ⁽¹⁾			PRI4SS	<3:0> ⁽¹⁾	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		PRI3SS	<3:0> ⁽¹⁾			PRI2SS	<3:0>(1)	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0		PRI1SS	<3:0> ⁽¹⁾		—	—	—	SS0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 PRI7SS<3:0>: Interrupt with Priority Level 7 Shadow Set bits⁽¹⁾

0001 = Interrupt with a priority level of 6 uses Shadow Set 1

0000 = Interrupt with a priority level of 6 uses Shadow Set 0

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽³⁾
 - 111 and 110 = Reserved (selects internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV))
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (SOSC)
 - 011 = Reserved
 - 010 = Primary Oscillator (POSC) (XT, HS or EC)
 - 001 = System PLL (SPLL)
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
 - On Reset, these bits are set to the value of the FNOSC<2:0> Configuration bits (FOSCSEL<2:0>).
- bit 7 CLKLOCK: Clock Selection Lock Enable bit
 - 1 = Clock and PLL selections are locked
 - 0 = Clock and PLL selections are not locked and may be modified
- bit 6-5 Unimplemented: Read as '0'
- bit 4 SLPEN: Sleep Mode Enable bit
 - 1 = Device will enter Sleep mode when a WAIT instruction is executed
 - 0 = Device will enter Idle mode when a WAIT instruction is executed
- bit 3 CF: Clock Fail Detect bit
 - 1 = FSCM has detected a clock failure
 - 0 = No clock failure has been detected
- bit 2 Unimplemented: Read as '0'
- bit 1 SOSCEN: Secondary Oscillator (SOSC) Enable bit⁽⁴⁾
 - 1 = Enables Secondary Oscillator
 - 0 = Disables Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit⁽²⁾
 - 1 = Initiates an oscillator switch to a selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: Writes to this register require an unlock sequence. Refer to Section 23.4 "System Registers Write Protection" for details.
 - 2: The Reset value for this bit depends on the setting of the IESO (FOSCSEL<7>) Configuration bit. When IESO = 1, the Reset value is '1'. When IESO = 0, the Reset value is '0'.
 - **3:** The Reset value for these bits matches the setting of the FNOSC<2:0> (FOSCSEL<2:0>) Configuration bits.
 - 4: The Reset value for this bit matches the setting of the SOSCEN (FOSCSEL<6>) Configuration bit.

TABLE 9-6: PORTC REGISTER MAP

DS60001324B-pa
age
84

ess		n	Bits																
Virtual Address (BF80_#)	Register Name ⁽³⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2800	ANSELC	31:16	_	_	_	_	_	_		_		_	_	-	—	—		_	0000
		15:0	—	_	_	_			_	_	—			_	—	_	ANSC<	1:0> ^(1,2)	0003
2810	TRISC	31:16	_	—	—	_	_	_	—	—	—	_	—	_	—	—	—	—	0000
-0.0		15:0	_	—	—	_	_	_	TRISC	:9:8> (1,2)	—	_	—	_		TRISC<	3:0> (1,2)		030F
2820	PORTC	31:16	_	—	—	_	_	_	—	—	—	_	—	_	—	—	—	—	0000
2020	TORTO	15:0	—				_	_	RC<9	:8> ^(1,2)	—	_		_		RC<3:	0> (1,2)		0000
2830	LATC	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
2000	EATO	15:0	—				_	_	LATC<	9:8> (1,2)	—	_		_		LATC<	3:0> (1,2)		0000
2840	ODCC	31:16	—				_	_	_	_	—	_		_		_	_	—	0000
2040	0000	15:0	—				_	_	ODCC<	:9:8> (1,2)	—	_		_		ODCC<	3:0> (1,2)		0000
2850	CNPUC	31:16	—				_	_	_	_	—	_		_		_	_	—	0000
2000		15:0	—	—	—	—	_	_	CNPUC	<9:8>(1,2)	—	_	—	_		CNPUC	<3:0>(1,2)		0000
2860	CNPDC	31:16	—	—	—	_	—	—	—	—	—	_	—	_	—	—	-	—	0000
2000	CINFDC	15:0	—	—	—	—	—	—	CNPDC	<9:8>(1,2)	—	_	—	_		CNPDC<	<3:0> (1,2)		0000
2870	CNCONC	31:16	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—	—	0000
2070	CINCOINC	15:0	ON ⁽¹⁾	—	—	—	CNSTYLE ⁽¹⁾	—	—	—	—	_	—	_	—	—	—	—	0000
2880	CNEN0C	31:16	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—	—	0000
2000	CINEINUC	15:0	_	—	—	—	_	_	CNIE0C	<9:8>(1,2)	—		_			CNIE0C4	<3:0>(1,2)		0000
2890	CNSTATC -	31:16	_	—	—	—	_	_	_	—	—		_		—	_		_	0000
2090	CINGTATE	15:0	—	—	—	—	_	_	CNSTAT	C<9:8>(1,2)	—	—	—			CNSTATO	<3:0>(1,2)		0000
28A0	CNEN1C	31:16	_	-	_	-	-	_	_	—	—	_	_	I	_	-		_	0000
2040	CINENTO	15:0	_	-	-	-	—	_	CNIE1C	<9:8>(1,2)	_					CNIE1C	<3:0>(1,2)		0000
28B0	CNFC	31:16	_	-	—	-	—	_	—	—	—				_	—	_	—	0000
20BU	CINFC	15:0	_	—	—	—	_	_	CNFC<	:9:8> (1,2)	_					CNFC<	3:0> ^(1,2)		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. **Note 1:** Bits<15,11,9:8,3:0> are not implemented in 20-pin devices.

2: Bits<8,3:0> are not implemented in 28-pin devices.

3: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

TABLE 9-7: PERIPHERAL PIN SELECT REGISTER MAP

ess			Bits																
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2480	RPCON	31:16 15:0	_		_		— IOLOCK			_		_	_				_	_	0000
24A0	RPINR1	31:16 15:0	_			_									_	— INT4R<4:0>		_	0000
24B0	RPINR2	31:16 15:0	_	_			ICM2R<4:0>				_	_	_			ICM1R<4:0	>		0000
24C0	RPINR3	31:16	_	_	_		—	_	_		_	_	_	_			_	-	0000
24E0	RPINR5	15:0 31:16	_	_		—	(— DCFBR<4:0>	>	—			_			ICM3R<4:0 DCFAR<4:0			0000
24F0	RPINR6	15:0 31:16	_																0000
		15:0 31:16						CKIBR<4:0 2CTSR<4:0					_			CKIAR<4:0 J2RXR<4:0			0000
2520	RPINR9	15:0 31:16	_			_	_	_	_	_					—	— SS2INR<4:0	-	_	0000
2540	RPINR11	15:0	_		—		S	CK2INR<4:0)>		_	_	—			SDI2R<4:0>	>		0000
2550	RPINR12	31:16 15:0	_			_	- C	LCINBR<4:0)> 	_				—	- C	LCINAR<4:	0> —	_	0000
2590	RPOR0	31:16 15:0	_			_			<3:0><<3:0>							RP3R RP1R			0000
25A0	RPOR1	31:16 15:0	_	_		_	- RP8R<3:0>						_			RP7R RP5R			0000
25B0	RPOR2	31:16 15:0	_			_	- RP12R<3:0>									RP11F RP9R	R<3:0>		0000
25C0	RPOR3	31:16	_	_	_	_		RP16F	२<3:0>		_	_	_	_		RP15F	R<3:0>		0000
25D0	RPOR4	15:0 31:16	_									0000							
2020		15:0	_	—	—	- RP18R<3:0>					RP17F	R<3:0>		0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

REGISTER 12-1: CCPxCON1: CAPTURE/COMPARE/PWMx CONTROL 1 REGISTER (CONTINUED)

- bit 7-6 **TMRPS<1:0>:** CCPx Time Base Prescale Select bits
 - 11 = 1:64 prescaler
 - 10 = 1:16 prescaler
 - 01 = 1:4 prescaler
 - 00 = 1:1 prescaler
- bit 5 **T32:** 32-Bit Time Base Select bit
 - 1 = 32-bit time base for timer, single edge output compare or input capture function
 - 0 = 16-bit time base for timer, single edge output compare or input capture function
- bit 4 CCSEL: Capture/Compare Mode Select bit
 - 1 = Input Capture mode
 - 0 = Output Compare/PWM or Timer mode (exact function is selected by the MOD<3:0> bits)
- bit 3-0 MOD<3:0>: CCPx Mode Select bits
 - CCSEL = 1 (Input Capture modes):
 - 1xxx = Reserved
 - 011x = Reserved
 - 0101 = Capture every 16th rising edge
 - 0100 = Capture every 4th rising edge
 - 0011 = Capture every rising and falling edge
 - 0010 = Capture every falling edge
 - 0001 = Capture every rising edge
 - 0000 = Capture every rising and falling edge (Edge Detect mode)
 - CCSEL = 0 (Output Compare modes):
 - 1111 = External Input mode: Pulse generator is disabled, source is selected by ICS<2:0>
 - 1110 = Reserved
 - 110x = Reserved
 - 10xx = Reserved
 - 0111 = Variable Frequency Pulse mode
 - 0110 = Center-Aligned Pulse Compare mode, buffered
 - 0101 = Dual Edge Compare mode, buffered
 - 0100 = Dual Edge Compare mode
 - 0011 = 16-Bit/32-Bit Single Edge mode: Toggles output on compare match
 - 0010 = 16-Bit/32-Bit Single Edge mode: Drives output low on compare match
 - 0001 = 16-Bit/32-Bit Single Edge mode: Drives output high on compare match
 - 0000 = 16-Bit/32-Bit Timer mode: Output functions are disabled
- **Note 1:** This control bit has no function in Input Capture modes.
 - 2: This control bit has no function when TRIGEN = 0.
 - 3: Values greater than '0011' will cause a FIFO buffer overflow in Input Capture mode.

REGISTER 13-1: SPIxCON: SPIx CONTROL REGISTER (CONTINUED)

bit 23	MCLKSEL: Master Clock Enable bit ⁽¹⁾
	 1 = REFCLKO is used by the Baud Rate Generator 0 = PBCLK is used by the Baud Rate Generator (1:1 with SYSCLK)
bit 22-18	Unimplemented: Read as '0'
bit 17	SPIFE: SPIx Frame Sync Pulse Edge Select bit (Framed SPI mode only)
	 1 = Frame synchronization pulse coincides with the first bit clock 0 = Frame synchronization pulse precedes the first bit clock
bit 16	ENHBUF: Enhanced Buffer Enable bit ⁽¹⁾
	1 = Enhanced Buffer mode is enabled0 = Enhanced Buffer mode is disabled
bit 15	ON: SPIx Module On bit
	1 = SPIx module is enabled0 = SPIx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: SPIx Stop in Idle Mode bit
	 1 = Discontinues operation when CPU enters Idle mode 0 = Continues operation in Idle mode
bit 12	DISSDO: Disable SDOx Pin bit ⁽⁴⁾
	 1 = SDOx pin is not used by the module; the pin is controlled by the associated PORTx register 0 = SDOx pin is controlled by the module
bit 11-10	MODE<32,16>: 32/16/8-Bit Communication Select bits
	When AUDEN = 1:
	MODE32 MODE16 Communication
	1124-bit data, 32-bit FIFO, 32-bit channel/64-bit frame1032-bit data, 32-bit FIFO, 32-bit channel/64-bit frame
	0 1 16-bit data, 16-bit FIFO, 32-bit channel/64-bit frame
	0 0 16-bit data, 16-bit FIFO, 16-bit channel/32-bit frame
	When AUDEN = 0:
	MODE32 MODE16 Communication
	1 x 32-bit 0 1 16-bit
	0 0 8-bit
bit 9	SMP: SPIx Data Input Sample Phase bit
	Master mode (MSTEN = 1):
	 1 = Input data is sampled at the end of data output time 0 = Input data is sampled at the middle of data output time
	Slave mode (MSTEN = 0):
	SMP value is ignored when SPIx is used in Slave mode. The module always uses SMP = 0.
bit 8	CKE: SPIx Clock Edge Select bit ⁽²⁾
	 1 = Serial output data changes on transition from active clock state to Idle clock state (see the CKP bit) 0 = Serial output data changes on transition from Idle clock state to active clock state (see the CKP bit)
Note 1:	These bits can only be written when the ON bit = 0. Refer to Section 26.0 "Electrical Characteristics" for maximum clock frequency requirements.
2:	This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
3:	When AUDEN = 1, the SPI/I ² S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
4:	These bits are present for legacy compatibility and are superseded by PPS functionality on these devices (see Section 9.8 " Peripheral Pin Select (PPS) " for more information).

14.1 UART Control Registers

TABLE 14-1: UART1 AND UART2 REGISTER MAP

ess										E	lits								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0600	U1MODE ⁽¹⁾	31:16		_	—	_	_	_		—	SLPEN	ACTIVE	_	_	-	CLKSE	L<1:0>	OVFDIS	0000
0000	ONNODE	15:0	ON		SIDL	IREN	RTSMD	—	UEN≤	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0610	U1STA ⁽¹⁾	31:16				UART1 M	ASK<7:0>							UART1 AD	DR<7:0>				0000
0010	UISIA	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
0620	U1TXREG	31:16	—								0000								
0020	UTIAREG	15:0	—	TX8 UART1 Transmit Register 00							0000								
0630	U1RXREG	31:16	—		—					_		—	_	_		—	_	_	0000
0030	UIRAREG	15:0	—		—					RX8			U.	ART1 Rece	ive Registe	er			0000
0640	U1BRG ⁽¹⁾	31:16	—		_					_		_	_	_		_	—	_	0000
0040	UIBKG.	15:0							Bau	d Rate Ger	nerator Pre	scaler							0000
0680	U2MODE ⁽¹⁾	31:16	—	-	—	—	—	—	_	—	SLPEN	ACTIVE	—	—	_	CLKSE	L<1:0>	OVFDIS	0000
0000	UZIVIODE ⁽)	15:0	ON		SIDL	IREN	RTSMD		UEN∙	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
0690	U2STA ⁽¹⁾	31:16				UART2 M	ASK<7:0>							UART2 AD	DR<7:0>				0000
0090	0231A.7	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
06A0	U2TXREG	31:16	—		—					_		—	_	_		—	_	_	0000
UOAU	UZIAREG	15:0	—		—					TX8			U	ART2 Trans	mit Registe	er			0000
06B0	U2RXREG	31:16			—			_								0000			
0080	UZKAREG	15:0			—			_	RX8 UART2 Receive Register						0000				
06C0	U2BRG ⁽¹⁾	31:16			—			_				—	_	_		—	_		0000
0000	UZBRG''	15:0	15:0 Baud Rate Generator Prescaler 0000								0000								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

15.1 RTCC Control Registers

TABLE 15-1: RTCC REGISTER MAP

ess		6									Bits								ú
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	RTCCON1	31:16	ALRMEN	CHIME	-			AMASK	<3:0>					ALMRP	T<7:0>				0000
0000	RICCONT	15:0	ON	_	_		WRLOCK	_	—		RTCOE		OUTSEL<2:0	>	—	—	_	—	0000
0010	RTCCON2	31:16								DI	V<15:0>								0000
0010	RICCONZ	15:0			FDIV<4:0)>		—	—	_	—	—	—	—	—	—	CLKSE	L<1:0>	0000
0030	RTCSTAT	31:16	—	—	—	_	—	_	—	_	—	_	—	—	—	—	—	—	0000
0000	RIGOLAI	15:0	—	—	—	—	—	_	—	—	—	_	ALMEVT	—	—	SYNC	ALMSYNC	HALFSEC	0000
0040	RTCTIME	31:16	—	F	IRTEN<2	:0>		HRONE	=<3:0>		—		MINTEN<2:0	>		MINC	NE<3:0>	-	xxxx
0040	RIGHME	15:0		SECTE	N<3:0>			SECON	E<3:0>		—	_	_		_	—	—	—	xx00
0050	RTCDATE	31:16		YRTE	N<3:0>			YRONE	<3:0>		—	_	_	MTHTEN		MTHC	DNE<3:0>		0000
0000	RIODAIL	15:0	—	—	DAYT	EN<1:0>		DAYON	E<3:0>		—	_	_	—	—		WDAY<2:0	>	0000
0060	ALMTIME	31:16	—	F	IRTEN<2	:0>		HRONE	=<3:0>		—		MINTEN<2:0	>		MINC	NE<3:0>	-	xxxx
0000		15:0		SECTE	N<3:0>			SECON	E<3:0>		—	_	—	—	—	_	_	—	xx00
0070	ALMDATE	31:16	_	—	_	—	—	_	—	—	—	_	—	MTHTEN		MTHC)NE<3:0>		0000
0070		15:0	_	—	DAYTI	EN<1:0>		DAYON	E<3:0>		—	_	_	—	—		WDAY<2:0	>	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24	_	_	_			—	—	—
23:16	U-0	U-0						
23.10	—	_	-	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	ON	_	SIDL				FORM<2:0>	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HSC	R/W-0, HSC
7:0		SSRO	C<3:0>		MODE12	ASAM	SAMP ⁽¹⁾	DONE ⁽²⁾

REGISTER 16-1: AD1CON1: ADC CONTROL REGISTER 1

Legend:	HSC = Hardware Settable	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** ADC Operating Mode bit
 - 1 = ADC module is operating
 - 0 = ADC is off
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** ADC Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12-11 Unimplemented: Read as '0'
- bit 10-8 **FORM<2:0>:** Data Output Format bits
 - For 12-Bit Operation (MODE12 bit = 1):
 - 111 = Signed Fractional 32-bit (DOUT = sddd dddd dddd 0000 0000 0000)
 - 110 = Fractional 32-bit (DOUT = dddd dddd dddd 0000 0000 0000 0000)
 - 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sddd dddd)

 - 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd 0000)
 - 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd 0000)

 - 000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 dddd dddd)

For 10-Bit Operation (MODE12 bit = 0):

- 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000)
- 110 = Fractional 32-bit (DOUT = dddd dddd dd00 0000 0000 0000 0000)
- 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd)
- 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
- 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd ddd0 0000)
- 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)
- 000 = Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
- **Note 1:** The SAMP bit is cleared and cannot be written if the ADC is disabled (ON bit = 0).
 - 2: The DONE bit is not persistent in Automatic modes; it is cleared by hardware at the beginning of the next sample.

PIC32MM0064GPL036 FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
31:24	_		CSS<30:28>		_	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	—			CSS<13	3:8> ^(1,2)		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CSS	<7:0>			

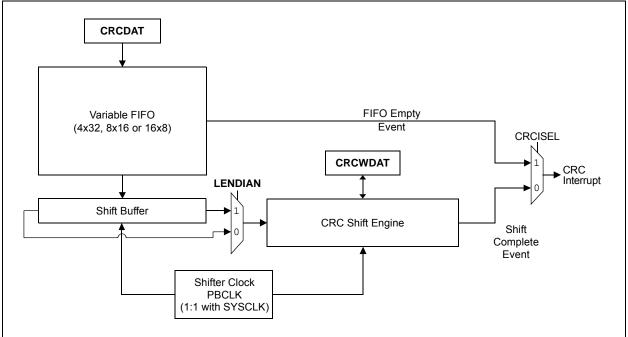
REGISTER 16-6: AD1CSS: ADC INPUT SCAN SELECT REGISTER

Legend:

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31 Unimplemented: Read as '0'

bit 30-28 CSS<30:28>: ADC Input Pin Scan Selection bits

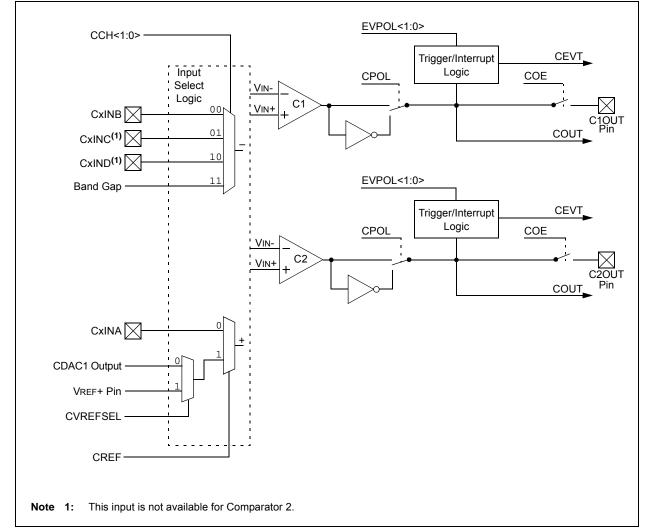

- 1 = Selects ANx for the input scan
- 0 = Skips ANx for the input scan
- bit 27-14 Unimplemented: Read as '0'
- bit 13-0 CSS<13:0>: ADC Input Pin Scan Selection bits^(1,2)
 - 1 = Selects ANx for the input scan
 - 0 = Skips ANx for the input scan
- Note 1: The CSS<13:11> bits are not implemented in 20-pin devices.
 - **2:** The CSS<13:12> bits are not implemented in 28-pin devices.

17.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 60. "32-Bit Programmable Cyclic Redundancy Check" (DS60001336) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32). The information in this data sheet supersedes the information in the FRM. The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-Programmable CRC Polynomial Equation, up to 32 Bits
- Programmable Shift Direction (little or big-endian)
- Independent Data and Polynomial Lengths
- Configurable Interrupt Output
- Data FIFO

Figure 17-1 displays a simplified block diagram of the CRC generator.


FIGURE 17-1: CRC BLOCK DIAGRAM

19.0 COMPARATOR

Note: This data sheet summarizes the features of the PIC32MM0064GPL036 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 19.** "Comparator" (DS60001110) in the "*PIC32 Family Reference Manual*", which is available from the Microchip web site (www.microchip.com/ PIC32). The information in this data sheet supersedes the information in the FRM. The comparator module provides two dual input comparators. The inputs to the comparator can be configured to use any one of five external analog inputs (CxINA, CxINB, CxINC, CxIND and VREF+). The comparator outputs may be directly connected to the CxOUT pins. When the respective COE bit equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is shown in Figure 19-1. Each comparator has its own control register, CMxCON (Register 19-2), for enabling and configuring its operation. The output and event status of two comparators is provided in the CMSTAT register (Register 19-1).

PIC32MM0064GPL036 FAMILY

REGISTER 19-2: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 AND 2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_		-	_	_		—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	—	_	_	_	_	_
45.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC
15:8	ON	COE	CPOL	—	_	_	CEVT	COUT
7.0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
7:0	EVPOI	_<1:0>	_	CREF	_	_	CCH•	<1:0>

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 ON: Comparator Enable bit
 - 1 = Comparator is enabled
 - 0 = Comparator is disabled

bit 14 COE: Comparator Output Enable bit

- 1 = Comparator output is present on the CxOUT pin
 - 0 = Comparator output is internal only
- bit 13 CPOL: Comparator Output Polarity Select bit
 - 1 = Comparator output is inverted
 - 0 = Comparator output is not inverted

bit 12-10 Unimplemented: Read as '0'

- bit 9 CEVT: Comparator Event bit
 - 1 = Comparator event that is defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are disabled until the bit is cleared
 - 0 = Comparator event has not occurred
- bit 8 **COUT:** Comparator Output bit

 $\frac{\text{When CPOL} = 0:}{1 = \text{VIN} + \text{VIN}-}$ 0 = VIN + VIN- $\frac{\text{When CPOL} = 1:}{1 = \text{VIN} + \text{VIN}-}$

0 = VIN + > VIN -

REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER (CONTINUED)

- bit 3-0 HLVDL<3:0>: High/Low-Voltage Detection Limit bits
 - 1111 = External analog input is used (input comes from the LVDIN pin and is compared with 1.2V band gap) 1110 = VDD trip point is $2.11V^{(1)}$
 - 1101 = VDD trip point is $2.21V^{(1)}$
 - 1100 = VDD trip point is 2.30V⁽¹⁾
 - 1011 = VDD trip point is 2.40V⁽¹⁾
 - 1010 = VDD trip point is $2.52V^{(1)}$
 - 1001 = VDD trip point is 2.63V⁽¹⁾
 - $1000 = \text{VDD trip point is } 2.82\text{V}^{(1)}$
 - 0111 = VDD trip point is $2.92V^{(1)}$
 - $0110 = VDD trip point is <math>3.13V^{(1)}$
 - 0101 = VDD trip point is $3.44V^{(1)}$
 - 0100-0000 = Reserved; do not use
- Note 1: The voltage is typical. It is for design guidance only and not tested. Refer to Table 26-13 in Section 26.0 "Electrical Characteristics" for minimum and maximum values.

24.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

24.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

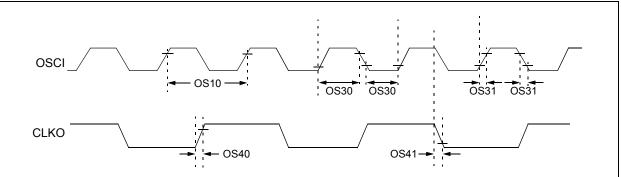
The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

24.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.


24.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

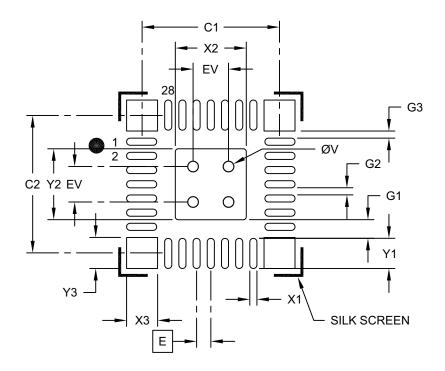
24.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

FIGURE 26-3: EXTERNAL CLOCK TIMING

TABLE 26-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Operat	Operating Conditions: $2.0V \le VDD \le 3.6V$, $-40^{\circ}C \le TA \le +85^{\circ}C$ (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions			
OS10	Fosc	External CLKI Frequency	DC 2		25 12.5	MHz MHz	EC ECPLL ⁽²⁾			
		Oscillator Frequency	3.5 3.5 10 10 31		10 10 25 25 50	MHz MHz MHz MHz kHz	XT XTPLL ⁽²⁾ HS HSPLL ⁽²⁾ SOSC			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc		0.55 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	_	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾		15	20	ns				
OS41	TckF	CLKO Fall Time ⁽³⁾		15	20	ns				


Note 1: Data in the "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: PLL dividers and postscalers must be configured so that the system clock frequency does not exceed the maximum operating frequency.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (M6) - 4x4x0.6 mm Body [UQFN] With Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	IILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.40 BSC	
Center Pad Width	X2			2.00
Center Pad Length	Y2			2.00
Contact Pad Spacing	C1		3.90	
Contact Pad Spacing	C2		3.90	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.85
Contact Pad to Center Pad (X28)	G1		0.52	
Contact Pad to Pad (X24)	G2	0.20		
Contact Pad to Corner Pad (X8)	G3	0.20		
Corner Anchor Width (X4)	X3			0.78
Corner Anchor Length (X4)	Y3			0.78
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	EV		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2333-M6 Rev B